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The goal of this paper is to find the best of two sixth-order methods, namely, RK-Huta and RK-Butcher methods for solving the
fuzzy hybrid systems. We state a necessary definition and theorem in terms of consistency for convergence, and finally, we
compare the obtained numerical results of two different methods with analytical solution using two different numerical examples.
In addition to that, we generalize the solutions obtained by RK-6 Huta and RK-6 Butcher methods (same order different stage
methods) for both the problems we handled. We are proposing these two methods in order to reduce the error in accuracy and to
establish these two methods are better than any other existing numerical methods. The best of two sixth-order methods are found
by the error analysis study for both the problems. Also, we show whether the change in number of stages of same order methods

affects the accuracy of the approximation or not.

1. Introduction

The hybrid systems are the dynamic systems which in-
volve both continuous and discrete actions. We shall
discuss about the hybrid systems in detail. The term
hybrid is not a new thing to the world. We are using the
term hybrid everywhere knowingly or unknowingly. The
botanist often used this term while some plants, fruits,
and vegetables are produced by the technique of hy-
bridization. This hybrid plantation is quite common in all
the developing countries. The people are used to compare
these hybrid products and original organic products
though some of the hybrid products are even organic. The
industrialists often use this term hybrid in making of
innovative technologies. Nowadays, we are offered to use
the hybrid cars which are making use of two different
fuels as a combination of liquid fuel and electric motor.

Now, in mathematics, it is used to call some functions as
hybrid functions. The system which is involving two or
more functions are termed as hybrid systems. The
functions which are both continuous and discrete
depending upon the interval of time being considered as
hybrid functions. Sometimes, we have to call a function as
a hybrid function when it exhibits continuous disconti-
nuities such as modulus functions and trigonometric
functions.

The hybrid system is often modeled with the aid of
differential equations. Obviously, we can easily grasp that
it should be a nonlinear equations. Since it is tedious to
obtain the exact solutions, we prefer to apply the concept
of numerical techniques to adopt the solutions. After
achieving the approximate solutions, it is our prior most
duty to assure the readers that our method is providing
the better approximations. For that, we can take two
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different methods but one can easily say higher order
method will automatically provide better approximation.
So instead of taking two different order methods, we are
using same sixth-order methods and going to compare
them in order to find the method providing better
approximations.

These dynamic behaviors with Zadeh’s fuzzy theory
[1] paved a way to fuzzy differential equations [2-5] and
tuzzy hybrid differential equations (FHDEs) [5-15]. In
the present paper, two sixth-order methods called RK-
Huta and RK-Butcher, respectively, having eight stages
and seven stages are used to obtain approximate solutions
of FHDE. Since they are the higher-order methods, the
solution converges rapidly to exact solutions than any
other numerical methods. Numerical solutions of FHDE
are studied over a period of time using various methods
such as Euler and Runge-Kutta, by various authors like
Pederson and Sambandham [16, 17] and Jayakumar and
Kanagarajan [18, 19]. Other than them, Salahshour along
with Allahviranloo and Ahmadian et al. made remarkable
contributions in hybrid fuzzy differential equations
[20, 21]. The readers are encouraged to go through the
various applications of numerical methods to solve
various types of differential equations through
[4-15, 22-24].

We are eager to present one such study of FHDE for the
benefit of the authors. Two different sixth-order methods
such as RK-Huta and Bucher methods are presented and
compared while solving these types of nonlinear differential
equations.

The whole study was split as four sections in which FHDE
and two RK-6 methods such as Huta and Butcher methods are
presented in Section 2. Section 3 contains numerical examples,
and finally, the study is concluded in Section 4.

2. Fuzzy Hybrid Differential Equations (FHDEs)
and RK-6 Methods

The picture of the hybrid system is shown in Figure 1 in
a way as P.B. Dhandapani et al. showed it in the disconti-
nuity between continuity or continuity between disconti-
nuity in [15].

Following the preliminaries of [16], the hybrid systems
are treated via the continuous and discrete parameters.

1 Ay, (&) = 8(t v wi(vm,))

A7 () = 8(t, v (s, )

[yy (5 a), vy (£;a)] is a fuzzy number, and also the solu-
tions of the parametric form given by the following equation:
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E" represents the set of yy: R* — [0,1] in the fol-
lowing manner:

(i) yy is always normal, as there exists an f, € R" such
that yp (£,) =1

(ii) yy is convex under fuzzy definitions, as for
tty yy € R"and 0<a<1

yu (aty + (1 = a)ty) =min [y (t,), yu ()] (1)

(iii) yy is always upper-semi continuous

(iv) [yH]O = the closure of [teR™ y,(t)>0] is
compact

For 0 <a<1, we define [y (2t)]* = [t € R": yy () > a].
The a— level sets of y; (¢) throughout the paper are given by
the following equation:

yu (6@ =y, (60, Yy (5 0)]. (2)

Here, H is used to represent the association of hybrid
systems in the system. Since we are dealing with fuzzy
functions, we are defining below the minimum and maxi-
mum of yy (t), ie.,

yH(t; a) =[0.75 + 0.25a] yy; (1), )

- 3
Yy () =[1.125 = 0.125a] y 5 (1).

