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In this paper, we propose a high-precision discrete scheme for the time-fractional difusion equation (TFDE) with Caputo-
Fabrizio type. First, a special discrete scheme of C-F derivative is used in time direction and a compact diference operator is used
in space direction. Second, we discuss the convergence of the proposed method in discrete L1-norm and L2-norm. Te con-
vergence order of our discrete scheme is O(τ2 + h4), where τ and h are the temporal and spatial step sizes, respectively. Te aim of
this paper is to show that fractional operator without singular term is very useful for improving the accuracy of discrete scheme.

1. Introduction

Recently, fractional diferential equations have been widely
used in many felds, such as anomalous difusion [1, 2], fuid
mechanics [3], image processing [4], and so on. Te non-
locality of fractional operators provides an explanation for
the material with memory and hereditary in the real world.
Fractional operators are suitable for describing all kinds of
complex mechanical and physical behaviors. Fractional
operator has a wide range of applications, but there are also
some practical difculties in solving corresponding frac-
tional diferential equation. It should be pointed out that
only a few fractional diferential equations can obtain their
analytical solutions through complex functions, such as the
Mittag-Lefer function [5], H-function [6], and Wright
function [7]. Moreover, the calculation of the above special
functions is also difcult. Terefore, it is very important to
study the numerical solutions of fractional diferential
equations. Common numerical solution methods including
fnite element method [8], fnite diference method [9, 10],
meshless method [11, 12], and fnite volume element [13].

In order to obtain higher precision numerical solutions,
many authors have proposed and used compact diference
scheme (CDS) for fractional problems. By using this scheme,
the accuracy of spatial direction can be improved to the

fourth order. CDS has been fully proved and applied. Te
following results are the relevant works we know: Ran and
Zhang [14] introduced a new CDS to explore the fourth-
order time-fractional subdifusion equation. In [15], CDS
was used to solve the fractional subdifusion equation. In
[16], Ye et al. proposed and analyzed CDS for the time
distributed-order difusion-wave equation on a bounded
domain. Te purpose of [17] was to present the CDS for the
fourth-order fractional subdifusion equation.

Tere are many defnitions of fractional derivative, such
as Caputo, Riemann-Liouville, and Grünwald-Letnikov, the
results of them can be found in [18–25], among others. In
2015, based on the exponential kernel, Caputo and Fabrizio
presented a new defnition of fractional derivative [26], that
is, Caputo-Fabrizio (C-F) fractional derivative. C-F frac-
tional derivative is important and interesting to describe the
behavior of some complex physical materials. Another in-
teresting aspect is that it provides a new perspective for some
areas of mechanical phenomena. Up to now, there are a lot of
discussions on C-F fractional derivative. Losada and
Nieto [27] introduced fractional integral based on C-F
fractional derivative, and studied some related fractional
diferential equations. A second-order scheme of the space
C-F fractional difusion equation was obtained in [28]. In
[29], Nieto used nonsingular kernel to solve fractional
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logistic diferential equation and obtained an implicit so-
lution. Atangana and Alqahtani [30] considered numerical
solutions of space and time for the C-F fractional derivative
associated with the groundwater pollution equation. In 2017,
Mirza and Vieru [31] proposed the fundamental solutions to
advection-difusion equation with time-fractional C-F
fractional derivative. Te main aim of [32] was to consider
the application of C-F fractional derivative to nonlinear
Fisher's reaction-difusion equation. Soori and Aminataei
[33] studied two new approximations to C-F fractional
equation on nonuniform meshes. Atangana et al. [34, 35]
studied the numerical solution for fractional derivative
without singular kernel. Some existence results of solutions
to fractional diferential equation based on fxed point
theorems and C-F fractional derivative were discussed in
[36]. Approximate solutions for two higher-order C-F
fractional integro-diferential equations were considered in
[37]. Other interesting results about C-F fractional de-
rivative can be found in [38–44], among others.

