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A many-to-many matching (MM) between two sets matches each element of one set to at least one element of the other set. A
general case of the MM is the many-to-many matching with demands and capacities (MMDC) satisfying given lower and upper
bounds on the number of elements matched to each element. In this article, we give a polynomial-time algorithm for fnding
a minimum-cost MMDC between two sets using the well-known Hungarian algorithm.

1. Introduction

Let A � a1, a2, . . . , as􏼈 􏼉 and B � b1, b2, . . . , bt􏼈 􏼉 with
|A| + |B| � n. A many-to-many matching (MM) between
two sets A and B maps each element of A to at least one
element of B and vice-versa. Let L be an MM between A and
B. Te cost of L denoted by c(L) is the sum of the costs of all
matched pairs (p, q) ∈ L. Given an undirected bipartite
graph G � (S∪T, E), a matching in G is a subset of the edges
M⊆E such that each vertex v ∈ S∪T is incident to at most
one edge of M. A perfect matching in G is a matching
covering all vertices v ∈ S∪T. A matched vertex is a vertex
that is incident to an edge in M. A vertex that is not matched
is a free vertex. Let W(a, b) denote the weight of the edge
(a, b) ∈ E. Te weight of the matching M is the sum of the
weights of all edges e in M, hence

W(M) � 􏽘
e∈M

W(e). (1)

Te frst polynomial algorithm for computing a mini-
mum-weight perfect matching in G with |S| � |T| � n is the
well-known Hungarian algorithm proposed in [1], later
implemented faster by the running time O(n3) in dense
graphs [2] and O(mn log n) in sparse graphs [3], where
m � |E|. Eiter and Mannila [4] solved the minimum-cost

MM problem in O(n3) time by reducing it to the minimum-
weight perfect matching problem in a bipartite graph. A
modifed Hungarian algorithm which is more complex than
the approach given in [4], performing n shortest path
searches using Dijkstra’s algorithm by advantage of Fibo-
nacci heaps [5], runs in O(n2 log n + nm) time [6]. When the
weights of the edges e ∈ E are integers, a scaling algorithm
was proposed by Gabow and Tarjan [7] running in
O(

�
n

√
m log(nW′)) time, where W′ � max(W(e))e∈E. For

a more detailed discussion on the matching theory and
algorithms, see [8–10]. When A and B are two sets of points
in the plane, a modifed Hungarian algorithm computes an
MM between A and B in O(n2poly(log n)) time due to
Bandyapadhyay et al. [11]. Colannino et al. [12] proposed an
O(n log n) time algorithm for the one-dimensional MM
(OMM) problem, where A and B are two sets of points lying
on the real line.

Without loss of generality, let |B|≤ |A|. In a two-sided
matching (TSM) between two sets A and B, each element of B

must bematched to an element ofA, and each element ofA can
bematched to atmost one element ofB, implying that |A| − |B|

elements of A remain free [13]. In a stable TSM problem, each
element of one set provides preference information over the
elements of the other set based on which the optimal matching
is computed [14, 15]. A TSM denoted by M is a stable TSM if
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for any matched pair (p, q) ∈M, p and q do not prefer to be
matched to q′ ≠ q rather than q and p′ ≠p rather than p,
respectively [13]. Two types of stable TSM problems have been
considered in the literature, multiattribute stable TSM prob-
lems in which each element of one set provides its preference
over the elements of the other set using multiple attributes, and
stable TSM problems with preference structures such as
preference ordinals and relations [14, 15]. Although some
special cases of stable TSM problems can be solved in poly-
nomial time, most stable TSM problems are NP-hard and can
be solved by optimization models such as linear and nonlinear
programming models [13–15].