Consider the FHDE, similar to [16, 18, 19]

Ay (t) = 5(1" yu (£), wk(ka))’ t € [tiotin]s
Vi (te) = Y,
0, ifk=0,
(1) _{ w ifkef{l,2,..},
(4)

where A denotes Seikkala’s differentiation, 0<t,<t,
< e <tr< ""tr — 00,

8 € C[R" x E' xE',E'|,w, € C[E", E']. (5)

We may alter (4) by an equivalent system

Pi(ts i Vi) v () = i

(6)

Qk(t’ y_H’yH)’y_H(tk) = Vup



Journal of Mathematics

Input

L

Discontinuity arising in continuity

e,

Hybrid Systems

L

Output

F1Gure 1: Hybrid systems.

Ayy (ta) = Pk[t,hlk(t;a),yH(t;a)], Ayy (t;a) = &k((x),

(7)

Ayy (ta) = Qk[t,y_Hk(t; ), yy (t; a)], Vi (t @) = yg, (@), a € [0,1],

where P [f, VH, (t;0), yg ()] and  Qlt, Yu, (t; @),
V5 (t; )] are the parametric forms to represent the
function.

2.1. Convergence. From the notes of [25], the general single-
step method for (4) is given by y,..1 = ¥, + ¢ (£, Vs B)s
m=0,1,...,M—1. Here, ¢(t,,y,,,h) is the increment
function. The true value of y(t,,) will satisfy y(¢t,,,) =
y(t,) +he(t,,y (t,),W+T,n=0,1,2,...,N - 1. Here,
T, is the truncation error.

Definition 1 (see [25]). The general single-step method
Vi1 = VY + Ot Vs ),m =0,1,...,M -1 is said to be
consistent if ¢ (t, y,0) = w(t, y)

Theorem 1 (see [25]). A necessary and sufficient condition
for the convergence of a single step method which is regular of
order p>1 is consistency.

Proof 1. According to Jain [25],“there exist a unique solu-
tion y(t) on [ty,h] where a<t,<t<t,+h<b and also
y(t) € CP*[t,,b], for p>1. The solution y(t) can be ex-
panded in a Taylor series about any point ¢,

PO = p(6,) 4 (- )0y (6) + 51~ 1,8y (1) +

(e =1, A"y (2, )e, f.
(8)

This expansion holds good for ¢ € [t),b],t,<e<t.
Substituting t = ¢,,,, in (8), we obtain the following equation:

+$a—afwva»+

1
(p+1)

s WP
Y (i) = y (6) + By (8,) + 1Ny (8,) +-- + Ay (L)

(9)

and h¢(t,, y(t,),h) is to be obtained from h¢ (t,, y(t,), h)
by using an approximate value y,, in place of the exact value
y(t,). We compute y, ., =y, + h¢(t,, y,,h),n=0,1,2,...,
N -1 to approximate y(t,,,). This is called Taylor’s series
method of order p. When p = 1, the Taylor series method
becomes Euler’s method as y,,,=y,+hf(t,y,).n=
0,1,2, ...N — 1. The values of & (y(t,) and higher de-
rivatives can be computed by substituting ¢ = ¢,,.. Therefore,
we can compute y(t,,,) with an error

hp+1
(p+ Dy (e,)

By which consistency could be established since
number of terms in Taylor’s series is fixed by means of
permissible error. From the theorem, the result ensures
that the approximate solution converges to the exact
solution since the convergence of Euler’s method and
Runge-Kutta method for hybrid fuzzy differential
equations are proved by Pederson et al., [16, 17]. Also
from the theorem of [16, 17], the point-to-point con-
vergence for all k in « is fixed. O

tn<6n<tn+1' (10)

2.2. Numerical Methods. In order to get better clarity about
the terms involved in Runge-Kutta methods, we shall
present here the fourth-order Runge-Kutta method. When
the hybrid term involves, the representation will change
accordingly which will be shown on following sixth-order
RK-Huta method.

2.3. Fourth-Order Runge-Kutta Method for ODE. For non-
fuzzy ODE,

{ Ay (t) = 8(t, y (1)t € [trotr]s

(11)
y(t) = Yo
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TaBLE 1: Sixth-order RK-Huta [25].
1/9 1/9
1/6 1/24 3/24
1/3 1/6 -3/6 4/6
1/2 -5/8 27/8 —24/8
2/3 221/9 -981/9 867/9 -102/9 1/9
5/6 -183/48 678/48 —472/48 —66/48 80/48 3/48
1 716/82 -2079/82 1002/82 834/82 —454/82 -9/82 72/82
41/840 0 216/840 27/840 272/840 27/840 216/840 41/840
TaBLE 2: Sixth-order RK-Butcher [25].
1/3 1/3
2/3 0 2/3
1/3 1/12 1/3 -1/12
1/2 -1/16 9/8 -3/16 -3/8
1/2 0 9/8 -3/8 -3/4 1/2
1 9/44 -9/11 63/44 18/11 0 -16/11
11/120 0 27/40 27/40 —-4/15 —-4/15 11/120
we have Since it is too complex to show these two sixth-order
k, = ho(t, yi), methods in stage form involving terms like yy (),
VHgp (), and k; (which is explained previously), we are just
giving the coefﬁaents involved in these two sixth-order
h5<t 5 Vk +>’ methods, namely, Huta method and Butcher method from
the study of [25]. With the belief that the reader may be familiar
with conversion from the coefficient form to the stage form of
=hé(t ( >kt —), (12) " numerical methods, we present that coefficient terms involved
in sixth-order RK-Butcher and RK-Huta methods. The readers
may refer basic studies like [18, 25] given in reference. Tables 1
=h8(t+h y +ks), and 2 represent the Sixth Order RK-Huta and Butcher values,
1 which can be expanded as the following equation:
Vnir = Vnt ¢ (ky + 2k + 2k5 + ky),
8
where k;,k,,... represents stages. y, represents previous Y, (a) - Vi (a) = Z Viki(tk,m ka‘n(a)),

stage when y,,,, represents present iteration. The number of
iterations to move from y, to y,,,, is decided by the factor
called step size h; i.e., if we take h=0.1., then to reach y (1)
from y(0), we have 11 iterations such that y(0), y(0.1),
y(0.2),...y(1).

