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In this paper, we present a novel Galerkin spectral method for numerically solving the stochastic nonlinear Schrödinger (NLS)
equation driven by multivariate Gaussian random variables, including the nonlinear term. Our approach involves deriving the
tensor product of triple random orthogonal basis and random functions, which enables us to efectively handle the stochasticity
and nonlinear term in the equation.We apply this newly proposedmethod to solve both one- and two-dimensional stochastic NLS
equations, providing detailed analysis and comparing the results with Monte Carlo simulation. In addition, the proposed method
is applied to the stochastic Ginzburg–Landau equation. Our method exhibits excellent performance in both spatial and random
spaces, achieving spectral accuracy in the numerical solutions.

1. Introduction

Nonlinear Schrödinger equation is applied in many felds of
physics, such as nonlinear modulation of collisionless
plasma, nonlinear wave model, nonlinear optics, and log-
arithmic Schrödinger equation [1–5]. In practice, some
parameters in the physical equation may be uncertain or the
model itself may have random disturbance and these dis-
turbances may be related to each other. At present, the
stochastic nonlinear Schrödinger equation studied are
mostly driven by theWiener process, white noise, or colored
noise [6]. It has been studied theoretically and numerically
and takes the form

idψ + ∆ψdt + λ|ψ|
2ψdt + ψdW � 0, (1)

where i �
���
− 1

√
, λ ∈ R, and W is a infnite-dimensional

Wiener process.
Te polarization orientation of laser plasma can be

characterized by initial conditions that exhibit both ran-
domness and interrelationships. We can use the model as
follows [7]:

i
zA±(t, x)

zt
+

z
2
A±

zx
2 +

2
3

A±
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ 2|A∓|2

1 + ϵ A±
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+|A∓|2􏼐 􏼑
A± � 0, (2)

where x is the spatial variable and A+ and A− are the
clockwise and counterclockwise circularly polarized com-
ponents, respectively. Te initial condition of A+ and A−

may have the Gaussian input as

A+

A−

􏼠 􏼡 �
α

β
􏼠 􏼡e

− x2
. (3)

Te random variables α and β, which are correlated with
each other, are often assumed to follow amultivariate Gaussian
distribution in practical scenarios. Consequently, investigating
the stochastic nonlinear Schrödinger equation driven by
multivariate Gaussian random variables has become a prom-
inent research topic. When solving this equation, the presence
of the nonlinear term poses a challenging problem, regardless
of whether it is driven by noise or a Gaussian random variable.

In [2], the NLS equation (1) is driven by the high-
dimensional colored Wiener process. In the Hamiltonian
energy space, by implementing a scalar transformation on
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the noise, the uniqueness of the solution of the unknown
function and the conditions for strong and weak solutions
can be deduced theoretically [8]. In [3], this paper focuses on
the study of the nonlinear Schrödinger equation with
a point-like source term. Te calculation of the nonlinear
terms is closely linked to the energy norm.

In [9], the stochastic NLS equation (1) driven by white
noise is numerically solved by symplectic and multi-
symplectic methods.Te calculation of the nonlinear term in
the symplectic method involves satisfying the global Lip-
schitz condition, while in the multisymplectic method, it is
determined by ensuring the discrete charge conservation
law. Te two discrete schemes have good properties in long-
term calculation, and both meet the discrete charge con-
servation principle [8, 10].

In [11], this paper presents a proof that the solution to
the stochastic nonlinear Schrödinger equation can be ef-
fectively approximated by the solution of a coupled splitting
scheme. Numerical calculations show that both the evolu-
tion of charge and the exponential moments of energy reach
strong convergence rates. In [12], this work employs the
splitting approach to approximate the NLS equation and
aims at demonstrating the strong and weak order of the
splitting scheme. Convergence analysis is often used in the
calculation of nonlinear terms, or the stochastic value of
wave function at a certain time is directly used [3].

In this paper, we consider a stochastic nonlinear
Schrödinger equation driven by multivariate Gaussian
random variables of the following form:

i
zψ
zt

+ a∆ψ + V( x
→

, ξ)ψ + λ|ψ|
2ψ � 0, (4)

where a ∈ R, ∆ represents the Laplace operator, V( x
→

, ξ) is
some known random function, and x

→ is the spatial vector. ξ
is a multivariate Gaussian random variable.

When the higher order numerical method is required,
the stochastic Galerkin (SG) spectral method is favorable
[13]. Te numerical calculation of the nonlinear term and
how to construct orthogonal basis is a challenging problem.
In previous studies, many techniques have been proposed
including the probability measure transformation method
[14–16], domination method [14, 17–19], measure-
consistent polynomial chaos expansion method [20, 21],
and Gauss–Schmidt orthogonalization method [22–28].

In [29], suppose ζ is a one-dimensional Gaussian ran-
dom variable and H(·) represents its corresponding set of
orthogonal polynomials. Let α, β, and c be any nonnegative
integer, and denote α∧ β � min α, β􏼈 􏼉.

Hα(ζ)Hβ(ζ) � 􏽘
q≤α∧ β

B1(α, β, q)Hα+β− 2q(ζ),
(5)

B1(α, β, q) �
α
q

􏼠 􏼡
β
q

􏼠 􏼡
α + β − 2q

α − q
􏼠 􏼡􏼢 􏼣

1/2

�

��������������
α!β!(α + β − 2q)!

􏽰

q!(α − q)!(β − q)!
,

(6)

where α
q

􏼠 􏼡 � α!/q!(α − q)!, and the other two parentheses

of (6) do the same factorial operation. Te deduced tensor
product of a double orthogonal basis and random functions
is applicable when ζ is a multivariate Gaussian random
variable.

Expanding on prior research, this paper aims at de-
ducing the tensor product form of a triple random or-
thogonal basis (7) and random functions (8). We proposed
a Galerkin spectral method for efectively solving the sto-
chastic nonlinear Schrödinger (NLS) equation, which is
driven by multivariate Gaussian random variables. In ad-
dition, we conduct numerical computations of the nonlinear
term by representing it as a random function:

Hα(ζ)Hβ(ζ)Hc(ζ), (7)

u(ζ)v(ζ)w(ζ), (8)

where u(·), v(·), and w(·) are all random functions.
Our main techniques include the following:

(i) We construct a mapping transformation that con-
nects multivariate Gaussian random variables to
independent Gaussian random variables.