In a limited-capacity MM (LCMM) between A and B,
each element v ∈ A∪B can be matched to a limited number
of the elements, denoted by Cap(v). A degree-constrained
subgraph (DCS) in a general graph H � (V, E′) is a sub-
graph H′ in which for each vertex v ∈ V with degree deg(v),
we have (l(v)≤ deg(v)≤ u(v)l(v) and u(v) denote integer
bounds). Te DCS problem in H was solved in
O(n′

2
min(m′ log n′, n′

2
)) time [16], where m′ � |E′| and

n′ � |V|. Te minimum-cost LCMM problem can be re-
duced to fnding a minimum-weight DCS in an undirected
bipartite graph. A one-dimensional LCMM (OLCMM), an
LCMM where A and B lie on the real line, was solved in
O(n2) time [17]. A simple b-matching in H is a subset of the
edges F ⊂ E′ in which there is a quota b: V⟶ Z> 0 on the
vertices v ∈ V such that deg(v)≤ b(v) for all v ∈ V. When
the edge weights are integers, the optimal simple b-matching
problem in the bipartite graph G′ � (A∪B, E″) was solved

in the time complexity of O(W′
��

β′
􏽱

n2) [9], where W′ �

maxe∈E″(W(e)) and β′ � 􏽐v∈A∪BCap(v).
Te many-to-many matching with demands and ca-

pacities (MMDC) is a generalization of the LCMM in which
each element ai ∈ A is matched to αi ≤ deg(ai)≤ αi

′ elements
of B, and each element bj ∈ B is matched to βj ≤ deg(bj)≤ βj

′
elements of A. Observe that we can consider the minimum-
cost MMDC problem a special case of the optimal DCS
problem in a bipartite graph, and solve it using the algorithm
proposed in [16]. In this article, we present an algorithm that
computes a minimum-cost MMDC between A and B in
O(n6) time using the basic Hungarian algorithm. Also, our
algorithm computes an MMDC between two sets of points
in the plane in O(n4poly(log n2)) time using the modifed
Hungarian algorithm proposed in [11]. In fact, our algo-
rithm imposes upper and lower bounds on the number of
elements that can be matched to each element in any version
of the Hungarian algorithm (see e.g., [18, 19] for further
discussion and references). Note that when t≪ s, our al-
gorithm runs in O(n3) time improving the previous O(n4)

time algorithm. Also, our algorithm runs faster than its
worst time complexity in bipartite graphs with low-range
edge weights and dense graphs [19]. In Section 2, we present
our algorithm and a numerical example for it.

2. Matching Algorithm

Given two sets A � a1, a2, . . . , as􏼈 􏼉 and B � b1, b2, . . . , bt􏼈 􏼉,
in this section, we present our algorithm for computing an

MMDC between A and B. We construct a complete bipartite
graph G � (S∪T, E) such that by running the Hungarian
algorithm on G, the demands and capacity limitations of
elements of A and B are satisfed. In the following, we ex-
plain how our complete bipartite graph G � (S∪T, E) is
constructed. Note that we assume there exists at least one
MMDC between A and B; this can be checked in O(n3)

time [20].
We represent a set of related vertices using a rectangle, an

edge with a line, and each vertex with a circle. In a complete
connection between two sets, each vertex of one set is con-
nected to all vertices of the other set. We show a complete
connection using a line connecting the two corresponding
sets. Te Hungarian algorithm computes a perfect matching
in which each vertex is incident to a unique edge. We aim to
fnd anMMDC between two sets A and B where two or more
elements may be mapped to the same element, that is, more
than one element may be matched to any of the elements.
Terefore, our constructed graph contains multiple copies of
each element to simulate this situation. Also, the input of the
Hungarian algorithm is a complete bipartite graph
G � (V∪V′, E) with |V| � |V′|, i.e., both parts of the input
bipartite graph have an equal number of vertices. Terefore,
we should balance two parts of our constructed bipartite
graph before using the Hungarian algorithm.

Let S∪T be a bipartition of G with S � (∪ s
i�1Ai)∪

(∪ s
i�1Ai
′)∪ (∪ t

j�1Xj)∪ (∪ t
j�1Wj), and T � (∪ s

i�1Bseti)∪Y

(see Figure 1). Let Ai � ai1, . . . , aiαi
􏽮 􏽯 be the set of αi copies

of the element ai for 1≤ i≤ s. Note that each element ai ∈ A

has a limited capacity, i.e., it can be matched to at most
a given number of elements of B. Tus, each ai is copied
α′i − αi times to constitute the set Ai