i=1 (13)

8
%k,m (o) - y_Hk,n () = Z V"Ei(tk)"; VH,, (a))’
i=1
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where v,,v,, 3, V4, V5, ¥, V7, and vg are constants and

Ky (tes i, (@) = min{hd(ty 1 0 (1))
ue [@A‘"(a),ﬁm(a)],uk € [&KO(”)) (rx)”»,
Ky (s v, (00) = max{ oty 0y (14))|
ue [&“(or),ﬁk‘”(rx)],uk S [}V_Hk(,("‘)’%k,u(“)””

kz(fk,n? yH,(v,,(o‘)) = min{hka(tkm + éhk»“, Wi (“k))

ue [gk‘(tk,n’yH,m(“)))Zk,(tk,n’ka'”(“))]’“k € [@M(“),}THN,W)] }

Ez(tk,n? )’Hk',,(“)) = max{hka(tk,n + %hk' u, W (”k))‘

€ (84t 11, @), Tt 11, @) 0 € [@Mm),m‘,(a)] }

k (tkn,ka (a) mm{h,ﬁ(tm + éhk,u, “’k(“k))’

[ kz(fkw)’Hm("‘))-zkz(fkm’ymn('))]’“k € [&A,ﬂ("‘)’ﬁk‘u(“)”’
k. (tkn,ka (a) max{h (tk,n +éhk,u, w (uk))‘

€ (8, @) 8 (000, @) [ 1, @05, @] |
k4(tkmka (0‘) mm{hk (tk,n‘féhk»%“’k(“k))’

€ (8 Ok, @) 810, 0) i € [ 0, @7, 0|
k. (tkn Vi, (@) :max{hk (tk.n"'%hk’“v“’k(”k))‘

€ [0 (tiom iy, (@):Ta (b1 v, )| € [@kvo(amw(a)”,
k. (t,\n Vi, (Ot) mm{hk (tk,n*'%hlo% wk(uk)>’

€ (8, @) B (0, 0) i € [, @5, 0]
k (tkmka (r) :max{hk (tk.n+%hk’”'wk(”k))‘

[cké(rkn I, (a)),fk,,(tk,myﬁkv,,(r))]mk € [ yu, (@), y:k,,(a)”

2
k (tkn VH,, (Ot) mm{h <tk,n+§hk>u> wk(uk))

5 [6 b @)t 0) i € [y, @07, 0

k (tkn Yy, (Ot) mm{h <tkrn+§hk,u,wk(uk))
[ ks(t > VHy, (“)) @ (tkn > VHy,, (T))] U € [&k,o(a)’y_H“’(a):”’

2
Ko(tem: yay, (@) max{h (fk,n‘rghk’”,wk (“k))

€ [ G (b v, (@) Tt v, (@) o1 € [ a, ﬂ(a))y_%,(a)] }
k(11 i, (1)) = min (zkﬁghk,u,wk(uk))’
€ [éké(rk,n,ym,,<a)),fkﬁ(rk,n, yHMm))],uk e [ u, (@), m“,w)”,
€ [éks(rk,n,yuk,,<a>),Ekﬁ(rk,n,yum<a>)],uk E [ v, (@), mw] }
%ot v, (00) max{h (tkln+§hk,u,wk(uk))‘
€ [ G (tim v, (@) T (b1 v, (@) ]t € [ﬁ‘ vu(axy:k,‘,(a)”,
Ks(tis i, (@) = min{hd(ty,, + b, 0 (1))
&[G (tim v, (@): T (ti0 v, (@) ]t € [yH (@, yHN(a)”
Ks(thns i1, (@) = max{ iy d(tx,, + o 16,03 (11))]

€ € i, @) i, @) s €y, @73, @)

(14)
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Next, we are defining

1
YH, (@) + 2k, (tk,n’ YH,, (0‘)))

(k tkn ka “) 9

1

1-
Y, (@) + _kl(tk,n’ YH,, (‘X))’

kl temw Vi, ( 9

kz(tk nw YH,, (0‘)))

tk,n’ yH,m (T)) 24~

1
JH,, (0‘) 247(

2

Fii (1) + ot 210, () + ot i, (1)

t ka

k,

( )=
( ®) =
e (tim e, (@)
T (thow i, (@)
G (tiw i, (@) = yu_ (N + gi_cl (i v, (@)
= 2Kt vy, (@) + s (b v, (@),
Tt i1, (@) = T, (@ + (072, (@)

- Zﬁz(tw Yo, (@) + %E(tk,w Vi, (@),
S (B v, (@) = yu, (@ - gkl (tew ya,, (@)

#2010, (@) = Kb Vit (@) + (10 i1, (@)
(bt i, (@) = T, (00 = st 31, ()

+ 2§7E2(tk,n’ i, (@) - %E3(tk,n’ i, (@) + g&(tk,n; i, (@),
(b 211, (@) = 311, (@ + 22 (1 i1, (@) = g et it ()

# 2 (b it (@) = g (b i, (@) + ghs (71, (@), 5
G 10, (@) = T, (@ % 2R (710, (@) + g (71, (@)

# 2R (b it (@) g Rt i, (@) st i, (@),
G (10, (@) = Y11, () = s (b it (@) + (B i, )

= T2 (b i1, (@) = S it (@) + 55 (0 i, (@)