TFDE is obtained from the standard difusion equation by
replacing the frst-order time derivative with a fractional
derivative of order α (0< α< 1). TFDE was derived by
considering continuous time random walk problems, which
are in general non-Markovian processes. From a physical
viewpoint, they are obtained from a fractional Fick law
replacing the classical Fick law, which describes transport
processes with a long memory [45]. Nigmatullin [46] pointed
out that many of the universal electromagnetic, acoustic, and
mechanical responses can be modeled accurately using
fractional difusion or difusion-wave equations. In this paper,
CDS is proposed to discrete the following TFDE:

CF
0 D

α
t u(x, t) � a

z
2
u

zx
2􏼠 􏼡 + f(x, t), x ∈ [0, L], t ∈ [0, T],

u(x, t)|t�0 � φ(x), x ∈ [0, L],

u(0, t) � 0, u(L, t) � 0, t ∈ [0, T],

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where a represents the difusion coefcient; this paper only
discusses the case as a is a positive constant.f(x, t) and φ(x)

are all given and sufciently smooth functions. For 0< α< 1,
C-F fractional derivative is defned as

CF
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α
t u(t) �

1
1 − α

􏽚
t

0
u
′
(s)e

−
α

1 − α
(t − s)

ds

�
1

1 − α
􏽚

t

0
u
′
(s)e

− σ(t− s)ds, σ �
α

1 − α
.

(2)

In this paper, we use the property of the C-F fractional
derivative to control the accuracy of the time direction for
the TFDE and combine this property with the compact
diference operator to achieve the overall accuracy to
O(τ2 + h4), which also expands the application of the C-F
fractional derivative. Tis paper is outlined as follows: In
Section 2, we describe some notations and lemmas to
construct the discrete scheme of equation (1). In Section 3,
we study the stability and convergence of the discrete
scheme. In Section 4, two numerical experiments are con-
sidered to verify the efciency and utility of the discrete
scheme. Finally, Section 5 gives a brief conclusion.

2. The Numerical Scheme

In this section, we mainly consider the construction of
discrete scheme for equation (1). Let us introduce some
notations frst. Let xj � jh with j � 0, 1, . . . , M and tn � nτ
with n � 0, 1, . . . , N, where h � L/M and τ � T/N and M

and N are positive integers. Defning a grid function space
Vh � V|V � (V0, V1, . . . , VM)􏼈 􏼉. Let un

j � u(xj, tn) and
fn

j � f(xj, tn). For any functionU, V ∈ Vh, the notations are
as follows:

(U, V) � h 􏽘
M− 1

j�1
UjVj, ‖U‖ �

������
(U, U)

􏽰
,

δxUj �
Uj − Uj− 1

h
, δ2xUj �

Uj+1 − 2Uj + Uj− 1

h
2 ,

j � 1, 2, . . . , M − 1.

(3)

We defne a compact operator H as follows:

Hu
n
j �

1
12

u
n
j− 1 + 10u

n
j + u

n
j+1􏼐 􏼑 � 1 +

h
2

12
δ2x􏼠 􏼡u

n
j , 1≤ j≤M − 1,

u
n
j , j � 0, M.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

Due to the arbitrariness of C, we allow the value of C to
be diferent at diferent locations. We now introduce some
lemmas that will be used in the construction of numerical
scheme.

Lemma 1 (see [28]). For any t> 0, u(t) is smooth enough.
Let 0< α< 1 with σ � α/(1 − α). Ten,

CF
0 D

α
t u

n

j �
1

1 − α
􏽘

n

k�1

u
k
j − u

k− 1
j

στ
e

− σ(n− k)τ 1 − e
− στ

( 􏼁 + O τ2􏼐 􏼑.