′ � ai1′ , . . . ,􏼈 ai(α′i− αi)
′ } for

1≤ i≤ s. Each set Bseti � b1i, . . . , bti􏼈 􏼉 is a copy of the set
B � b1, b2, . . . , bt􏼈 􏼉. Assume that all vertices bji with
1≤ i≤ sconstitute the set Bj. In fact, each set Bj includes s

copies of bj for 1≤ j≤ t. We use the set

Wj � wj1, . . . , wj(s− βj
′)􏼚 􏼛 to limit the number of elements

matched to bj ∈ B. Te set Y � y1, y2, . . . , yz􏼈 􏼉 compensates
our bipartite graph G (Y balances S and T). Also, the sets

Xj � xj1, . . . , xj(βj
′− βj)􏼚 􏼛 for 1≤ j≤ t guarantee that the

output MMDC is a minimum-cost MMDC.
Te vertices of the sets Ai, Bseti, and Ai

′ for 1≤ i≤ s are
called main vertices, since they are copies of elements of
A∪B. On the other hand, the vertices of the sets Y, Xj, and
Wj for 1≤ j≤ t are called dummy vertices. All edges (p, q)

whose both end vertices are main vertices, i.e.,
p, q ∈ Ai ∪Ai

′ ∪Bseti for 1≤ i≤ s, are called main edges.
Each set Ai is completely connected to the set Bseti. Tis

complete connection is shown using a line connecting the
two corresponding rectangles of Ai and Bseti. Note that
W(aik, bji) � δ(ai, bj) for 1≤ k≤ αi, where δ(ai, bj) ∈ R is
the cost of matching ai to bj. Each set Ai guarantees that the
element ai ∈ A is matched to at least αi elements of B. Each
set Ai
′ is completely connected to the set Bseti, where

W(aik
′, bji) is equal to δ(ai, bj) for 1≤ k≤ (α′i − αi). Te sets

Ai
′ guarantee that each element bj ∈ B is matched to at least
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βj elements of A. Moreover, each set Ai
′ assures that ai is

matched to at most αi
′ elements.

Let c � min(δ(ai, bj))1≤ i≤ s,1≤ j≤ t. Given an arbitrary
real value c′ with c′ < c, there is a complete connection with
c′ weighted edges between Bj and Xj for 1≤ j≤ t. Also, there
is a zero weighted complete connection between Bj and Wj.

Te compensator set Y � y1, y2, . . . , yz􏼈 􏼉 with z � |Y| �

􏽐
s
i�1αi
′ − 􏽐

t
j�1βj is inserted in G as follows. Note that we

assume 􏽐
s
i�1αi
′ ≥􏽐

t
j�1βj (and 􏽐

t
j�1βj
′ ≥􏽐

s
i�1αi), since other-

wise, there would not exist anyMMDC between A and B. Let
η � max(δ(ai, bj))1≤ i≤ s,1≤ j≤ t. Each set Ai

′ is completely
connected to Y with η′ weighted edges, where η′ is an ar-
bitrary real value with η′ > η. Tus, the priority of each set Ai

′
is the vertices of Bseti. We also have a complete connection
between Xj and Y whose edge weights equal a real value c″.
Note that the priority of the vertices of Xj is the vertices of
Bj, thus c″ > c′.

Notice moreover that, since for each vertex bji ∈ Bj, the
vertices of Xj should have priority over the vertices of Ai

′, we
have

W bji, xjk􏼐 􏼑 + W ail
′, yk′( 􏼁<W bji, ail

′􏼐 􏼑 + W xjk, yk′􏼐 􏼑, (2)

for all 1≤ k≤ (βj
′ − βj), 1≤ k′ ≤ z, and 1≤ l≤ (α′i − αi). Tus,

c
′
+ η′ < δ bj, ai􏼐 􏼑 + c

″
, (3)

for all 1≤ i≤ s and 1≤ j≤ t. Terefore,

max c
′
+ η′ − δ ai, bj􏼐 􏼑􏼒 􏼓

1≤ i≤ s,1≤ j≤ t
< c
″
, and

c
′
+ η′ − min δ ai, bj􏼐 􏼑􏼐 􏼑1≤ i≤ s,1≤ j≤ t

< c
″
.