(ii) Initially, we assume that the unknown function in
the stochastic NLS equation can be expressed as
a generalized polynomial chaos expansion. We then
utilize the mapping transformation to convert it
into an equation driven by independent Gaussian
random variables. In addition, based on the deri-
vations provided in Appendices A and B, we express
the nonlinear term in the form of a generalized
polynomial chaos expansion. Finally, we implement
the stochastic Galerkin spectral method within the
Gaussian measure space to solve the stochastic NLS
equation.

(iii) By solving the equations derived in the process, we
obtain deterministic diferential equations for the
coefcients of the expansion.

In addition, we employ the Monte Carlo method to
simulate the stochastic NLS equation in one and two di-
mensions with diferent sample sizes. We then compare the
results obtained using the proposed method with those
obtained through the Monte Carlo simulation.

Te organization of this paper is as follows. In Section 2,
we discuss the stochastic Galerkin spectral method for
solving the NLS equation driven by multivariate Gaussian
measure. Section 3 presents known conclusions in the feld.
In Section 4, we deduce the tensor product forms of triple
orthogonal basis and triple random functions. Section 5
demonstrates the application of our proposed method to
solve one- and two-dimensional stochastic NLS equations.
We analyze the results and compare them with those ob-
tained using the Monte Carlo method. In addition, we apply
the proposed method to the stochastic Ginzburg–Landau
equation. Section 6 provides a summary of the proposed
method and the results obtained.
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2. Galerkin Spectral Method for the NLS
Equation Driven by Multivariate
Gaussian Measure

To present the method, we consider equation (4) and the
unknown function u � u( x

→
, ξ(ω)). x

→ is the spatial vari-
ables, and ξ(ω) ∈ RK is the K-dimensional random variables
with Gaussian measure. Te joint probability density
function is ρ( y

→
) ( y

→∈ RK), ξ(ω) � (ξ1(ω), ξ2(ω),

. . . , ξK(ω)), or ξ � (ξ1, ξ2, . . . , ξK) typically represents the
uncertainties in the model.

2.1. Stochastic Galerkin Spectral Method. Te procedure to
design the stochastic Galerkin (SG) spectral method for (4) is
as follows [19, 30, 31]:

(i) Suppose the random input function V( x
→

, ξ), the
stochastic nonlinear term |ψ|2, and the unknown
function ψ( x

→
, t, ξ) have the following polynomial

chaos expansion form:

ψ( x
→

, t, ξ) ≈ ψN,K
( x

→
, t, ξ) � 􏽘

α∈JN,K

􏽢ψα( x
→

, t)φα(ξ),
(9)

|ψ|
2

� ψψ ≈ 􏽘

α∈JN,K

􏽢ψα( x
→

, t)φα(ξ) 􏽘

β∈JN,K

􏽢ψβ( x
→

, t)φβ(ξ),
(10)

V( x
→

, ξ) ≈ V
N,K

( x
→

, ξ) � 􏽘

α∈JN,K

􏽢Vα( x
→

)φα(ξ),
(11)

where the orthogonal basis set φα(ξ), α ∈ JN,K􏼈 􏼉

corresponds to the dependent Gaussian variables ξ.
ψ(·) represents its conjugate form.

(ii) Transform (4) into the equivalent variational for-
mulation, for all orthogonal basis functions v,
fnding ψ such that

E i
zψ
zt

v + a∆ψ(ξ, x
→

)v + V(ξ, x
→

)ψ(ξ, x
→

)v + λ|ψ|
2ψ(ξ, x

→
)v􏼢 􏼣 � 0, (12)

where the mathematical expectation E is calculated
according to the joint probability density function
of the measure ξ, and x

→∈ D ⊂ Rd.
(iii) Te weight function of v should correspond to the

joint probability density function of ξ for orthog-
onal basis functions vi and vj satisfying the follow-
ing equation for any i, j􏼈 􏼉 ∈ J:

􏽚
Ω

vivjρd y
→

�
1, i � j,

0, i≠ j.
􏼨 (13)

So all of the v � φκ, κ ∈ JN,K􏼈 􏼉, and the originally
stochastic problem is reduced to the following
fnite-dimensional and deterministic PDE problem,
for all φκ, fnding ψN,K such that

E i
zψ
zt
φκ + a∆ψ( x

→
, ξ)φκ + V( x

→
, ξ)ψ( x

→
, ξ)φκ + λ|ψ|

2ψ( x
→

, ξ)φκ􏼢 􏼣 � 0. (14)

(iv) We use the second-order time splitting spectral
method for the above deterministic problem.

We can construct the mapping relationship ξ⟶T η
[31], which can potentially transform a dependent
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multivariate Gaussian random vector ξ into a set of linearly
independent Gaussian random variables η � (η1, η2, . . . ,

ηK). By the maps T, ξ � T− 1(η), (9)–(11) and (14) can be
rewritten as follows:

ψN,K
x
→

, t,T
− 1

(η)􏼐 􏼑 � 􏽘

α∈JN,K

􏽢ψα( x
→

, t)Φα(η),
(15)

|ψ|
2

� ψψ ≈ 􏽘

α∈JN,K

􏽢ψα( x
→

, t)Φα(η) 􏽘

β∈JN,K

􏽢ψβ( x
→

, t)Φβ(η),
(16)

V
N,K

x
→

,T
− 1

(η)􏼐 􏼑 � 􏽘

α∈JN,K

􏽢Vα( x
→

)Φα(η),
(17)

E i
zψ
zt
Φβ + a∆ψ( x

→
, η)Φβ + V( x

→
, η)ψ( x

→
, η)Φβ + λ|ψ|

2ψ( x
→

, η)Φβ􏼢 􏼣 � 0. (18)

Te proposed method exhibits remarkable spectral ac-
curacy convergence, particularly in its ability to achieve high
precision in terms of the mean square error. To illustrate this
concept, let us examine a scenario where both the spatial
variable and the random variable are limited to a one-
dimensional context. Let u(x, t, ξ) and h(x, t, ξ) be the
exact solution and the approximate solution, respectively
[30, 32].