(5)

In Lemma 1, the main item on the right side of the
equation can be calculated as follows, which will be used in
the following discrete scheme:
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(6)

Lemma 2 (see [15]). Suppose u(x) ∈ C6[0, L], then

Huxx xj, tn􏼐 􏼑 � δ2xu
n
j + O h

4
􏼐 􏼑, 1≤ j≤M − 1. (7)

By Lemma 1, equation (1) can be written as

1
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􏽘

n
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u
k
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j

στ
e
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( 􏼁
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n
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(8)

i.e.,

1 − e
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k�1
1 − e

− στ
( 􏼁e

− σ(n− 1− k)τ
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− στ

(1 − α)στ
e
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u
0
j + O τ2􏼐 􏼑.

(9)

Let Ak � (1 − e− στ)e− σ(n− 1− k)τ , 1≤ k≤ n − 1, by equation
(9), Lemma 2 and the defnition of compact operatorH, we
have

Hu
n
j −

a

λ
δ2xu

n
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n− 1

k�1
AkHu

k
j + e

− σ(n− 1)τ
Hu

0
j +

1
λ
Hf

n
j + R

n
j ,

u
0
j � φ xj􏼐 􏼑, 0≤ j≤M,

u
n
0 � u

n
M � 0, 1≤ n≤N,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where λ � 1 − (e− στ/((1 − α)στ) and ‖Rn
j‖≤C(τ2 + h4).

Let Un
j represent the numerical approximation of

u(xj, tn). Omitting the small term Rn
j in equation (10), then

we can get the following CDS for equation (1):

HU
n
j −

a

λ
δ2xU

n
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n− 1

k�1
AkHU

k
j + e

− σ(n− 1)τ
HU

0
j +

1
λ
Hf

n
j ,

U
0
j � φ xj􏼐 􏼑, 0≤ j≤M,

U
n
0 � U

n
M � 0, 1≤ n≤N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

The fully discrete scheme equation (11) will be used in
Section 4.

3. Stability Analysis and Error Estimates

In this section, we theoretically prove that the above nu-
merical scheme is unconditionally stable and obtain the
result of convergence for equation (11). For convenience, the
subscript j can be omitted.

Lemma 3 (see [47]). If V, W ∈ Vh, then
(δ2xV, W) � − (δxV, δxW).

Lemma 4 (see [28]). Let 0< α< 1, σ � α/(1 − α), we have

0< 􏽘
n− 1

k�1
Ak < 1. (12)

Lemma 5 (see [17]). For any grid function u ∈ Vh, then
‖u‖2 ≤ ‖Hu‖2 ≤ ‖u‖2.

The following theorem is about stability of discrete
scheme equation (11):

Theorem 1. Let Un be the numerical solution of equation
(11). Ten,

U
n

����
����≤C U

0����
���� + max

1≤s≤n
f

s
����

����􏼒 􏼓, 1≤ n≤N, (13)
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where C is a positive constant and U0 � φ(xj).

Proof. By equation (11), we can obtain

HU
n

−
a

λ
δ2xU

n
� 􏽘

n− 1

k�1
AkHU

k
+ e

− σ(n− 1)τ
HU

0
+
1
λ
Hf

n
.

(14)

Multiplying both sides of equation (14) by HUn, we
obtain that

HU
n
,HU

n
( 􏼁 −

a

λ
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n
,HU
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(15)

From Lemma 3, we know

HU
n
,HU

n
( 􏼁≤ 􏽘
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k�1
AkHU
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,HU
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+ e
− σ(n− 1)τ

HU
0
,HU

n
􏼐 􏼑 +

1
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Hf
n
,HU

n
( 􏼁.

(16)

Next, we want to prove ‖HUn‖≤C(‖HU0‖ +

max1≤ s≤ n‖Hfs‖)by mathematical induction, where
1≤ n≤N. When n � 1, from equation (16), we obtain

HU
1
,HU

1
􏼐 􏼑≤ HU

0
,HU

1
􏼐 􏼑 +

1
λ

Hf
1
,HU

1
􏼐 􏼑. (17)

According to Cauchy-Schwarz inequality, we obtain

HU
1����
����
2
≤ HU

0����
���� HU

1����
���� +

1
λ

Hf
1����
���� HU

1����
����, (18)

i.e.,
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0����
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1
λ

Hf
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����≤C HU

0����
���� + Hf

1����
����􏼐 􏼑.