+ okt i, (),
G (tom yir, (@) =Yg (@) + f;k (tem Vi, (@) + %E (tkw Vi, (@)

+ TR (b Vi, (09) + S 10, (@) 3 (i, (@)

+ @ks(fk,n) Vi, (@),
Gty (@) = yyy (@)= %kl(tk,n»ym (@)

=2kt it @) g Kt i, (09) + (b1, (@)
- 71&5(tk wi Vi, (@) = %ks(tk,rﬁ yu,, (1) + ;%k7(tk,n§ Vi, (@),

Gt 311, () = T, (00 + R (31, ()

2079~ 1002-- 834
— e ot Vi, (@) + =K (i i, () Kt v, (@)
454

= SRt Y11, (@) = et Y, (@) + 2Rt i, (@)
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Next, we define

Sk [tk’”’y—Hk,n (@), ym,, (oc)] = 41k, + Ok, + 216k, + 27k, + 272ks + 27k + 216k, + 41k,

T, [tk,,,,y_Hm (), v, ((x)] = 41k, + Ok, + 216k, + 27k, + 272ks + 27k + 216k, + 41kg,

where k;,k,,... represents the stages involved in Run-
ge-Kutta methods. The exact solution at t; ,,, is given by

1 _
Yy (@=yn @+ S |:tk,n’ v, (@) vy, (@) ]

— I 1 —
YHk,ml (a) = ka’n (a) + %Tk |:tk,n’ y_HkM (), ka’n (0()]

(17)

The approximate solution is given by

1 _
Yu, (@ =yu () + S [tk,n, v, (@), yy,, (@) ]

_ _ 1 _
Vi, (@) = yy, (@) + %Tk [tk,n, Yu,, (@), yn,, (oc)]-

(18)

Ay (1) = yy () + &y (Dwyp (1),

(16)

In the similar fashion of RK-Huta expansion, we can also
expand RK-Butcher method. As it is similar, we are not
providing the expansion here. These methods are fuzzified
and treated for fuzzy hybrid differential equations as fol-
lowed by Pederson and Sambandham in [16, 17]. Then, from
theory of [18, 19], we solve a numerical example from which
these two RK-6 methods can be easily understood.

3. Numerical Example

Example 1. Similar to [16], the fuzzy hybrid IVP is taken.

te€ [tttk =kk=0,1,2,3,...,

(19)

125«
)], 0<a<l,

3.1. Numerical Solution by RK-Butcher. For numerically
solving the Fuzzy Hybrid IVP (19), let &: [0,00)
xR x R — R be given by the following equation:

(0: ) [( 750 +2500() (1125
) = , _
Yr 1000 1000 1000 1000
where
10 5
—(1-t¢ d1), fort dl)>—,
s ( (mod 1) or t(mod 1) T
fH (t) =

? (t (mod 1)),

0,
wy (ug) = {

uk, ifk € {1,2,...}.

5
for t(mod1)<—,
10

ifk=0,

(20)

In (19), yy (t) + &y (t)wy (v (#4) is continuous func-
tion of ¢, y and wy (yy (£).

{ Ay (8) = yy (8) + & (Daog (¥ (1),
yu (t) = Ve

t€ [ttty =k

(21)

Ayp (t) has a continuous solution on [ty, ., ].

8(t vy w (i (t))) = yu () + & (D (v (8))s

(22)
tk=k,k=0,l,2,...,

where w;: R — R is given by the following equation:

0, ifk=0,

(23)
Yu (tk)’ ifk € {1,2,}

) 0 -

By example 3 of [2], (19) gives

(10 )_[( 750+250¢x)(D e (1125 1250c)(D )10]
YE\10°%) T 1\1000 T 1000/\7) *\1000 ~ 1000\ 710/ |

(24)

Now, we define
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Lk[tk»"’ﬁm (oc),y_Hkyn(oc)] = 11k, + Ok, + 810k, — 32k, + 11k,

(25)
M, [tk,n,ﬁkﬁ (), yg,, (oc)] = 11k, + Ok, + 810k, — 32k, + 11ks.
From which, we obtain
<11 ) (10 >+ IL[IO (10 >_(10 )
—a) = —a )+ —Li—, —a)ygl o)
Y10’ SLARTY 120 %10 22:\10'* ) Y1\ 10’ (26)
— /11 \ (10 L[ 10 \ — (10
i (157%) = 75 15°9) * 1M g 2557 7 ) |
To obtain yy ((20/10); ),
& odt @ A d
D10=1+d+d2+—+—+— —_— -,
: 3 24 120 720 2160
P A L SR LR
D1=d2+—+—+—+—+—,
3 12 60 360 1080
, 4d® s5d* ed® 7d° s d°
D,=3d"+—+—+—+ —+——-——,
3 12 60 360 540 1080
7d> 3d* 11d° 13d° 4 4P
D3:5d2+—+—+—+—+———,
3 4 60 360 216 540
, 10d° 134" 4d® 194° 47 4
D,=7d"+ —+—+—+——+— - —,
3 12 60 360 135 360
, 13 17d* 747 5d° 1ud 4P
D:=9d"+ —+—+—+—+———,
3 12 20 72 1080 270
sdt 5d® 4 4 4 (27)
Dg=2d-10d - 5d° - — - — - — ——+

& d¢ d N 48
2 10 60 180°
7d* 74> 7d° 74’ 748
D8=2d—14d2—7d3————____+_ ,
3 12 60 360 1080