(4)

Terefore, we have

c
′
+ η′ − c< c

″
. (5)

Observe that c′ + η′ − c> c′, since otherwise, we would
have c′ + η′ − c≤ c′, and thus, η′ ≤ c. Tis is a contradiction.

Observe that we have

|S| � ∪
s

i�1
Ai

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ ∪

s

i�1
Ai
′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ ∪

t

j�1
Xj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ ∪

t

j�1
Wj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 􏽘
s

i�1αi
′ + (s∗ t) − 􏽘

t

j�1
βj, and

|T| � ∪
s

i�1
Bseti

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ |Y| � (s∗ t) + 􏽘

s

i�1
αi
′ − 􏽘

t

j�1
βj.

(6)

Note that G must be a complete bipartite graph. Tus, if
there does not exist an edge between any two vertices p ∈ S

and q ∈ T, we assume that an infnite weighted edge con-
nects p and q, i.e., W(p, q) �∞.

We claim that from aminimum-weight perfect matching
in G � (S∪T, E) denoted by M, we can get a minimum-cost
MMDC between A and B. Let Main(M) be the set of the
main edges of M. Let L denote a minimum-cost MMDC
between A and B. In the following, we prove that the weight
of Main(M), i.e., W(Main(M)), is equal to the cost of L,
i.e., c(L).

Lemma 1. W(Main(M))≤ c(L).

Proof. We get from L a perfect matching M′ in our complete
bipartite graph G such that the weight of Main(M′) equals
the cost of L, i.e., W(Main(M′)) � c(L).

Let pi be the number of the elements bj ∈ B with 1≤ j≤ t

matched to ai ∈ A in L. It is obvious that αi ≤pi ≤ αi
′. Firstly,

for each pairing (ai, bj) with 1≤ j≤ t in L, we select the edge
of G connecting bji to an arbitrary free vertex aik ∈ Ai with
1≤ k≤ αi, and add to M′ until there does not exist any free
vertex in Ai. Ten, depending on the value of pi, two cases
arise as follows:

(i) either pi � αi. In this situation, we select the η′
weighted edges of G connecting each aik

′ ∈ Ai
′ to an

arbitrary free vertex of Y for 1≤ k≤ (αi
′ − αi) and add

to M′.

A1 AsA'1 A's

W1 WtX1 Xt

Y
b1sb11 btsbt1

Bset1 Bsets

Figure 1: Te constructed complete bipartite graph G by our algorithm.
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(ii) or pi > αi. In this case, we match pi − αi number of
vertices of Ai

′ to the vertices of Bseti as follows. For
each of the remaining pi − αi pairings (ai, bj) with
1≤ j≤ t in L that have no equivalent edges in M′, we
add the edge of G connecting bji to an arbitrary free
vertex aik

′ with 1≤ k≤ (αi
′ − αi) to M′. Ten, if there

exist free vertices in Ai
′ (since pi < αi

′), for each of
them, we select an edge of G connecting it to an
arbitrary free vertex of Y and add to M′.

Ten, we add the edges of G connecting each wjk ∈Wj

to an arbitrary free vertex of Bj for 1≤ k≤ (s − βj
′) to M′.

Now, the vertices of Xj are matched to the vertices of Bj,
unless no free vertices remain in Bj. Tus, we frst add the
edges connecting the vertices of Xj pairwise to the
remaining free vertices of Bj. Ten, we add the edges
connecting the free vertices of Xj, if exist, to the free vertices
of Y pairwise to M′.

Observe that M′ is a perfect matching, since each vertex
of G is incident with exactly one edge in M′. For each
(ai, bj) ∈ L, there exists an edge with equal weight in
Main(M′), thus W(Main(M′)) � c(L). □

Lemma 2. Let M be a minimum-weight perfect matching in
G. Ten, for any perfect matching in G denoted by M″, we
have

W(Main(M))≤W Main M
″

􏼒 􏼓􏼒 􏼓. (7)

Proof. Observe that we have

W(M) � W(Main(M)) + W(M\Main(M)). (8)

Note that

|L| � max 􏽘
s

i�1
αi, 􏽘

t

j�1
βj

⎛⎝ ⎞⎠. (9)

Observe that the set M″\Main(M″) contains

(i) the zero weighted edges connecting the vertices of
Wj to Bj for 1≤ j≤ t, with a total number of
s∗ t − 􏽐

t
j�1βj
′,

(ii) the c′ weighted edges connecting 􏽐
t
j�1βj
′ − |L|

number of vertices of Xj to Bj for 1≤ j≤ t,
(iii) the c″ weighted edges connecting |L| − 􏽐

t
j�1βj

number of vertices of Xj to Y for 1≤ j≤ t,
(iv) the η′ weighted edges connecting 􏽐

s
i�1ai
′ − |L|

number of vertices of Ai
′ to Y for 1≤ i≤ s.