(19)

Assuming that

HU
k

�����

�����≤C HU
0����
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1≤s≤k
Hf

s
����

����􏼠 􏼡. (20)

holds for k � 2, 3, . . . , n − 1, we want to prove that

HU
n

����
����≤C HU

0����
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1≤s≤n
Hf

s
����

����􏼒 􏼓. (21)

For k � n, by equation (16) and Cauchy-Schwarz in-
equality, we know
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− σ(n− 1)τ
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1
λ

Hf
n

����
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(23)

By equation (20), we have

􏽘

n− 1

k�1
Ak HU

k
�����

�����≤A1C1 HU
0

+|Hf
1����
����

����􏼐 􏼑 + A2C2 HU
0����
���� + max

1≤s≤2
Hf

s
����

����􏼒 􏼓

+ · · · + An− 1Cn− 1 HU
0����
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1≤s≤n− 1
Hf

s
����

����􏼒 􏼓.

(24)

Let C � max C1, C2, . . . , Cn− 1􏼈 􏼉. By Lemma 4, for the
frst term in right hand of equation (23), we arrive at

􏽘

n− 1

k�1
Ak HU

k
�����

�����≤ A1 + A2 + · · · + An− 1( 􏼁C HU
0����
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s
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Using equation (20), we obtain
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Terefore, it holds that ‖HUn‖≤C(‖HU0‖ + max
1≤s≤n

‖Hfs‖).
Applying Lemma 5, we obtain

U
n

����
����≤C U

0����
���� + max

1≤s≤n
f

s
����

����􏼒 􏼓, (27)

where C is a positive constant. Tis completes the proof of
the theorem.

Next, the convergence of discrete scheme equation (11) is
analyzed. □

Theorem 2. Let un be the exact solution of equation (1) and
Un be the numerical solution of equation (11). Let
εn � un − Un, then ε0 � 0. Ten, it holds

εn
����

����≤C τ2 + h
4

􏼐 􏼑, 1≤ n≤N, (28)

where C is a positive constant.

Proof. Subtracting equation (11) from equation (10), we
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Hεn
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Multiplying both sides of equation (29) by Hεn, we get
that
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According to Lemma 3 and Cauchy–Schwarz inequality,
we know
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�����

����� + R
n

����
����. (32)

Next, we want to prove ‖Hεn‖≤C(τ2 + h4) by mathe-
matical induction. For n � 1, by equation (32) and
‖Rn‖ � ‖Rn

j‖≤C(τ2 + h4), we have

Hε1
����

����≤ R
1����
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4
􏼐 􏼑. (33)

Assuming that
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�����
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4

􏼐 􏼑, (34)

holds for k � 2, 3, . . . , n − 1. Ten, we want to show that
equation (34) holds for k � n. By equation (34), for the frst
term in right hand of equation (32), we arrive at

􏽘
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k�1
Ak Hεk

�����

�����≤A1C1 τ2 + h
4

􏼐 􏼑 + A2C2 τ2 + h
4
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+ · · · + An− 1Cn− 1 τ2 + h
4

􏼐 􏼑.