8d* sd® d° 4 4°
Dy=2d-16d" - 8d> - — - - — - —_ 4+,
3 12 12 72 216

sd* 5?45 4 4
Dyy=2d-10d> -5d" - — - - -4+ |
3 12 12 72 216

—a) = - N ———— s 1=1,24,..., >
ru\10° 1000~ 1000/\ 7 1%/°\1000 1000/\ 10

ym(ﬁ); a) =(Dyp) +(D1y) " (Diyo)vi = 11,12,....,20.
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3.2. Numerical Solution by RK-Huta. To numerically solve = where w,: R — R is given by the following equation:
the Fuzzy Hybrid IVP (19), 0 ifk=0

Ot iy (30 (1)) = 7 (0 + £ O O () () = { wp ke (1,2} 29
t,=k,k=0,1,2,...,

By example 3 of [2], (19) gives

10 750  250c 10 /1125 125« 10
—a)=|[=—+ D (———) D ] 30
yH‘(lO > [(1000 1ooo>( 1’0) 1000 1000( 1’0) (30)

where

& & d @ 4L d d®
Dy=l+d+—+—+—+—+-——+—+—>,
’ 2 6 24 120 720 4480 483840

<11 > <1o )+ 15[10 (10 >7<10 )] (31)
o) =yy () Sl ym (o) ve (i) |

Yu\10°%) = 28\ 10°%) " ga0>* 10 2E\10°* )V \ 10

_<11_ >__<10. >+ L, [10_ (10. >_(10. )]

Ya\10'%) T Vm\10°%) T 820" K10 28\ 10° %) Y\ 10° %) |

To obtain v, ((20/10); ), i = 1,2,3,4,5

i—1

i , 3i-2)n  (4i-3)d*
ZH(1+E;04):ZH(1+ 10;a>D1’0+[(21—1)d2+( ) +( )

3 12

N (5i — 4)d° N (6i — 1)d®  (56i — 47)d’ N (108i — 107)d®
60 360 20160 241920

N (5i - 5)d° (10. )
120060 |2#\10°%)

. 1
yH<1 +11—0;a> = yH(l +1W§“>D1,0 +[(2i - l)d2 +

(32)
(Gi-2)d> (4i-3)d*
T

L 5i- 4H)d® , (6i 1d® , (56i - 4a7d’ , (108i - 107)d®
60 360 20160 241920

+(5i_75)d9 EV2 <9 (X>
120060 |”H\10'%/)"

Then, for i =6,7,8,9, 10,
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L, - i-1 1 . 2 s 3
XH(IJFE’“) —&(1+,0¢>D1,0+[5—((21—2)d +(-1)d +

10
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(i-1)d*
3

Gi-1Dd° (-1d* (-1Dd” @G-1d®
+ + + +

12 60

(i-1d’

360 2240

_ i\ i-1 L RN S N
yH<1+E,oc>—yH<l+ T ,a>D1,0+[5 ((21 Qb +(-1h +

(33)

1 (i- DK
3

G-Dk @G-Dh® G-DH (- 1DH
+ + + +

12 60

+ (i—l)h9 Yy (905
241920 ) |"H\10°

3.3. Exact Solution. The analytically obtained solution of (19)
for t € [1,1.5] is
vy (ta) = vy (15 0c)(3et_1 - Zt), 0<a<l,
Yy (L5a) =y (L;a)(3+/e —=3),0<a<]1.
Then, yy(1.5;1) is nearly approximate to
5.290221725637059, and yy (1.5,1) is approximately nearer
to 5.290221725881617.
Since the exact solution of (19) for t € [1.5,2] is
yu () = yy (La)(2t -2+¢ 7 (3ve - 4)),0<a<.
(35)

(34)

{ Ayy (1) = y(t) + EDweyy ()

where &(t) = |sin(nt)], k=0,1,2,...,
( ) { 0, ifk=0, (37)
w =
R =, ke {12,

Then, yy (¢) + &4 (H)wy (yy (t,) is continuous function
oft, y and wy (y (t;). Therefore, by example 6.1 of Kaleva [3],
for each k =0,1,2, ..., the fuzzy IVP

{ Ayy () = yy () + &y Ow (g (te)st € [t tin [ te = &
¥ (te) = Ya,
(38)

has a unique solution on [ty, ;]

3.4. Numerical Solution by RK-Butcher. For numerically
solving the hybrid fuzzy IVP (36), we will apply the
RK-Butcher method of order six for hybrid fuzzy differential

360 2240

)

Therefore, y;; (2.0;a) = vy (1;a) (2 + 3e — 4+/e ).

Then, yyz(2.0;1) is nearly approximate to
9.67697567235778, and yy (2.0;1) is nearly approximate to
9.676975672823584.

The approximate solution by RK-Huta is plotted at
t € [0,2], @ € [0, 1] (see Figure 2), and the error analysis has
also been shown (see Table 3). The comparison of ap-
proximately obtained solutions by sixth-order methods and
exact solutions are plotted at t = 2, € [0, 1] (see Tables 4
and 5 and Figure 3).

Next, consider the following hybrid fuzzy IVP.