Tus,

W M
″/Main M

″
􏼒 􏼓􏼒 􏼓 � 􏽘

t

j�1
βj
′ − |L|⎛⎝ ⎞⎠∗ c

′

+ |L| − 􏽘
t

j�1
βj

⎛⎝ ⎞⎠∗ c
″

+ 􏽘
s

i�1
αi
′ − |L|⎛⎝ ⎞⎠∗ η′.

(10)

So, we have

W(M\Main(M)) � W M
″
\Main M

″
􏼒 􏼓􏼒 􏼓. (11)

Note that M is a minimum-weight perfect matching in
G, thus

W(M)≤W M
″

􏼒 􏼓, and

W(M\Main(M)) + W(Main(M))≤W M
″
\Main M

″
􏼒 􏼓􏼒 􏼓

+ W Main M
″

􏼒 􏼓􏼒 􏼓.

(12)

Terefore, we have

W(Main(M))≤W Main M
″

􏼒 􏼓􏼒 􏼓. (13)

From the above lemma, we have
W(Main(M))≤W(Main(M′)). Notice that
W(Main(M′)) � c(L), thus

W(Main(M))≤ c(L). (14)
□

Lemma 3. c(L)≤W(Main(M)).

Proof. From Main(M), we get an MMDC between A and B

denoted by L′ whose cost is equal to the weight of Main(M),
i.e., W(Main(M)) � c(L′). For each edge m ∈M, we add
the pairing (ai, bj) to L′ if m � (aik, bji) or m � (aik

′, bji), and
no pairing otherwise.

For each ai ∈ A, there exists the set Ai in G with αi

vertices, which are connected only to one set, i.e., Bseti, with
fnite edge weights. Tus, the vertices of each Ai are matched
to some vertices of Bseti, i.e., bji with 1≤ j≤ t. Hence, in L′,
each ai ∈ A is matched to at least αi elements of B (and thus,
the demand of ai is satisfed) for 1≤ i≤ s. In G, there exist αi

plus αi
′ − αi copies of each element ai, that is the vertices of Ai

plus the vertices of Ai
′. Tus, in L′, the number of elements

matched to each ai ∈ A is at most αi
′.

Consider the sets Bj with 1≤ j≤ t. Recall that
Bj � bji􏽮 􏽯1≤ i≤ s

and the vertices of Wj are connected to Bj by
zero weighted edges. Wj is connected only to Bj (with fnite
edge weights), thus the vertices of Wj are matched to s − βj

′
vertices of Bj, and βj

′ vertices of Bj remain free. Suppose that
k number of βj

′ free vertices in Bj are matched to some
vertices of the sets Ai for 1≤ i≤ s, then the remaining βj

′ − k
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vertices of Bj should be matched to other vertices. We
discuss two cases, depending on the value of k.

(i) if k< βj, then (βj
′ − k)> (βj

′ − βj). In this case, the
vertices of Xj are matched to βj

′ − βj number of the
remaining βj

′ − k vertices of Bj. We have

βj
′ − k􏼐 􏼑 − βj

′ − βj􏼐 􏼑 � βj
′ − k − βj

′ + βj

� βj − k> 0,
(15)

thus the remainingβj − k vertices of Bj are matched
to some vertices of the sets Ai

′ for 1≤ i≤ s. Note that k

and βj − kvertices of Bj are matched to some vertices
of the sets Ai and Ai

′, respectively, for 1≤ i≤ s. Te
demand of the element bj is satisfed, since

βj − k + k � βj. (16)

(ii) if k> βj, then (βj
′ − k)< (βj

′ − βj). Tus, all the
remaining βj

′ − k vertices of Bj are matched to the
vertices of Xj.