(35)

Let C � max C1, C2, . . . , Cn− 1􏼈 􏼉, by equations (32) and
(34) and Lemma 4, we obtain

Hεn
����

����≤C τ2 + h
4

􏼐 􏼑 􏽘

n− 1

k�1
Ak + R

n
����
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≤C τ2 + h
4

􏼐 􏼑 + R
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����≤C τ2 + h

4
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(36)

Terefore, it holds that ‖Hεn‖≤C(τ2 + h4).
Applying Lemma 5, we arrive at ‖εn‖2 ≤ ‖Hεn‖2 ≤ ‖εn‖2

so that ‖εn‖≤
�
3

√
‖Hεn‖. Ten,

εn
����

����≤C τ2 + h
4

􏼐 􏼑, (37)

where C is a positive constant. Tis completes the proof of
the theorem. □

4. Numerical Results

In this section, we give two specifc numerical results to
verify the previous theoretical analysis by comparing the
exact solution with the numerical solution. We carry out
numerical experiments by using the MATLAB 2017a with
PC of AMD Ryzen 5 3500U and 8GB memory. And the
L1-error and the discrete L2-error are measured with the
following formulas, respectively, which are used to measure
the numerical errors:

L
1

− Error � max
1≤n≤N

u
n

− U
n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, L

2
− Error � max

1≤n≤N
u

n
− U

n
����

����.

(38)

For L1-Error and L2-error, we denote the convergence
order by

L
i
− Rate �

log E1/E2( 􏼁

log h1/h2( 􏼁
, (39)

where i � 1, 2, E1 and E2 are errors that correspond to mesh
sizes h1 and h2, respectively.
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Example 1. We consider the equation (1) with u(x, t) �

t3 sin(πx) and a � 1.

CF
0 D

α
t u(x, t) �

z
2
u

zx
2 + f(x, t), x ∈ [0, 2], t ∈ [0, 1],

u(x, 0) � 0, x ∈ [0, 2],

u(0, t) � 0, u(2, t) � 0, t ∈ [0, 1],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

where the source term f(x, t) � sin(πx)(3/(1 − α)) ((t2/σ)

− (2t/σ2) + (2/σ3)(1 − e− σt)) + π2t3 sin(πx) and σ � α/
(1 − α).

We use the proposed scheme equation (11) to solve this
example. First step, we tested the accuracy of the scheme in
the direction of time. Taking the sufciently dense spatial
observation M � 200. In Tables 1–4, the convergence rates

Table 3: Example 1: errors, temporal convergence rates, and CPU times with α � 0.6.

M N L2-error L2-rate CPU time (s)
200 10 5.2707 × 10− 3 — 0.0434
200 20 1.3195 × 10− 3 2.00 0.0688
200 40 3.3002 × 10− 4 2.00 0.1136
200 80 8.2538 × 10− 5 2.00 0.3027
200 160 2, 0661 × 10− 5 2.00 0.8396

Table 4: Example 1: errors, temporal convergence rates, and CPU times with α � 0.8.

M N L2-error L2-rate CPU time (s)
200 10 1.6360 × 10− 2 — 0.0563
200 20 4.1088 × 10− 3 1.99 0.0758
200 40 1.0284 × 10− 3 2.00 0.1055
200 80 2.5720 × 10− 4 2.00 0.3392
200 160 6.4329 × 10− 5 2.00 0.8625

Table 5: Example 1: errors, spatial convergence rates, and CPU
times with α � 0.3.

M N L2-error L2-rate CPU time (s)
5 25 1.5507 × 10− 2 — 0.0241
10 100 1.3074 × 10− 3 3.57 0.0507
20 400 1.1421 × 10− 4 3.52 0.2967
40 1600 1.0066 × 10− 5 3.50 8.0681
80 6400 8.8903 × 10− 7 3.50 326.1065

Table 6: Example 1: errors, spatial convergence rates, and CPU
times with α � 0.5.

M N L2-error L2-rate CPU time (s)
5 25 1.5151 × 10− 2 — 0.0249
10 100 1.2779 × 10− 3 3.57 0.0412
20 400 1.1164 × 10− 4 3.52 0.3887
40 1600 9.8388 × 10− 6 3.50 8.1066
80 6400 8.6900 × 10− 7 3.50 223.9756

Table 2: Example 1: errors, temporal convergence rates, and CPU times with α � 0.4.