Example 2

t€ [tttk =kk=0,1,2,3,...,
vy (0,a) =[(0.75 + 0.25a), (1.125 — 0.125a)],

(36)
0<ac<l,

equations with N = 10. To obtain VH, (2.0, @), VH, (2.0; ) is
approximated. Let §: [0,00) x R X R — R be given by the
following equation:

8(t vy Wi (yu (t))) = yu () + & (D (v ()

(39)
ty=kk=01,2,...,

where w;: R — R is given by the following equation:

) { 0, ifk=0, )
w; \Uu =
UM w, ifke{l2,.. )

By example 3 of [2], (36) gives
10 10
yu, (1.0, ) = [ (0.75+0.250)(D, ), (1125 - 0.1250)(D, ) ]

(41)
Then,
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FIGURE 2: Approximate solution by sixth-order RK-Huta method (for #=0.1) in Example 1.
TaBLE 3: Approximate solutions by RK-Butcher and RK-Huta in Example 1.
Sixth-order RK-Butcher method Sixth-order RK-Huta method
a
Yu (t;; @) Y (t;0) Yu (t; ) Vi (t;0)
0 7.25773174395989 10.8865976159398 7.25773175461769 10.8865976319265
0.1 7.49965613542523 10.7656354202072 7.49965614643828 10.7656354360162
0.2 7.74158052689056 10.6446732244745 7.74158053825887 10.6446732401059
0.3 7.98350491835588 10.5237110287418 7.98350493007946 10.5237110441956
0.4 8.22542930982121 10.4027488330092 8.22542932190005 10.4027488482854
0.5 8.46735370128655 10.2817866372765 8.46735371372064 10.2817866523751
0.6 8.70927809275187 10.1608244415439 8.70927810554123 10.1608244564648
0.7 8.95120248421720 10.0398622458112 8.95120249736182 10.0398622605545
0.8 9.19312687568253 9.91890005007852 9.19312688918240 9.91890006464417
0.9 9.43505126714786 9.79793785434586 9.43505128100300 9.79793786873388
1.0 9.67697565861319 9.67697565861319 9.67697567282358 9.67697567282358
TaBLE 4: Exact solution in Example 1.
Exact solution
«
Yy ;@) Y (t;9)
0 7.25773175426834 10.8865976314025
0.1 7.49965614607728 10.7656354354980
0.2 7.74158053788623 10.6446732395936
0.3 7.98350492969517 10.5237110436891
0.4 8.22542932150411 10.4027488477846
0.5 8.46735371331306 10.2817866518801
0.6 8.70927810512201 10.1608244559757
0.7 8.95120249693095 10.0398622600712
0.8 9.19312688873989 9.91890006416673
0.9 9.43505128054884 9.79793786826225
1.0 9.67697567235778 9.67697567235778
TaBLE 5: Error in sixth-order RK-Butcher method and sixth-order RK-Huta method in Example 1.
Sixth-order RK-Butcher method Sixth-order RK-Huta method
a _ _
Y, (ti§ o) Yy (ti§a) Y, (t,-; o) Yy (t,-; 9)

0 1.03085 x 1078 1.54627 x 1078 3.49350 x 10710 5.24000 x 10710
0.1 1.06520 x 1078 1.52908 x 10~8 3.61000 x 10710 5.18201 x 10710
0.2 1.09957 x 10~ 8 1.51191 x 1078 3.72641 x 10710 5.12301 x 10710
0.3 1.13393 x 1078 1.49473 x 1078 3.84290 x 10710 5.06500 x 10~ 1°

0.4

1.16829 x 10~8

1.47754 x 1078

3.95939 x 10710

5.00799 x 1010
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TaBLE 5: Continued.
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Sixth-order RK-Butcher method

Sixth-order RK-Huta method

04 — —
ZH (t,-; o) YH (ti:, o) XH (l’,-; o) YH (t,-; 0‘)

0.5 1.20265 x 1078 1.46036 x 10~8 4.07580 x 10710 4.95000 x 10710
0.6 1.23701 x 10~8 1.44318 x 10°8 4.19220 x 10710 4.89100 x 10710
0.7 1.27138 x 108 1.42600 x 108 4.30870 x 10710 4.83301 x 10710
0.8 1.30574 x 1078 1.40882 x 10~8 4.42510 x 10710 4.77440 x 10710
0.9 1.34010 x 108 1.39164 x 108 4.54159 x 10710 4.71630 x 10710
1.0 1.37446 x 1078 1.37446 x 1078 4.65800 x 10710 4.65800 x 10710

Comparing two Sixth Order Methods

7 7.5 8 8.5 9 9.5 10 105 11

* RK-Huta
o RK-Butcher
— Exact

F1GURE 3: Comparison of approximate solution with exact solution (for #=0.1) in Example 1.

1 _
Yu, (1.1; @) = Yu, (1.0; @) +—Lk[1.0,ﬁ1 (1.0; @), VH, (1.0;04)],

120
(42)
— — 1 —
yu, (L1 a) = yy (1.0;a) +ka[l.0;y_H1 (1.0; &), yp, (1.0; oc)].
To obtain Y, (2.0; ) for h=0.1, let
yH1<1’—0; oc) =(Dyg)i=1,2,...,10
yH1<ll—0, a) :(Dl,o)i +(D1)0)10(sin<1 + 7>n> (4,) 7<sin(1 + k)n) (4;) +(sin<1 + —)n) (A3) + (sin(1 + b)) (Ay)i = 11
y1<11—0; oc) =(Dyp) +((Dw)1°) (Dy 10)i = 12,13,...,20 (43)
D, o = sin((1+ (i - 11)h)m)B, + sin((l + w)”>32 N sin<<1 N w>ﬂ>33+