E[‖u − h‖]
2
2 � 􏽘

M

j�0
􏽚
Ω

􏽢uj(x, t) − 􏽢hj(x, t)􏼐 􏼑
2

􏼒 􏼓dx≤
Q

M
2m− 1 t,

(19)

where Q is a constant independent of M (truncation
number), t is time, and m> 0 is a real constant depending on
the smoothness of u in terms of ξ.

3. Known Conclusion

For the random vector η � (η1, η2, . . . , ηK), where
η1, η2, . . . , ηK are independent to each other, by the tensor
product, we may construct the multivariate polynomial as
follows:

Φα(η) � 􏽙
K

i�1
ϕαi

ηi( 􏼁, (20)

where α � (α1, . . . , αK) and each index αi ∈ 0, 1, 2 . . . , N{ }.
We remark that the orthogonal basis ϕn(x)􏼈 􏼉(n �

0, 1, 2, . . . ,∞) provided by (20) satisfes the orthogonality
condition

E ϕn ηi( 􏼁ϕm ηi( 􏼁( 􏼁 � δnm �
1, n � m,

0, n≠m.
􏼨 (21)

We note that ϕαi
(ηi)􏽮 􏽯αi�0,...,N

is the orthogonal poly-
nomial constructed from the Gaussian measure related to
random variable ηi (see also equation (21)). Here, ϕαi

(ηi)

represents the Hermite polynomial.

Given a fnite nonnegative integer N and K, we defne
a truncated multi-indicates set and some set of operations
[29].

J
N,K

� α � α1, . . . , αK( 􏼁 αi ∈ 0, . . . , N{ }
􏼌􏼌􏼌􏼌 , |α| � 􏽘

K

i�1
αi ≤N

⎧⎨

⎩

⎫⎬

⎭.

(22)

For any α, β, γ ∈ J􏼈 􏼉 and K> 1,

(i) Factorial.α! � 􏽑
K
i�1αi.

(ii) Sizerelation.

α∨β: (max αi, βi􏼈 􏼉, i � 1, 2, . . . , K),

α∧ β: (min αi, βi􏼈 􏼉, i � 1, 2, . . . , K),

α � β: ( αi � βi􏼈 􏼉, i � 1, 2, . . . , K),

⎧⎪⎨

⎪⎩

(iii) AdditionSubtraction.α ± β � (αi ± βi, i � 1, 2,

. . . , K).
(iv) Combinationfactorial. α

β􏼠 􏼡 � α!/β!(α − β)!,

α
β, γ􏼠 􏼡 � α!/β!γ!(α − β − γ)!.

Ten, any two polynomials from the set
Φα(η), α ∈ JN,K􏼈 􏼉 (here, Φα(η)􏼈 is defned in (20)) are
orthogonal to each other, i.e.,

E Φα(η)Φβ(η)􏽨 􏽩 �
1, α � β,

0, α≠ β,
􏼨 α, β ∈ JN,K

. (23)

We know that the dimension number of the truncated
polynomial space is

dim Φα(η), α ∈ JN,K
􏽮 􏽯 � 􏽘

N

n�0

K + n − 1

n

⎛⎝ ⎞⎠ �
(K + N)!

K!N!
.

(24)

To simplify the calculation, some important conclusions
of orthogonal basis are established as follows. For any
α, β ∈ J,
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Φα(η)Φβ(η) � 􏽘
q≤α∧ β

B1(α, β, q)Φα+β− 2q(η),

B1(α, β, q) �
α

q
⎛⎝ ⎞⎠

β

q
⎛⎝ ⎞⎠

α + β − 2q

α − q
⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1/2

�

��������������
α!β!(α + β − 2q)!

􏽰

q!(α − q)!(β − q)!
,

(25)

where B1 is similar to (6) for multi-indicates situation; for
more details of (25), see [29]. Denote random functions u �

u( x
→

, t, η) and v � v( x
→

, t, η) based on [29]

uv � 􏽘
θ1∈J

􏽘
q∈J

􏽘
0≤β≤θ1

C1 θ1, β, q( 􏼁uθ1− β+qvβ+q
⎛⎝ ⎞⎠Φθ1(η),

(26)

where θ1 � α + β, q≤ α∧ β, and

C1 θ1, β, q( 􏼁 �
θ1

β
⎛⎝ ⎞⎠

β + q

q
⎛⎝ ⎞⎠

θ1 − β + q

q
⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1/2

�

��������������������
θ1!(β + q)! θ1 − β + q( 􏼁!

􏽱

q!β! θ1 − β( 􏼁!
. (27)

4. TensorProductofTripleRandomOrthogonal
Basis and Random Functions

In this section, we deduced the tensor product of a triple
random orthogonal basis and random functions by relying
on established conclusions.

ϕα(η)ϕβ(η)ϕc(η) � 􏽘
p≤α∧ c

􏽘
q≤α∧ β

􏽘
r≤β∧ c

B2(α, β, c, p, q, r)ϕα+β+c− 2(p+q+r)(η),
(28)

B2(α, β, c, p, q, r) �
α

p, q
􏼠 􏼡

β
q, r

􏼠 􏼡
c

p, r
􏼠 􏼡

α + β + c − 2(p + q + r)

α − p − q, β − q − r
􏼠 􏼡􏼢 􏼣

1/2

�

�����
α!β!c!

􏽰 ��������������������
α + β + c − 2(p + q + r)

􏽰

p!q!r!(α − p − q)!(β − q − r)!(c − p − r)!
.

(29)

In combination with Appendix A, for any α, β, γ ∈ JN,K,
we have a multi-indicates situation as follows:

B2(α, β, γ, p, q, r) �
α

p, q
􏼠 􏼡

β

q, r
􏼠 􏼡

γ

p, r
􏼠 􏼡

α + β + γ − 2(p + q + r)

α − p − q, β − q − r
􏼠 􏼡􏼢 􏼣

1/2

,

ΦαΦβΦγ � 􏽘
p≤α∧ γ

􏽘
q≤α∧ β

􏽘
r≤β∧ γ

B2(α, β, γ, p, q, r)Φα+β+γ− 2(p+q+r)(η).