M N L2-error L2-rate CPU time (s)
200 10 2.0070 × 10− 3 — 0.0608
200 20 5.0208 × 10− 4 2.00 0.0735
200 40 1.2556 × 10− 4 2.00 0.1263
200 80 3.1419 × 10− 5 2.00 0.2742
200 160 7.8114 × 10− 6 2.00 0.6677

Table 1: Example 1: errors, temporal convergence rates, and CPU times with α � 0.2.

M N L2-error L2-rate CPU time (s)
200 10 6.5323 × 10− 4 — 0.0607
200 20 1.6337 × 10− 4 2.00 0.0655
200 40 4.0872 × 10− 5 2.00 0.1023
200 80 1.0245 × 10− 5 2.00 0.2729
200 160 2.5885 × 10− 6 1.98 0.6354
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for time are obtained as O(τ2). And the errors, temporal
convergence rates, and CPU times in the L2-norm for dif-
ferent α (here α � 0.2, 0.4, 0.6, 0.8) are shown in Tables 1–4.
Experimental results show that the scheme produces a time
approximation order close to 2. Second step, we tested the
accuracy of the scheme in the direction of space with this
example. In Tables 5–8, the convergence rates for space are

obtained as O(h4). Te spatial observation M and temporal
observation N are chosen such that N � M2 and
α � 0.3, 0.5, 0.7, 0.9. Te errors, spacial convergence rates,
and CPU times are shown in Tables 5–8, respectively. Tese
conclusions are consistent with our analysis in Section 3.

In Figures 1 and 2, we show the exact solution, numerical
solution, absolute error, and contour plot of error when α �
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Figure 1: Example 1 with α � 0.25 at M � 100 and N � 5000: (a) exact solution; (b) numerical solution; (c) absolute error; (d) contour plot
of error.

Table 8: Example 1: errors, spacial convergence rates, and CPU times with α � 0.9.

M N L2-error L2-rate CPU time(s)
5 25 1.4643 × 10− 2 — 0.0252
10 100 1.2387 × 10− 3 3.56 0.0407
20 400 1.0846 × 10− 4 3.52 0.3341
40 1600 9.5460 × 10− 6 3.50 8.1655
80 6400 8.4318 × 10− 7 3.50 336.3633

Table 7: Example 1: errors, spatial convergence rates, and CPU times with α � 0.7.

M N L2-error L2-rate CPU time (s)
5 25 1.4708 × 10− 2 — 0.0239
10 100 1.2414 × 10− 3 3.57 0.0437
20 400 1.0846 × 10− 4 3.52 0.3221
40 1600 9.5590 × 10− 6 3.50 8.2159
80 6400 8.4430 × 10− 7 3.50 232.8713
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Figure 2: Example 1 with α � 0.95 at M � 100 and N � 5000: (a) exact solution; (b) numerical solution; (c) absolute error; (d) contour plot
of error.
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Figure 3: Example 1: log(Error) as a function of log(τ) and log(h), respectively, for given α: (a) α� 0.2, 0.4, 0.6, 0.8; (b) α� 0.3, 0.5, 0.7, 0.9.
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0.25 and 0.95 at M � 100 and N � 5000, respectively. It
demonstrates that the numerical solution of equation (11)
does well with the exact solution. In Figure 3(a), we show the
errors in L2-norm attain second order of accuracy in
temporal direction for α � 0.2, 0.4, 0.6, 0.8, respectively. In
Figure 3(b), we show the errors in L2-norm attain fourth
order of accuracy in spatial direction for α � 0.3, 0.5, 0.7, 0.9,
respectively.