i~ 8+2j)h
sin<<1 +M)n>A3 +sin((1+ (i — 10)W)m)A, fori =i=11,12,...,20,j = i — 12,
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fori=11,12,...,20, j =i- 12 where 3.5. Numerical Solution by RK-Huta. For numerically solving
the hybrid fuzzy IVP (36), we will apply the RK-Huta method of
27h 9K 3h o R order six for hybrid fuzzy differential equations with N' = 10. To
1= 20 " 20 " 20 T20 T 120 T 720 obtain y, (2.0;«), ¥(2.0;a) is approximated. Let J: [0, c0)
XR x R — R be given by the following equation:
8h 4w I
O(t, Y, w t =y(t)+&tw t)),
T AR T (& ym w0 (¥ ())) = ¥ (0 (8) (45)
t=kk=01,2,...,
27h 9h2 3h3 W o , '
3 20 T 20 T30 " 180 where w;: R — R is given by the following equation:
L () {0, ifk =0, (46)
11 Wi \Ug) =
=— 44 i
1= 720 (44) u, ifke{l,2,...}
. M_F " L " h4 W 5 e X K % By example 3 of [2], (36) gives
1 =20 120 t 220 T 60 280 360 T 2160 Vi, (1.0,0) = [ (0.75 +0.250) (D, )", (1.125 - 0.12504)(D1,0)10],
_27h 9K 3K KW K’ (47)
2730 T30 T80 20 120 720 where
-8h 4n’ I’
By=—-—"_"
15 15 15

wWor n w W n
Dy=1l+h+—+—+—+—+-——+—+——,
’ 2 6 24 120 720 4480 483840

Y, (1.1;0) = y, (1.0; ) +%Sk[1.0,z1 (1.0;a), yp, (LO;oc)], (48)

1
71 (1L150) = 7, (1.0;0) + o T [1.0; y, (1.0; @), 7, (1.0; ).

To obtain y, (2.0;a) for h=0.1, let

D, = 23616k + 23616h° + 5328h° + 7920h* + 1872h5 — 264h6 + 99K’ + h°,

D, = -5292h° + 864h° + 99K,

D, = 124416h + 103680h” + 67392h° + 432h* + 7344h° + 721°,

D, = 15552k + 103680h° — 28512h° + 11664h* + 108K,

Ds = 156672h + 78336h> + 35136h° + 144h",

Dy = 15552h + 5184h” + 12961°,

D, = 124416h + 20736h,

Dy =23616h, (49)
1

y (La) = y (1L0;0)(Dyo) + e s

.o LT .o
[D2 sin —+ D;sin —+ D, sin —,
90 60 30

5m
+ D, sin —

1.0; @),
%0 y( ;o)

U . 21
—+ Dgsin —

+ D5 sin
20 30

+ Dg sin —

y(1 l'oc)—_(IO'oc)(D )+;[D sinl+D sin£+D sinl
YARLO =T O ) T e3ga0 |2 g T3 o T :

30

5
+ D, sin — + Dg sin ] (1.0; ).

4 2
—+ Dg sin — 0

+ Ds sin
20 30
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Then, for i=1, 2, 3, ..., 10,

i i—-1 1 o G-Dm (9 -8)r
Z(l +1—0; cx) = X(l +—10 §“>(D1,o) + 183840 [Dl sin 10 + D, smi90

6i—5 3i—-2 2i—1
+D3 sinw + D4 sinM + DS sinM
60 30 20
3i-1 6i—1 j
#Dgsin VT b n DT D7 y (1.0;a),
30 10
(50)
_<1+i ) _<1+i—1 )(D )+ 1 D. si (i—l)n+D . (9 -8)m
—a)= ——a sin sin———
N1 70 T 0 )\ ) Tgagan | 10 2 90
. (6i-5)m o (Bi-2)m o 2i-Dnm
+D;sin—————+ D, sin———+ D5 sin———
60
3i-1 6i—1 j
#Dsin VT b in DT b in D5 (0w,
30 10
Let
10
10 -k 1 o (k=Dm . (9k -8)m
D,, = (Dl,o) + kz:; (Dl,o) 183340 [Dl sin o + D, sin BT —
6k -5 3k -2 2k -1
+D3sinu+D4sing+Dssinu (51)
3k-1 6k -1 k
+ Dy sinu + D, sing + Dy sinm .
30 10
Then,
Y20a = D2oy1(1.0;0)
10 10 (52)
=D, (0.75+0.250)(Dy ) D, (1.125 - 0.125a)(D, ) ] 0<ac<l,
for t € [1,2]. 3.6. Exact Solution. The exact solution of (36) satisfies
mcos(mt) + sin(mt) bis
(t; ) = (1; @) +e 1+ ,
Li i +1 7+ 1
(53)

yH(t;a):yH(l;a)[ncos(n2)+lsin(nt)+et1<1+ s )]
n+
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FIGURE 4: Approximate solution by sixth-order RK-Huta method (for #=0.1) in Example 2.

TABLE 6: Approximate solutions by RK-Butcher and RK-Huta in Example 2.

