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The law of the iterated logarithm (LIL), which describes the rate of convergence for a convergent lacunary series, was established
by R. Salem and A. Zygmund. This rate is determined based on the variance-like term of the remainder after n terms of the series.
In this article, we investigate a comparable one-sided LIL for sums of signum functions, which also relies on the remainder after n

terms.

1. Introduction

LIL is a fundamental theorem in probability theory that
characterizes the properties displayed by the sums of in-
dependent random variables and can be viewed as a re-
finement of two famous theorems, namely, central limit
theorem (CLT) and law of large numbers (LLN). The LIL
provides a more accurate estimation as compared to the CLT
and LLN in the cases where the fluctuations of the sample
average are anticipated to be small, yet the occurrence of
significant deviations remains possible. The LIL was first
introduced by Russian mathematician Khintchine [1] in
1924 while describing the size of deviation from the expected
mean for Bernoulli’s random variables. In 1929, Kolmo-
gorov [2] extended this result to apply to the sums of in-
dependent random variables. Since then, the LIL has gained
significance as a fundamental theorem and has found ap-
plications in diverse fields of mathematics and statistics.
After the introduction of Kolmogorov’s LIL, various ex-
tensions and generalizations of the LIL have been introduced
in the different fields such as harmonic functions [3],
martingales [4, 5], q-lacunary series, random walks, sto-
chastic processes, etc. Salem and Zygmund [6] introduced an
LIL for the sums of g-lacunary trigonometric series. We
recall that a sequence {n,} is called Hadamard gap condition
if it satisfies g = m;,,/n;>1. A trigonometric series of the

form S(x) = Y7 (a; cosn;x + b; sinn;x) in which #; satisfies
the Hadamard gap condition is known as g-lacunary trig-
onometric series. The LIL formulated by Salem and Zyg-
mund is stated below.

Theorem 1. Suppose that S (0) is g-lacunary series and ny, are
positive integers. Set Bfn =12y" (|ai|2 + Ibilz) and M,, =
max, ., (la;1* + |b;|*)"%. Assume thatlim,, . B,, = co and
M,, satisfies M2 <K, B /log log (e° + B2 for K,, | 0. Then,

S (6)

— <1
<1, 1
\2B loglog B,, M

for almost every 0 in a unit circle T.

lim sup

m—00

We note that the abovementioned theorem is not entirely
analogous to the result introduced by Kolmogorov. In this
direction, Erdds and Gal [7] derived a similar result for
a particular form of g-lacunary series. Eventually, Weiss [8]
succeeded in deriving a similar LIL for a general g-lacunary
series analogous to the LIL introduced by Kolmogorov.

Theorem 2 (M. Weiss). Let S, (0) =Y, (a;cosn0 +b;
sinn;0) be a g-lacunary series and n; be the integers. Set B, =
1230, (> + b [*) and M,,, = max, ., (la;|” + b [,
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Suppose also that lim,_, B, =00 and M,, satisfies
M? <K,,B: /log log (¢° + B2)) for some sequence of numbers
K,, 10. Then,

. S (0)
lim sup = 1, (2)
m—0o 2B loglog B,,

for almost every 0 in the unit circle.

Salem and Zygmund [6] also introduced another LIL for
g-lacunary series, stated as follows:

Theorem 3 (Salem and Zygmund). Let §N (0 =
Y2y (a;cosn,0 + b, sinn,0) withn;,,/n;>q>1and c; = a? +
b} satisfy Y c?<oo. Define By = (1/2Y2,,c)"? and
Cy = max,,lc;|. Assume that B, <oco with C?M <Ky

(E?W/ln In1/By,) for K, approaches to 0 as M approaches to
infinity. Then,

Su (6
lim sup %SL (3)
M—oo 2B,/ Inln1/By,

for almost every 0 in the unit circle.

Hence, it is evident that the LIL introduced by Salem and
Zygmund is applicable to both divergent and convergent q-
lacunary series. For the divergent series, they analyzed the
partial sums and established the extent of their deviation,
which is influenced by the term resembling variance,
denoted as B%. Meanwhile, in the convergent series, they
analyzed the tail sums and derived another LIL that esti-
mates the convergence rate of q-lacunary series, which also
depends on the tail sums of variance-like term B2,. This LIL
is commonly referred to as the “tail” LIL because of the tail
sum component. The abovementioned result represents the
one-sided version of the LIL. The other direction of the
above theorem was estimated by Ghimire and Moore [9],
who obtained the following outcome under the similar
assumptions to those in the previous theorem.