(30)

Te proof of (28) and (29) can be seen in Appendix A.
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Trough our numerical calculations, we have derived the
following conclusions pertaining to the triple random un-
known function. Suppose u, v, andw have the following SG
chaos expansion:

u
N,K

x
→

, t,T
− 1

(η)􏼐 􏼑 � 􏽘

α∈JN,K

􏽢uα( x
→

, t)Φα(η),

v
N,K

x
→

, t,T
− 1

(η)􏼐 􏼑 � 􏽘

β∈JN,K

􏽢vβ( x
→

, t)Φβ(η),

w
N,K

x
→

, t,T
− 1

(η)􏼐 􏼑 � 􏽘

γ∈JN,K

􏽢wγ( x
→

, t)Φγ(η).

(31)

In combination with Appendix B, we have the following
multi-indicates situation:

uvw � 􏽘
θ2∈J

􏽤uvwθ2Φθ2(η),

􏽤uvwθ2 � 􏽘
p∈J

􏽘
q∈J

􏽘
r∈J

􏽘
θ2�α+β+γ

C2 p, q, r, θ2, α, β, γ( 􏼁uα+p+qvβ+q+rwγ+r+p,
(32)

where θ2 � α + β + γ, p≤ α∧ γ, q≤ α∧ β, r≤ β∧ γ, and the
multi-indicates situation

C2 θ2, p, q, r, α, β, γ( 􏼁 �

θ2

α, β
⎛⎝ ⎞⎠

α + p + q

p, q
⎛⎝ ⎞⎠

β + q + r

q, r
⎛⎝ ⎞⎠

γ + p + r

p, r
⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1/2

�

�������������������������������
(α + p + q)!(β + q + r)!(γ + p + r)!θ !

􏽰

p!q!r!α!β!γ!
.

(33)

Te proof of (32) and (33) can be seen in Appendix B.

5. Numerical Experiments

In this section, we test the accuracy of the proposed method
by solving stochastic one- and two-dimensional NLS
equations, respectively. All the presented stochastic equa-
tions are driven by bivariate random Gaussian variables. In

addition, we assume that the unknown function have a pe-
riodic boundary condition in the spatial direction and will
use the Fourier spectral method to approximate the un-
known function ψ [33, 34].

To minimize computational costs, we can derive the
conclusions by utilizing equations (26) and (32), which are
obtained from the application of equations (15)–(17).

ψV ≈ ψN,K
V

N,K
� 􏽘

α∈JN,K

􏽢ψα( x
→

, t)Φα(η) 􏽘

β∈JN,K

􏽢Vβ( x
→

, t)Φβ(η)

� 􏽘
θ1∈J

􏽘
q∈J

􏽘
0≤β≤θ1

C1 θ1, β, q( 􏼁􏽢ψθ1− β+q
􏽢Vβ+q

⎛⎝ ⎞⎠Φθ1(η),

|ψ|
2ψ � ψψψ ≈ 􏽘

α∈JN,K

􏽢ψα( x
→

, t)Φα(η) 􏽘

β∈JN,K

􏽢ψβ( x
→

, t)Φβ(η) 􏽘

γ∈JN,K

􏽢ψγ( x
→

, t)Φγ(η) � 􏽘
θ2∈J
Γθ2Φθ2(η),

Γθ2 � 􏽘
p∈J

􏽘
q∈J

􏽘
r∈J

􏽘
θ2�α+β+γ

C2 p, q, r, θ2, α, β, γ( 􏼁􏽢ψα+p+q􏽢ψβ+q+r
􏽢ψγ+r+p.

(34)

Ten, (18) is equivalent to the Galerkin system as follows:
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i 􏽢ψκ( 􏼁t + a∆􏽢ψκ + 􏽘
q∈J

􏽘
0≤β≤κ

C1(κ, β, q)􏽢ψκ− β+q
􏽢Vβ+q + λ 􏽘

p∈J
􏽘
q∈J

􏽘
r∈J

􏽘
κ�α+β+γ

C2(p, q, r, κ, α, β, γ)􏽢ψα+p+q􏽢ψβ+q+r
􏽢ψγ+r+p � 0.

(35)

To solve the Galerkin system (35) numerically, in the
spatial and time direction of the Galerkin system, we used
the Fourier spectral method and the second-order time
splitting method, respectively. We used the pseudospectral
method to compute the Fourier coefcients of 􏽢ψκ− β+q

􏽢Vβ+q
and 􏽢ψα+p+q􏽢ψβ+q+r

􏽢ψγ+r+p [29]. Te expectation, second-order
moment, and variance of ψ( x

→
, t) can be calculated as

follows:

E[ψ( x
→

, t)] � 􏽢ψ0,

E ψ2
( x

→
, t)􏽨 􏽩 � 􏽘

α∈JN,K

􏽢ψ2
α,

Var[ψ( x
→

, t)] � 􏽘

α∈JN,K

􏽢ψ2
α − 􏽢ψ2

0.

(36)

To demonstrate the accuracy of this method, we defne
the errors in terms of expectation and variance for the real
and imaginary parts, respectively.

E
real
error � real E ψN,K

􏽨 􏽩 − E ψexact􏼂 􏼃􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌max
,

E
imag
error � imag E ψN,K

􏽨 􏽩 − E ψexact􏼂 􏼃􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌max
,

Varrealerror � real Var ψN,K
􏽨 􏽩 − Var ψexact􏼂 􏼃􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌max
,

Varimag
error � imag Var ψN,K

􏽨 􏽩 − Var ψexact􏼂 􏼃􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌max
,

(37)

where |·|, real[·], and imag[·] represent the absolute value,
real part, and imaginary part, respectively. Te errors E[·]

error
and Var[·]

error correspond to the deviations in the real and
imaginary parts of the expectation and variance, re-
spectively. To emphasize the accuracy and efciency of the
proposed method, we employ the Monte Carlo method to
simulate the stochastic NLS equations in one and two di-
mensions using varying sample sizes. A comparative analysis
is then performed between the Monte Carlo method and the
proposed method.