Te cost of L′ is equal to the weight of Main(M), i.e.,
c(L′) � W(Main(M)), since for each edge of Main(M), we
add a pairing with equal cost to L′. L is a minimum-cost
MMDC between A and B, thus c(L)≤ c(L′). Terefore,

c(L)≤W(Main(M)). (17)
□

Theorem 1. Let M be a minimum-weight perfect matching
in G, and let L be a minimum-cost MMDC between A and B.
Ten, W(Main(M)) � c(L).

Proof. From Lemmas 1 and 3, we have W(Main(M))≤ c(L)

and W(Main(M))≥ c(L), respectively. Tus,
W(Main(M)) � c(L).

Recall that the time complexity of the Hungarian al-
gorithm is O(n3), where the number of vertices of the input
graph is O(n). Our complete bipartite graph has O(n2)

vertices (by construction), so our algorithm takes O(n6)

time. Observe that when t≪ s, we have s∗ t ≈ n � O(n) (for
example, when a very large number of distributed access
points must bematched to amuch smaller number of mobile
stations [21], or limited resources are matched to a massive

number of targets [22]), and thus, our algorithm runs in
O(n3) time. Moreover, in bipartite graphs with low-range
edge weights, our algorithm runs well due to [19]

As an example, consider two setsA � a1, a2, a3􏼈 􏼉 and B �

b1, b2􏼈 􏼉 with

α1, α2, α3􏼈 􏼉 � 2, 1, 2{ }, α1′, α2′, α3′􏼈 􏼉

� 4, 3, 4{ }, β1, β2􏼈 􏼉

� 2, 1{ }, β1′, β2′􏼈 􏼉

� 2, 3{ }.

(18)

Ten, we have

A1 � a11, a12􏼈 􏼉,

A2 � a21􏼈 􏼉,

A3 � a31, a32􏼈 􏼉,

A1′ � a11′ , a12′􏼈 􏼉,

A2′ � a21′ , a22′􏼈 􏼉,

A3′ � a31′ , a32′􏼈 􏼉, and

Bset1 � b11, b21􏼈 􏼉,

Bset2 � b12, b22􏼈 􏼉,

Bset3 � b13, b23􏼈 􏼉.

(19)

Also, we have

X1 � ∅, X2 � x21, x22􏼈 􏼉,

W1 � w11􏼈 􏼉, W2 � ∅, Y � y1, . . . , y8􏼈 􏼉.
(20)

Our constructed complete bipartite graph for the above
example is shown in Figure 2. □

3. Conclusion

In this article, we presented an algorithm for fnding
a minimum-cost MMDC between two sets A and B, where
each element of A (resp. B) must be matched to at least and
at most given numbers of elements of B (resp. A). We
constructed a complete bipartite graph G � (S∪T, E) with
|S| � |T| � O(n2), where |A| + |B| � n. Ten, we used the
Hungarian algorithm with the input G to fnd a minimum-

Bset1
Bset2 Bset3

A1́ = {a1́1, a1́2} A2́ = {a2́1, a2́2} A3́ = {a3́1, a3́2} A1 = {a11, a12}

X2 = {x21, x22} W1 = {w11}

Y = {y1, . . . , y8}

A2= {a21} A3= {a31, a32}

b11 b12 b13
b22 b23

b21

Figure 2: An example for our constructed complete bipartite graph.
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cost MMDC between A and B in O(n6) time. Our con-
structed complete bipartite graph G can be used as the input
for the modifed Hungarian algorithm proposed in [11] for
computing a minimum-cost MMDC between A and B in
O(n4poly(log n2)) time when A and B are points in the
plane. Observe that when t≪ s, running the Hungarian
algorithm (and the modifed Hungarian algorithm proposed
in [11]) on G takes O(n3) (and n2poly(log n)) time. It is
expected that the computational complexity of the MMDC
problem will be reduced by exploiting the geometric in-
formation. One could study the two-dimensional MMDC as
a future work, where A and B are points on the plane. We
could also consider the case in which A and B are points on
two perpendicular lines. Te online MMDC is another open
problem where the elements of A∪B arrive online.
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