Theorem 4. Assuming the same notation and hypotheses as
stated in the preceding theorem, we have

Sy (0)

\/21~Slzvloglog 1/By

lim sup

N—00

=L (4)

for a.e. 0 € [0,27].

In this article, we derive a similar LIL for the sums of
signum functions. We recall that a general signum function
sgn (t) is defined as follows:

1, ift>0;

sgn(t) :{—1 if£<0 ®

In order to form a sequence, we consider signum
function as u; () = sgn (sin2'nt) on [0, 1). Note that for
i=1,u,(t) =sgn(sin2nt) will give value 1 on [0, 1/2] and
—1on (1/2,1) and similarly the rest of the signum functions
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in the sequence will fluctuate between —1 and 1. Consider
a sequence of real number {b;}, and define

gn () = YL by, (t). Burkholder and Gundy in [10] proved
that
t: Z [9:(t) - gi- 1(t)] = {t: g, (t)converges},

I
—

(6)

where the sets are almost everywhere equal. Note that
L5090 - g1y (OF = X5 (bt (D) = 2B, So the
condition Y b7 < co guarantees the existence of limit of
{9, =YL b}, Moreover, the sequence {g,=Y",
bu;}o>, converges to g = Y - bu;. Here, we derive a LIL for
{9, = YL bu;}2, which is similar to the LIL introduced by
Salem and Zygmund. Our result estimates the rate at which
g, converges to g and the rate at which it converges is
governed by the tail sums of the square function ¥ %°,b7. We
only obtain the one-sided version of LIL and our main result
is as follows:

Theorem 5. Suppose {u;} is a sequence of signum functions
defined by u;(t) =sgn(sin2'nt) and {b;}>, with b; € R
satisfiesy s b} < co. Then,
b (t
lim sup |20 b 0
e \/ZZ:X)rHlb lnln(l/Zz n+1 )

for almost every t € [0, 1).

(7)

2. Preliminaries

During the course of proving our main result, we will require
certain estimates that will be utilized in the proof of the final
outcome. We now prove these estimates.

Lemma 6. Consider {b;};", with b, € R and u;(t) = sgn
(sin 2'7t) where
1, ift>0;

sgn () 2{—1 ift<0 ®

Then, we have the following estimate:

1 n 2 n
Jo exp(yZbiui(t)—% be)dtsl, 9)
i=1 i=1

where y € R.

Proof. Let g, (t) = Y bu; (1), C; (1) = g; (t) - giy (£). We
have g, (¢t) = YiL,C; (1) with go = 0. Let

1 2
h(n) =J W0-1237,C20 g4 _ JO LCO-12Y ], C 0 g,

As n increases, we show that h(n) decreases. For this,

(10)
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h(n+1):J1

0

3

j=0 7 Qi

e

n

3 [EeoEan] |

ezf C-12Y 1 ( 4

C;(t)- 1/22 c2(t Cpppr ()= 1/2C2+1(t)dt

(11)
G (O-12C5, 0 g4

nj

where we used the fact of function g, is constant on # th

generation

interval Q,; =
() = gin (1)

[j/2, j + 1/2™).
—g,(0)=b

Here,

i=1"1

h(n+1) = Z[ YL.G0-10Y]

j=0

on n n
— 2 Zy_: C;(t)- 1/22i=
;) [e 1 1

Jj=0

Thus we have h(n+ 1) <h(n). We next show h(1)<1
For this,

1 2
h(1) = J G0 gy
0

2 2
_ J (O (0-1/2¢} (t)dt+J O (0-12C0) g
[0,1/2] [1/2,1]

2 2
el _ g

(13)

Hence, h(1) <1. Thiswith h(n + 1) <h(n) gives h(n) <1
Thus, we have

re<ici(t) 1 in(t))dtsl
0\ iz 235

1 n 1 n
J exp(zbiui(t)_izbiz>dtﬁl.
0 i=1 i=1

Then, y scaling gives

1 n 2 n
J-o exp<yZbiui(t) —% be)dts 1. (15)
i=1 i=1

O

Lemma 7. Let {b;};°, where b; € R and {u;}"] be a sequence
of signum function defined by u; (t) = sgn(sin 2'nt) where

(14)