5.1. Stochastic 1D NLS Equation. Consider the following
stochastic one-dimensional NLS equation:

i
zψ
zt

+ a
z
2ψ

zx
2 + V(x, ξ)ψ + λ|ψ|

2ψ � 0, x ∈ [− 6π, 6π],

(38)

where x
→

� x.

ψ0 � f(ξ) sin(x),

V(x, ξ) � f(ξ)2sin2(x) − b,

f(ξ) � 1 +
�
2

√ 1
���
1.9

√ ξ1 + ξ2( 􏼁 −
��
10

√
ξ1 − ξ2( 􏼁􏼢 􏼣,

λ � − 1, a � 1, b � 1.

(39)

Equation (38) has the following analytical solution:

ψexact � f ξ1, ξ2( 􏼁e
− 2it sin(x). (40)

Te random variables ξ � (ξ1, ξ2) ∼ N(μ1, μ2, σ21, σ
2
2, R)

(i.e., they are bivariate Gaussian random variables).
μ1, μ2, σ21, σ

2
2, andR are some known constants

(μ1 � μ2 � 0, σ21 � σ22 � 0.25, R � 0.9 is taken in our calcu-
lation later).

Based on the maps T between ξ and η,

ξ1 � −

�
2

√

2
�����
0.025

√
η1 −

�����
0.475

√
η2( 􏼁,

ξ2 �

�
2

√

2
�����
0.025

√
η1 +

�����
0.475

√
η2( 􏼁.

(41)

Ten, f(ξ) and V(x, ξ) can be rewritten as follows:

f ξ1, ξ2( 􏼁 � 1 + η1 + η2,

V x, ξ1, ξ2( 􏼁 � 1 + η1 + η2( 􏼁
2sin2(x) − b.

(42)

In Example 1, Tables 1–4 present a summary of our
results, illustrating the errors in the real and imaginary parts
of the expectation and variance of the random solution at
diferent time points. On the other hand, Tables 5–8 display
the results obtained through Monte Carlo simulations for
equation (38).

Figure 1(a) displays the real and imaginary components
of the expectation of the approximation solution. Figure 1(b)
depicts the real and imaginary parts of the error in the
expectation (top) and variance (bottom) for equation (38) at
T � 2.

5.2. Stochastic 2D NLS Equation. Consider the following
stochastic two-dimensional NLS equation with the same
random function f(ξ) as one-dimensional case:
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Table 1: Te real part of the expectation error for the solution equation (38) at diferent time points by the proposed method and with time
step ∆t � 0.0001.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Ereal
error 1.09474E − 4 3.9075E − 5 1.5473E − 4 2.3408E − 4 1.3733E − 4

Table 2: Te imaginary part of expectation error for the solution equation (38) at diferent time points by the proposed method and with
time step ∆t � 0.0001.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Eimag
error 1.3834E − 4 4.9246E − 5 3.0282E − 5 6.1699E − 5 5.2435E − 4

Table 3:Te real part of the variance error for the solution equation (38) at diferent time points by the proposed method and with time step
∆t � 0.0001.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Varrealerror 6.2920E − 4 3.3184E − 4 8.0057E − 5 8.7284E − 4 1E − 3

Table 4: Te imaginary part of the variance error for the solution equation (38) at diferent time points by the proposed method and with
time step ∆t � 0.0001.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Varimag

error 1.9928E − 4 7.0690E − 5 8.4386E − 4 9.5322E − 4 2.7E − 3

Table 5: Te real part of the expectation error for the solution equation (38) for diferent sample sizes and diferent time points by Monte
Carlo simulation and with time step ∆t � 0.01.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Ereal
error 0.0091 0.0058 1.5581E − 4 0.0028 0.0135 S � 104

Ereal
error 0.0011 0.0021 7.6401E − 5 7.1761E − 4 0.0055 S � 105

S represents the sample size.

Table 6:Te imaginary part of expectation error for the solution equation (38) for diferent sample sizes and diferent time points by Monte
Carlo simulation and with time step ∆t � 0.01.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Eimag
error 0.0062 0.009 0.0053 0.0061 0.0019 S � 104

Eimag
error 7.3979E − 4 0.0032 0.0026 0.0016 7.8633E − 4 S � 105

S represents the sample size.

Table 7:Te real part of the variance error for the solution equation (38) for diferent sample sizes and diferent time points by Monte Carlo
simulation and with time step ∆t � 0.01.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Varrealerror 0.0048 0.0066 0.0078 0.0232 0.0369 S � 104

Varrealerror 1.8037E − 4 0.0078 7.372E − 4 0.0029 0.007 S � 105

S represents the ample size.

Table 8:Te imaginary part of the variance error for the solution equation (38) for diferent sample sizes and diferent time points byMonte
Carlo simulation and with time step ∆t � 0.01.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Varimag

error 0.0124 0.0144 4.5566E − 4 0.0269 0.0108 S � 104

Varimag
error 4.6393E − 4 0.017 4.3107E − 5 0.0034 0.002 S � 105

S represents the sample size.
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i
zψ
zt

+ 0.5a
z
2ψ

zx
2 +

z
2ψ

zy
2􏼠 􏼡 + V(x, y, ξ)ψ + λ|ψ|

2ψ � 0,

(43)

where x
→

� (x, y), (x, y) ∈ [− 6π, 6π] × [− 6π, 6π].

ψ0 � f(ξ) sin(x) sin(y),

V(x, y, ξ) � f(ξ)2sin
2
(x)sin2(y) − b,

λ � − 1, a � 1, b � 1.

(44)

Equation (43) has the following analytical solution:

ψexact � f ξ1, ξ2( 􏼁e
− 2it sin(x) sin(y). (45)

In Example 2, we present the summary of our results in
Tables 9–12, which demonstrate the errors in the real and
imaginary parts of the expectation and variance of the
random solution at diferent time points. In addition,
Tables 13–16 display the results obtained through Monte
Carlo simulations for equation (43).