Example 2. In the second example, we consider the equation
(1) with u(x, t) � sin(4t)sin(πx):

CF
0 D

α
t u(x, t) � a

z
2
u

zx
2 + f(x, t), x ∈ [0, 1], t ∈ [0, 2],

u(x, 0) � 0, x ∈ [0, 1],

u(0, t) � 0, u(1, t) � 0, t ∈ [0, 2],

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(41)

where the forcing function is f(x, t) � sin(πx)(4/((1 − α)

(σ2 + 16)))(σ cos(4t) + 4 sin(4t) − σe− σt) + aπ2 sin(4t) sin
(πx) and σ � α/(1 − α).

As a � 2, the numerical results of Example 2 are shown in
Table 9. Table 9 shows the errors and temporal convergence
rates for α � 0.1, 0.5, 0.9. We can fnd that when the difusion
coefcient changes and the time interval increases, numerical
results are still consistent with our theoretical analysis.

In this example, when we choose the same parameters as
in [48], that are a � 1 and T � 2, the numerical results of our
method are shown in Table 10. Te results of [48] are shown

in Table 11. In the example of [48], M � 20000 and N �

10, 20, 40, 80 are used (see Table 11). However, in our
method (see Table 10), we just use M � 50 and
N � 80, 120, 160, 200. By comparison, it is found that our
calculation accuracy is slightly lower than that of [48];
however, it takes a shorter time. We can also fnd that our
method has a better convergence order when the value of α is
smaller (for instance, α � 0.1; there will be superconvergence
with the value of N becoming larger).

5. Conclusion

In this paper, we present a higher-order CDS for the TFDE
of the C-F type, proving that the scheme is unconditionally
stable with temporal second-order accuracy and spatial
fourth-order accuracy. Te innovation in this paper is to
discrete the equation using the C-F fractional derivatives and
the compact diference operator to further improve the
accuracy. Two numerical examples are given to verify the
accuracy of the new scheme; the results are consistent with
theoretical analysis. In the following study, we aim to solve
the high-dimensional TFDE and coupled nonlinear prob-
lems using the method of our paper.
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Table 9: Example 2: errors and temporal convergence rates with a � 2 and M � 50.

N
α � 0.1 α � 0.5 α � 0.9

L1-error L1-rate L1-error L1-rate L1-error L1-rate
20 6.1572 × 10− 4 — 4.9340 × 10− 3 — 1.5722 × 10− 1 —
40 1.5220 × 10− 4 2.02 1.2336 × 10− 3 2.00 4.0063 × 10− 2 1.97
80 3.6578 × 10− 5 2.06 3.0709 × 10− 4 2.01 1.0062 × 10− 2 1.99
160 7.6896 × 10− 6 2.25 7.5370 × 10− 5 2.03 2.5171 × 10− 3 2.00

Table 10: Example 2: errors and temporal convergence rates with a � 1 and M � 50.

N
α � 0.1 α � 0.5 α � 0.9

L1-error L1-rate L1-error L1-rate L1-error L1-rate
80 7.1847 × 10− 5 — 5.7221 × 10− 4 — 1.6674 × 10− 2 —
120 3.0905 × 10− 5 2.08 2.5558 × 10− 4 2.01 7.4175 × 10− 3 2.00
160 1.6577 × 10− 5 2.17 1.4301 × 10− 4 2.02 4.1731 × 10− 3 2.00
200 9.9459 × 10− 6 2.29 9.0899 × 10− 5 2.03 2.6707 × 10− 3 2.00

Table 11: Errors and temporal convergence rates in [48] with M � 20000.

N
α � 0.1 α � 0.5 α � 0.9

L1-error L1-rate L1-error L1-rate L1-error L1-rate
10 7.21 × 10− 5 — 8.48 × 10− 4 — 1.03 × 10− 2 —
20 1.80 × 10− 5 2.00 2.12 × 10− 4 2.00 2.64 × 10− 3 1.97
40 4.51 × 10− 6 2.00 5.29 × 10− 5 2.00 6.61 × 10− 4 2.00
80 1.13 × 10− 6 2.00 1.32 × 10− 5 2.00 1.66 × 10− 4 2.00
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