Ui (£). Let Q; and Q, be the

C2(t)

c (t)]
Q,

< 22": [eZ:lci - 1/2211@2 ® ]
Q

subinterval of #n th generation interval [j/2", j + 1/2") and

Con () =b, 1, (t) has value b,,,; on Q, and -b,,,; on Q,.
Applying cosh t < e/, we obtain

Ci+1

2
] |: J ebn+1 I/me—l dt + J e‘ b= 1126, dt:|
Qi JQ Q

1
cosh (b, )e Wby

(12)

1/2b2

n+1

-1/26%,,

= h(n).

sgn (t) :{

Then, for all #>0 and for a fixed n, we have

nj

]-a
_1,

ift>0;

16
ift<0. (16)

! 2
{t €l:supy, Z bu; (t) >17} S6e(00711>, (17)
i=n+1 Zi:nﬂbi

where I = [0, 1).

Proof. Define g, (t) = Y

by, (t). Let n be fixed and Q, be
the interval in [0, 1) of length 1/2.. Then

dx,
a0 =] g0 (19)
for all t € Q; with [ >n. Fix t.
e’7|91(t)| = exp(oc J In (x)d(lQll)l)
SLJ o (219, @)) g (19)
|Ql| Q

SM(e""g")(t).

where M (e%9!) denote the Hardy-Littlewood maximal
function of the function e“9!

. Employing the Har-
dy-Littlewood maximal theorem, we have
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Ht € I supye,lg ()] > ’7H =Ht €I supiqq, el 0| >e°"7H

1
Sij %190l gy
e“” 0

Using Lemma 6, we obtain

Il elela Ol El ) gy, < (21)
0

This gives,

Ht € I:sup,,|g(t)|> ;1H exp( Z bz> (22)

Choose a=#/Y% b7 and using Y7 b7 7YX b7, we

< {t el: M(e“|9l|)(t)>em1}l

(20)
2 n 1 ocz " ,
eXP 7; JOeXp a|g, (1)] - ;bi dy
ie.
1 _,72
Ht €1: suppy, Zi:lbi”i(t)' > 11} S6exp(W).
(25)
We note that Zlf’:olbiz =y [(B)bu,] = T g, (6)=
gio (D1
For a fixed n, define
() = { ifl<n; 06
i gt)-g,@), ifl>n

obtain

{ret: suP1<z<nlgz<f>l>’7}|<6exp( 2y le) 2

Continuity property gives,

For this function, the above estimate becomes

. -1
Ht el: suplzllf, (t)| > 71” §6exp<22?_01 00— (t)]2>'

l{t € 1+ sup.a|gi (8] > )| <6exp( 2), (24) (27)
Zz 1b Here,
[fi(t) - fi—l (t)]z = Z [fi(t) - fi—l (f)]z
i=1 i=nt1
= [a:0- 9,00~ g1 (0 +g,00]
’:(’:1 (28)
= Z [9:(t) = g O]
i=n+1
= i b, (t)]? Z b;.
i=n+1 i=n+1
But fl (t)=0 for I<n and f,(t)=g,(t)-9g,(t) 1, ift>0; 30
= 31,1 b; (). This gives sgn () = { L ift<0 G0
2
{tel SUPjsy Z bu; (1) > } S6exp< ;’7 2)
i=n+l Yicnbi Then for all « >0 and a fixed number #n, we have
(29) tel:su i bu,(t)|>a | <12ex <L>
|:| . pm?” i=m+1 o N p ZZ?OnJrlbz
(31)

Lemma 8. Let {b;};°, where b; € R and {u;}"]
of signum function defined by u; (t) = sgn(sin 2'nt) where

be a sequence

where I = [0, 1).
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Proof. Let  C;(t) = i bytty (t) — Y bruay (£) = b, (1).
Here, each C; is independent and symmetric with mean
0 and variance 1. Invoking Levy’s inequality, we have

J n
{t €I: |max;e, ¥ Ci () >0c]> <2 {t €I: ) Ci(p) >oc} . (32)
i=1 i=1
Let M > n Then, we obtain
J n
{t €It |{maxy iy g Y Cary (D) >oc} <2 {t €I: ) CppiCary (D) >oc} . (33)
i=0 i=0
Thus,
Ht € I: |maxCpy (£),Cpy (1) + Copy (1) ., Cp (8) + Copy () + -+ + Cpppy (B)] >0‘}| (34)
<ot € I [Cp () + Cppy (B) + -+ C,py (8)] > o |
We have C; (t) = g; () - gi_, (t) and g (t) = Y5 b, (1);
we obtain
[{t € I+ [maxy_1spsngne (8) = 9, (O] > a}| <2|{t € I+ g0 (8) - 9, (D] > a}. (35)
Employing  sup;|b;|>a implies [|sup;b;|>a or
|supj(—bj)| > o, we have
Ht el: maxMzmznlgM(t) - gm(t)| >oc}| $2|{t €: lgM(t) -9, (t)| > (xH. (36)

Using Lemma 6, we obtain

Ht € It supyrapsn|gn () — g, (D] > ocH <12 exp<m).