Figure 2(a) illustrates the real and imaginary compo-
nents of the expectation of the approximation solution.
Figure 2(b) presents the real and imaginary parts of the error
in the expectation (top) and variance (bottom) for equation
(43) at T � 2, respectively.

By analyzing the data presented in Tables 1–4 and 9–12,
along with Figures 1 and 2, it becomes evident that the
proposed method achieves spectral accuracy in the context
of the stochastic nonlinear Schrödinger equation with
multivariate Gaussian measure, even in long-time scenarios.
In comparison, Tables 5–8 and 13–16 indicate that Monte
Carlo simulation does not exhibit high accuracy. Even when
the accuracy occasionally reaches spectral accuracy, the
computational cost remains signifcant and the overall ef-
fciency is low.

5.3. Application. Tis section discussed the application of
stochastic Ginzburg–Landau equation of the following
forms:

zu

zt
+

i

2
(β + igτ)

z
2
u

zx
2 + ic|u|

2
u +

1
2

gu � −
1
2
αu, (46)

where τ � 0.01, β � − 1, g � − 1. Te initial condition is

u0 t, x, ξ1, ξ2( 􏼁 � sech ξ1x( 􏼁e
iξ2x

. (47)

Te distribution of random variables (ξ1, ξ2) ∼ N(μ1,
μ2, σ21, σ

2
2, R) is the same as Example 1. For c � 0.1, we use

α � 0.01, α � 1, α � 1.2, and α � 3.
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Figure 1: (a) Plots of the expectation of approximation solution for equation (38) at T � 2. Te red and blue dashed lines represent the real
and imaginary parts of the approximate solution, respectively. (b) Plots of the real and imaginary parts of the errors in the expectation (top)
and variance (bottom), respectively. Te time step is ∆t � 0.0001.

Table 9:Te real part of expectation error for the solution equation (43) at diferent time points by the proposed method and with time step
∆t � 0.000001.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Ereal
error 9.769E − 8 9.9034E − 7 5.0436E − 6 1.013E − 5 1.6847E − 5
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Table 10: Te imaginary part of expectation error for the solution equation (43) at diferent time points by the proposed method and with
time step ∆t � 0.000001.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Eimag
error 4.2669E − 7 1.0061E − 6 6.2788E − 7 3.0115E − 6 5.8374E − 5

Table 11: Te real part of the variance error for the solution equation (43) at diferent time points by the proposed method and with time
step ∆t � 0.000001.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Varrealerror 2.3195E − 5 4.4213E − 5 4.1201E − 6 9.7694E − 5 1.989E − 4

Table 12: Te imaginary part of the variance error for the solution equation (43) at diferent time points by the proposed method and with
time step ∆t � 0.000001.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Varimag

error 1.0554E − 5 1.634E − 5 9.4247E − 5 1.0701E − 4 4.3271E − 4

Table 13:Te real part of expectation error for the solution equation (43) for diferent sample sizes and diferent time points byMonte Carlo
simulation and with time step ∆t � 0.01.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Ereal
error 2.8411E − 4 0.0021 5.3607E − 4 7.0779E − 4 0.0127 S � 104

Ereal
error 6.9489E − 4 3.3865E − 4 2.4584E − 5 2.6083E − 4 0.0042 S � 105

S represents the sample size.

Table 14: Te imaginary part of the expectation error for the solution equation (43) for diferent sample sizes and diferent time points by
Monte Carlo simulation and with time step ∆t � 0.01.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Eimag
error 1.9437E − 4 0.0032 0.0184 0.0015 0.0018 S � 104

Eimag
error 4.754E − 4 5.2741E − 4 8.4158E − 4 5.6993E − 4 5.9161E − 4 S � 105

S represents the sample size.

Table 15:Te real part of the variance error for the solution equation (43) for diferent sample sizes and diferent time points byMonte Carlo
simulation and with time step ∆t � 0.01.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Varrealerror 0.0089 0.0189 0.0261 0.0375 3.3E − 3 S � 104

Varrealerror 0.0026 0.0016 0.0073 0.0025 9.3E − 3 S � 105

S represents the sample size.

Table 16: Te imaginary part of the variance error for the solution equation (43) for diferent sample sizes and diferent time points by
Monte Carlo simulation and with time step ∆t � 0.01.

t t � 0.3 t � 0.5 t � 0.8 t � 1 t � 1.5
Varimag

error 0.0228 0.0414 0.0015 0.0435 9.5616E − 4 S � 104

Varimag
error 0.0068 0.0034 4.2521E − 4 0.0029 0.0027 S � 105

S represents the sample size.
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Figure 2: (a) Plots of the expectation of approximation solution for equation (43) at T � 2. (b) Plots of the real and imaginary parts of the
errors in the expectation (top) and variance (bottom), respectively. Te time step is ∆t � 0.000001.
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Figure 3: Te expectation of amplitude of approximation solution for equation (46) at diferent time points for diferent parameters. Te
time step is ∆t � 0.001. (a–d) Corresponding to the cases where α � 0.01, 0.1, 1.2, and 3, respectively.
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In Figure 3, we present the expectation of the amplitude
of the approximation solution for equation (46) at various
time points, considering diferent parameter values. Spe-
cifcally, Figures 3(a)–3(d) correspond to the cases where α
takes the values of 0.01, 0.1, 1.2, and 3, respectively.

 . Concluding Remarks

We have developed a novel spectral numerical method for
solving the stochastic nonlinear Schrödinger equation
driven by multivariate Gaussian measure. Tis method
demonstrates spectral accuracy in both spatial and random
spaces, even in long-term scenarios. We applied this efcient
and accurate numerical method to investigate the one- and
two-dimensional stochastic NLS equations driven by bi-
variate Gaussian variables. In order to compare the accuracy
and efciency, we employed the Monte Carlo method to
simulate the results of the one- and two-dimensional sto-
chastic NLS equations for diferent sample sizes. Te pro-
posed method outperformed the Monte Carlo method in
terms of calculation accuracy and efciency. In addition, we
utilized the proposed method to calculate the expectation
amplitude at a specifc time for the Ginzburg–Landau
equation. In future work, we plan to extend the proposed
method to establish mapping relationships for other types of
multivariate random variables and perform numerical cal-
culations for stochastic nonlinear Schrödinger equations.