15

Sixth-order RK-Butcher method

Sixth-order RK-Huta method

vyt 0) Y (t; @) Iy @) Y (t;9)
0 7.73275073110805 11.5991260966621 7.73275073776977 11.5991261066547
0.1 7.99050908881165 11.4702469178103 7.99050909569543 11.4702469276918
0.2 8.24826744651526 11.3413677389585 8.24826745362109 11.3413677487290
0.3 8.50602580421886 11.2124885601067 8.50602581154675 11.2124885697662
0.4 8.76378416192246 11.0836093812549 8.76378416947241 11.0836093908033
0.5 9.02154251962606 10.9547302024031 9.02154252739807 10.9547302118405
0.6 9.27930087732966 10.8258510235513 9.27930088532373 10.8258510328777
0.7 9.53705923503326 10.6969718446995 9.53705924324938 10.6969718539149
0.8 9.79481759273686 10.5680926658477 9.79481760117504 10.5680926749520
0.9 10.0525759504405 10.4392134869959 10.0525759591007 10.4392134959892
1.0 10.3103343081441 10.3103343081441 10.3103343170264 10.3103343170264
TaBLE 7: Exact solution in Example 2.
Exact solution
o —
Yy (t;a) Y, (t;0)
0 7.73275073803317 11.5991261070497
0.1 7.99050909596760 11.4702469280825
0.2 8.24826745390204 11.3413677491153
0.3 8.50602581183648 11.2124885701481
0.4 8.76378416977092 11.0836093911809
0.5 9.02154252770536 10.9547302122137
0.6 9.27930088563980 10.8258510332464
0.7 9.53705924357424 10.6969718542792
0.8 9.79481760150867 10.5680926753120
0.9 10.0525759594431 10.4392134963448
1.0 10.3103343173776 10.3103343173776
TaBLE 8: Error in sixth-order RK-Butcher method and sixth-order RK-Huta method in Example 2.
Sixth-order RK-Butcher method Sixth-order RK-Huta method
o — —
Yo(t;a) Yy (t;a) Yo(t;e) Y, (t;a)

0 6.92512x 107 1.03876 x 107 2.63400 x 107" 3.95001 x 107"
0.1 7.15595 x 10~ 1.02722 x 1078 2.72171 x 10710 3.90699 x 10710
0.2 7.38678 x 107 1.01568 x 107 2.80950 x 107" 3.86299 x 107"

0.3

7.61762 x 10~°

1.00414 x 1078

2.89729 x 10710

3.81910 x 10710
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TaBLE 8: Continued.
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Sixth-order RK-Butcher method

Yy, (t,'S )

Yy (t;a)

Sixth-order RK-Huta method

Yy (t;0

Y, (t;; )

0.4
0.5
0.6
0.7
0.8
0.9
1.0

7.84846 x 107°
8.07930 x 10~°
8.31014 x 107°
8.54098 x 10~°
8.77181 x 107°
9.00260 x 107°
9.23350 x 10~

9.92600 x 10~
9.81060 x 10~°
9.69510 x 107°
9.57970 x 107°
9.46430 x 1077
9.34890 x 10~
9.23350 x 10~°

2.98510 x 10710
3.07290 x 10710
3.16071 x 10710
3.24858 x 10710
3.33630 x 10710
3.42400 x 10710
3.51200 x 10710

3.77600 x 10710
3.73200 x 10710
3.68699 x 10710
3.64300 x 10710
3.60000 x 10710
3.55600 x 10710
3.51200 x 10710

* RK-Huta
0 RK-Butcher
— Exact

FIGURE 5: Comparison of approximate solution with exact solution (for #=0.1) in Example 2.

Sixth Order Runge
Kutta (RK)-Methods

RK-Huta RK-Butcher

8-Stage 7-Stage
Minimum Error Maximum Error
Best Approximation Least Approximation

FIGURE 6: Flowchart of Conclusion: maximum stage maximum accuracy.

Stage Methods

Equations by Same Order Different

Evaluation of Fuzzy Hybrid Differential

mpmp
HLR
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Therefore,

y(L;a) = [(0.75 + 0.25a)e, (1.125 — 0.125a)e],

(54)
7 +e(1+ 7 ))y(l'oc).
1 o+ 1 ’

y(2;0) =(ﬂ2+

Then, y(2.0;1) is nearly approximate to
10.310334317377553, whereas y, (2.0;1) is nearly approxi-
mate to 10.310334317026362. The approximate solution by
RK-Huta is plotted at t € [0, 2], « € [0, 1] (see Figure 4), and
the error analysis has also been shown (see Table 6). The
comparison of approximately obtained solutions by sixth
order methods and exact solutions are plotted at
t =2,a € [0,1] (see Tables 7 and 8 and Figure 5).

4. Conclusion

We can show our conclusion simply via the flow chart in
Figure 6.

For clarifying the readers about convergence of numerical
results, we stated the theorem by means of consistency. We
solved famous-two problems of fuzzy hybrid systems and found
numerical solution by sixth order eight stage RK-Huta method
and sixth order seven stage RK-Butcher method and gener-
alized them for both the problems by which the future readers
can extend the numerical solution to next stage even without
solving the problem. Comparison of solutions shows that sixth
order RK-Huta method gives better results than sixth order
RK-Butcher method for solving any fuzzy hybrid differential
equations by the application of error analysis study (see Tables 3
and Table 6). As a part of our study, we are also arriving at the
following results:

(1) When comparing two numerical methods of dif-
ferent order, the higher order will give better ac-
curacy. For example, fourth order Runge-Kutta
method will give better accuracy of approximation
than Euler method.

(2) When comparing two numerical methods of same
order, the higher stage will give better accuracy. The
result was obtained by our research in this paper as we
had shown sixth order 8 stage method (RK-Huta
method) gives better accuracy than sixth order 7 stage
method (RK-Butcher method) in numerical solutions.

(3) Previously many authors did their work on fuzzy
hybrid systems found big errors in accuracy [16-21].
These errors are highly reduced by the above-given
two sixth-order methods.

(4) As far as the numerical solution is concerned, these
two methods are better than any other existing
numerical methods, in fact RK-Huta of order 6-stage
8 is still best from our study but the thing may change
when compare them with approximate analytical
methods which will be our future work.
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