2
Ht el: supm2n|gm (t) - gn(t)| >0¢}| S6exp(ooaz). (38)
22i:n+lbi
(37) Let Ay ={x €I:suppmenldu (t) = g, ()| >a} and
A=UXA,. Then A, C A, . Then, continuity property
Using (36) and (37), we obtain implies |A| = lim,,_,|A)|. One can check that



{t € I:sup,.,|lg(t) - g, (t)]> oc} C A, (39)

Ht €I:sup,.,lg(t) - g, (1)]> (x}' <|A|
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where we have g(t) = Y7 bu; (t). Then

= fim [ Aud
. (40)
= Mhm Ht € 12 SUPppaymen| g (D) = g, ()] > oc}'
2
<12 exp(_‘x>
- 22?0n+1b2
This gives
o Using Lemma 8 for a fixed m, we obtain
Ht el: supm2n|g(t) -9 (t)| > oc}' <12 exp(oo—bz) 0 —d?
2) {t el:sup,,, Z bu; (t) >a} < 12(2(2)

(41) i=n+l Zz m+1b

5 (43)

3. Proof of Our Main Result

Consider 6>1 and define stopping times #n,<n,<

-+ <n;--- — 00 as:
> b
n; = min| n: b;<— | (42)
j=n+1 g 01

> b (t)

00
tel:sup,s,

i=n+1

>(1+e¢)

Using Y . b7 < 1/¢, we have

{t €l:sup,,,

>(1+e¢)

Z bu, (t);

i=n+1

Then

25 2 bus()

(o)
tel: SUP,;5,,

i=n+1

So, by Borel-Cantelli Lemma [11] for a.e. t, we have

21n(in ) }
¢

For stopping time #;, this becomes

>(1 +8)\J (lnG’) }

00 2
-
tel:sup,,, bu; ()| > oc} <12el ———
{ x i;l Zz n+1b2
(44)
Choose a = (1 +¢)1/2In(In 6)/6" where &> 0.
21n(ln & ~(1+¢)*In(ln¢
20(1n8) || e 11 1n(00)) (45)
0 9 Zz n+1b
~(1+¢)*In(ln 6
<12exp ( ) ( ) = 12 ! (46)
911/91 (11‘1 6) 1+£) (1+£)
(].n 9) 1+£)2 ; l 1+£)2 (47)
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2 ln(ln Hi)

0

3 by (1) (48)

i=n+1

SUP,;sy, <(1+¢)

for alarge i, with i > N, N being fixed. Clearly, the value of N
is based on t. We fix t and then consider n > ny. We can find
i> N satisfying n; <n<mnj,,. Clearly Y . b7 <1/, But

i i=n;,,+1

ny>n. So Y. bi>1/6"'. Moreover, we have
¥ b7 <1/6'. Therefore
1@
S b; <—. (49)
I
0" i—;11 o

Using this, we have

OZO: biu; (t)| < sup,,,.,, OZO: biu; (t)
i=n+1 i=m+1
<(l1+¢ M
07
261n(1n Gi) (30
=(1+e) gt

<(1+9)\[20 ) bflnln(ﬁ).

i=n+1 i=n+1"i

Hence, for a.e. t € I, we obtain
> b (t
lim sup l217n+1 lul( )|
e \/zzgfnﬂbizlnln(l/z;fnﬂbiz)
Taking limit as 8 — 1, we have
X b (t
11m sup IszrH—l lul( )l
00 \/ZZiO:nJrlbiZlnln( 1/Z?=On+lbi2)
This can be done for all £ >0, we have
> b (t
hm Sl.lp |21—n+1 lul( )| <
e \/22?:n+lbizlnln(l/z;>:on+lbi2)

for a.e. t € 1.

<(1+e)Ve. (51)

<(1+e). (52)

(53)
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