Appendix

A. Tensor Product of Triple
Hermite Polynomials

Hermite polynomials have a generating function [29, 35]

ψ(x, z) � e
− z2/2+xz

� 􏽘
∞

n�0

Pn(x)

n!
z

n
. (A.1)

Te unnormalized Hermite polynomials are as follows:

Pn(x) �
znψ(x, z)

zzn

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�0
. (A.2)

Any three generating functions of Hermite polynomials
are multiplied

ψ(x, σ)ψ(x, z)ψ(x,ω) � e
− σ2/2+xσ

e
− z2/2+xz

e
− ω2/2+xω

� e
zω+zσ+σω

e
x2/2− [(z+ω+σ)− x]2/2

.

(A.3)

Expanding (A.3) into a Taylor series of variable z, ω, and
σ, we have

ψ(x, σ)ψ(x, z)ψ(x,ω) � 􏽘
∞

p�0

(zω)
p

p!
􏽘

∞

q�0

(σz)
q

q!
􏽘

∞

r�0

(σω)
r

r!
􏽘

∞

k�0

Pk(x)

k!
(z + σ + ω)

k

� 􏽘

∞

p�0
􏽘

∞

q�0
􏽘

∞

r�0
􏽘

∞

k�0
􏽘

k

m�0
􏽘

k− m

n�0

Pk(x)

p!q!r!k!

k

m

⎛⎝ ⎞⎠
k − m

n

⎛⎝ ⎞⎠σp+r+k− m− nωq+r+n
z

m+p+q
,

Let ] � k − m − n

� 􏽘
∞

p�0
􏽘

∞

q�0
􏽘

∞

r�0
􏽘

k

m�0
􏽘

k− m

n�0
􏽘

k− m− n

]�0

Pm+n+](x)

p!q!r!m!n!]!
z

m+p+qωq+r+nσp+r+]
.

(A.4)

Let α � m + p + q, β � q + r + n, and c � p + r + ].Ten,
(A.4) can be rewritten as follows:

ψ(x, σ)ψ(x, z)ψ(x,ω) � 􏽘
∞

α�0
􏽘

∞

β�0
􏽘

∞

c�0
􏽘

p≤α∧ c

􏽘
q≤α∧ β

􏽘
r≤β∧ c

Pα+β+c− 2(p+q+r)(x)

p!q!r!(α − p − q)!(β − q − r)!(c − p − r)!
⎛⎝ ⎞⎠z

αωβσc
. (A.5)

Considering (A.1), (A.3), and (A.5), we have
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Pα(x)

α!

Pβ(x)

β!

Pc(x)

c!
� 􏽘

p≤α∧ c

􏽘
q≤α∧ β

􏽘
r≤β∧ c

Pα+β+c− 2(p+q+r)(x)

p!q!r!(α − p − q)!(β − q − r)!(c − p − r)!
. (A.6)

Terefore,

Pα(x)Pβ(x)Pc(x) � 􏽘
p≤α∧ c

􏽘
q≤α∧ β

􏽘
r≤β∧ c

α!β!c!

p!q!r!(α − p − q)!(β − q − r)!(c − p − r)!
Pα+β+c− 2(p+q+r)(x). (A.7)

Consider the relationship between unnormalized Her-
mite polynomials and standard Hermite polynomials,

Hα(x)Hβ(x)Hc(x) � 􏽘
p≤α∧ c

􏽘
q≤α∧ β

􏽘
r≤β∧ c

�����
α!β!c!

􏽰 ��������������������
α + β + c − 2(p + q + r)

􏽰

p!q!r!(α − p − q)!(β − q − r)!(c − p − r)!
Hα+β+c− 2(p+q+r)(x). (A.8)

Denote

B2(α, β, c, p, q, r) �

�����
α!β!c!

􏽰 ��������������������
α + β + c − 2(p + q + r)

􏽰

p!q!r!(α − p − q)!(β − q − r)!(c − p − r)!

�
α

p, q

⎛⎝ ⎞⎠
β

q, r

⎛⎝ ⎞⎠
c

p, r

⎛⎝ ⎞⎠
α + β + c − 2(p + q + r)

α − p − q, β − q − r

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

1/2

,

Hα(x)Hβ(x)Hc(x) � 􏽘
p≤α∧ c

􏽘
q≤α∧ β

􏽘
r≤β∧ c

B2(α, β, c, p, q, r)Hα+β+c− 2(p+q+r)(x),

(A.9)

which completes the proof.

B. Tensor Product of Triple Random Functions

Suppose random functions u, v, andw have the following SG
chaos expansions [29]:

u � 􏽘
α

uαϕα(η),

v � 􏽘
β

vβϕβ(η),

w � 􏽘
c

wcϕc(η),

(B.1)

where α, β, and c are any nonnegative integers, η is a one-
dimensional Gaussian variable. Denote p≤ α∧ c, q≤
α∧ β, r≤ β∧ c.

uvw � 􏽘
α∈J

􏽘
β∈J

􏽘
c∈J

uαvβwcϕα(η)ϕβ(η)ϕc(η) � 􏽘
α∈J

􏽘
β∈J

􏽘
c∈J

uαvβwc 􏽘
p≤α∧ c

􏽘
q≤α∧ β

􏽘
r≤β∧ c

B2(α, β, c, p, q, r)ϕα+β+c− 2(p+q+r)(η).

(B.2)

Denote 􏽥α � α − p − q, 􏽥β � β − q − r, and 􏽥c � c − p − r.
Ten, (B.2) can be rewritten as follows:
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(B.2) � 􏽘

􏽥α∈J

􏽘

􏽥β∈J

􏽘

􏽥c∈J

u􏽥α+p+qv􏽥β+q+r
w􏽥c+p+r

× 􏽘
p

􏽘
q

􏽘
r

��������������������������������������

(􏽥α + p + q)!(􏽥β + q + r)!(􏽥c + p + r)!(􏽥α + 􏽥β + 􏽥c)!

􏽱

p!q!r!􏽥α!􏽥β!􏽥c!
ϕ

􏽥α+􏽥β+􏽥c
(η).

(B.3)

For simplicity, we denote 􏽥α � α, 􏽥β � β, 􏽥c � c, and
θ � α + β + c. Ten, (B.3) is equivalent to

(B.3) � 􏽘
θ

􏽘

θ�􏽥α+􏽥β+􏽥c

uα+p+qvβ+q+rwc+p+r 􏽘
p

􏽘
q

􏽘
r

������������������������������
(α + p + q)!(β + q + r)!(c + p + r)!θ!

􏽰

p!q!r!α!β!c!
ϕθ(η)

� 􏽘
θ

􏽘
p

􏽘
q

􏽘
r

􏽘
θ�α+β+c

C2(θ, p, q, r, α, β, c)uα+p+qvβ+q+rwc+p+r
⎛⎝ ⎞⎠ϕθ(η),

C2(θ, p, q, r, α, β, c) �

������������������������������
(α + p + q)!(β + q + r)!(c + p + r)!θ!

􏽰

p!q!r!α!β!c!

�

θ

α, β
⎛⎝ ⎞⎠

α + p + q

p, q

⎛⎝ ⎞⎠
β + q + r

q, r

⎛⎝ ⎞⎠
c + p + r

p, r

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

1/2

,

(B.4)

which completes the proof.
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D. Plfüger, “Polynomial chaos expansions for dependent
random variables,” Computer Methods in Applied Mechanics
and Engineering, vol. 351, pp. 643–666, 2019.

[15] P.-L. Liu and A. Der Kiureghian, “Multivariate distribution
models with prescribed marginals and covariances,” Proba-
bilistic Engineering Mechanics, vol. 1, no. 2, pp. 105–112, 1986.

[16] M. Rosenblatt, “Remarks on a multivariate transformation,”
Te Annals of Mathematical Statistics, vol. 23, no. 3,
pp. 470–472, 1952.

[17] X. Chen, E.-J. Park, and D. Xiu, “A fexible numerical ap-
proach for quantifcation of epistemic uncertainty,” Journal of
Computational Physics, vol. 240, pp. 211–224, 2013.

[18] J. Jakeman, M. Eldred, and D. Xiu, “Numerical approach for
quantifcation of epistemic uncertainty,” Journal of Compu-
tational Physics, vol. 229, no. 12, pp. 4648–4663, 2010.

[19] D. Xiu and G. E. Karniadakis, “Te wiener-askey polynomial
chaos for stochastic diferential equations,” SIAM Journal on
Scientifc Computing, vol. 24, no. 2, pp. 619–644, 2002.

[20] S. Rahman, “Wiener-hermite polynomial expansion for
multivariate Gaussian probability measures,” Journal of
Mathematical Analysis and Applications, vol. 454, no. 1,
pp. 303–334, 2017.

[21] S. Rahman, “A polynomial chaos expansion in dependent
random variables,” Journal of Mathematical Analysis and
Applications, vol. 464, no. 1, pp. 749–775, 2018.

[22] M. Chevreuil, R. Lebrun, A. Nouy, and P. Rai, “A least-squares
method for sparse low rank approximation of multivariate
functions,” SIAM/ASA Journal on Uncertainty Quantifcation,
vol. 3, no. 1, pp. 897–921, 2015.

[23] A. Doostan and H. Owhadi, “A non-adapted sparse ap-
proximation of pdes with stochastic inputs,” Journal of
Computational Physics, vol. 230, no. 8, pp. 3015–3034, 2011.

[24] J. D. Jakeman, M. S. Eldred, and K. Sargsyan, “Enhancing l1-
minimization estimates of polynomial chaos expansions using
basis selection,” Journal of Computational Physics, vol. 289,
pp. 18–34, 2015.

[25] M. Navarro, J. Witteveen, and J. Blom, “Polynomial chaos
expansion for general multivariate distributions with corre-
lated variables,” 2014, https://arxiv.org/abs/1406.5483.

[26] T. Tang and T. Zhou, “On discrete least-squares projection in
unbounded domain with random evaluations and its appli-
cation to parametric uncertainty quantifcation,” SIAM
Journal on Scientifc Computing, vol. 36, no. 5, pp. A2272–
A2295, 2014.

[27] J. A. Witteveen and H. Bijl, “Modeling arbitrary uncertainties
using gram-schmidt polynomial chaos,” in Proceedings of the
44th AIAA Aerospace sciences meeting and exhibit, p. 896,
Montreal, Canada, August, 2006.

[28] L. Yan, L. Guo, and D. Xiu, “Stochastic collocation algorithms
using l1-minimization,” International Journal for Uncertainty
Quantifcation, vol. 2, pp. 279–293, 2012.

[29] W. Luo, Wiener chaos expansion and numerical solutions of
stochastic partial diferential equations, PHD thesis, California
Institute of Technology, Pasadena, CA, USA, 2006.

[30] D. Xiu, Numerical Methods for Stochastic Computations,
Princeton university press, Princeton, NJ, USA, 2010.

[31] H. Xie, “An efcient and spectral accurate numerical method
for computing SDE driven by multivariate Gaussian vari-
ables,” AIP Advances, vol. 12, p. 7, 2022.

[32] D. Gottlieb and D. Xiu, “Galerkin method for wave equations
with uncertain coefcients,” Communications in Computa-
tional Physics, vol. 3, no. 2, pp. 505–518, 2008.

[33] R. Cheng, L. Wu, C. Pang, and H. Wang, “A fourier collo-
cation method for Schrödinger-Poisson system with perfectly
matched layer,” Communications in Mathematical Sciences,
vol. 20, no. 2, pp. 523–542, 2022.

[34] J. Shen, T. Tang, and L.-L. Wang, Spectral Methods: Algo-
rithms,Analysis and Applications, vol. 41, Springer Science
&Business Media, Berlin, Germany, 2011.

[35] R. Courant and D. Hilbert, Methods of Mathematical Physics:
Partial Diferential Equations, John Wiley &Sons, Hoboken,
NJ, USA, 2008.

Journal of Mathematics 15

https://arxiv.org/abs/1406.5483



