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Te study of magic squares has a long history, and magic squares have been applied to many mathematical felds. In this paper, we
give a complete solution to the existence of normal trimagic squares of all orders 16n. In particular, we obtain a unifed solution for
the normal trimagic square of order 16n for n> 3 by means of set partitions, semibimagic squares, Latin squares, and new product
construction. Since there exist normal trimagic squares of orders 16, 32, and 48, we prove that there exists a normal trimagic
square of order 16n for every positive integer n.

1. Introduction

Magic squares are among the oldest known combinatorial
designs and have been applied to many felds of mathematics
[1–3]. Teir origin can be found in the frst-century book
Da-Dai Liji in China [4]. A magic square of order n, denoted
by MS (n), is an n × n matrix consisting of integers such that
the sum of the entries in each row, each column, and each of
two diagonals is the same number called the magic sum. A
magic square of order n is normal if its entries are n2

consecutive integers, say 0, 1, . . . , n2 − 1.
During this long period of time, many subclasses have

been proposed, such as bimagic squares and trimagic squares.
Let t be a positive integer. A magic square of order n is a t-
multimagic square, denoted by MS (n, t), if it remains magic
when all its entries are replaced by its d-th powers for
d ∈ 1, . . . , t{ }. Usually, a 2-multimagic square is called
a bimagic square and a 3-multimagic square is called a trimagic
square. A lot of work has been done on normal magic squares
and normal multimagic squares; for more details, the in-
terested reader may refer to [5–11] and the references therein.

Next, let us review the history of the study of trimagic
squares. In 1905, Tarry [12] constructed the frst known
normal trimagic square. Its order was 128. Later, smaller

normal trimagic squares were found: order 64 by Cazalas
[13] in 1933, 32 by Benson and Jacoby [14] in 1976, 16
by Chen and Chen ([15], see also [16]) in 2006, and 48
by Chen (see [16]) in 2007. Now, let us switch to the sys-
tematic investigation for the normal trimagic squares of
orders 16n. LetΩ1 � n: 8≤ n≤ 64{ },Ω2 � n: n � n1n2, n1 ≡

n2 (mod 2), n1, n2 ∉ 2, 3, 6{ }}, Ω3 � n: n ≡ 0 (mod 4),{

n≥ 8}, andΩ4 � mn: mn> 64, 8≤m≤ 64,{ m ≡ 2 (mod 4),

n≥ 5, n ≡ 1 (mod 2)}. In 2017, Li et al. [17] proved
that there exists a normal MS (mn, 3) for m ∈ 2l: l≥ 4  and
n ∈ Ω1 ∪Ω2 ∪Ω3 ∪Ω4. Now, a question of interest is this:
Can we construct a normal trimagic square for every order
divisible by 16?

Te main purpose of this paper is to give an afrmative
answer to the preceding question, that is, prove that there
exists a normal trimagic square of order 16n for all positive
integers n. Our construction tools include quasi-normal
trimagic squares, bimagic subset pairs, semibimagic
squares, Latin squares (see Section 2 for these defnitions),
and new product construction.

In this paper, we frst present some related preliminaries
(Section 2), then prove our main results and provide a brief
discussion (Section 3), and fnally give conclusions about the
work (Section 4).
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2. Preliminaries

Tis section presents some related preliminaries which are
used in this paper.

Let Jn be an n × n matrix with the entries being all 1’s and
let In � 0, 1, . . . , n − 1{ }. For integers a and b with a≤ b and
a ≡ b (mod 2), let [a, b]2 denote the set a, a + 2, . . . ,{

b − 2, b}. For an n × n array A, the rows and columns of A are
indexed by In. For any n × n arrayA, we denote bySA the set
of the entries of A. Usually, the (i, j) entry of an array A is
denoted by ai,j. An MS (n, t) A is quasi-normal if SA �

[1 − n2, n2 − 1]2.
For an integer set S, let S � − x: x ∈ S{ }. Let n be an

integer greater than 3 and Sn � (1/2)
4n − 1
k�0 (2k + 1)2. Te

pair of P and Q is called a bimagic subset pair, denoted by
BSP (n), if the following three conditions are satisfed:

(B1) P, Q, P, Q  � [1 − 8n, 8n − 1]2 and |P| � |Q|

� 2n

(B2) x∈Px � x∈Qx� 0
(B3) x∈Px2 � x∈Qx2 � Sn

Using a computer search, we obtain the following
bimagic subset pairs.

Example 1. Set

P4 � 1, − 3, − 13, 15, 21, − 23, − 25, 27{ }, Q4 � 5, − 7, − 9, 11, 17, − 19, − 29, 31{ },

P5 � 1, − 7, 9, 13, − 21, 23, 25, 29, − 35, − 37{ }, Q5 � 3, 5, 11, − 15, 17, − 19, − 27, 31, 33, − 39{ },

P6 � 1, 3, − 5, − 19, − 21, 23, − 31, − 33, − 35, 37, 39, 41{ },

Q6 � 7, − 9, 11, 13, 15, 17, 25, 27, 29, − 43, − 45, − 47{ },

P7 � 1, − 3, − 7, 11, 21, − 23, 25, − 27, − 37, 39, 45, − 47, − 49, 51{ },

Q7 � 5, − 9, − 13, 15, − 17, 19, 29, − 31, − 33, 35, 41, − 43, − 53, 55{ },

(1)

then it is easy to check that the pair of Pn and Qn is a BSP (n)

for n ∈ 4, 5, 6, 7{ }.
Semimagic squares are a generalization of magic squares.

A semimagic square of order n, denoted by SMS (n), is an
n × n matrix consisting of integers such that the sum of the
entries in each row and each column is the same number
called the magic sum. Tus every magic square is a semi-
magic square, but not the converse. Let t be a positive in-
teger. A semimagic square of order n is a semi t-multimagic
square, denoted by SMS (n, t), if it remains semimagic when
all its entries are replaced by its d-th powers for
d ∈ 1, . . . , t{ }. For results of semimultimagic squares, we
refer the reader to [18] and the references therein. Usually,
a semi 2-multimagic square is called a semi-bimagic square.
An SMS (n, t) is also called a t-multimagic rectangle in [18].
A semibimagic square especially is called a bimagic square
rectangle. Terefore, semimultimagic squares defned in this
paper are special subclasses of multimagic rectangles defned
in [18].

Based on the literature [6], we write A∗d � (ad
i,j) for any

positive integer d. We call the matrix A consisting of distinct
integers self-complementary if S− A � SA.

Let A, B, C, and D be integer matrices of order 4n. We
call the tuple (A, B, C, D) an extendable tuple of order 4n,
denoted by ET (4n), if the following conditions are satisfed:

(E1) SA ∪SB ∪SC ∪SD � [1 − (8n)2, (8n)2− 1]2;
(E2) A, B, C, and D are self-complementary and each
of their diagonals consists of opposite numbers;
(E3) A, B, C, and D are MS (4n) s with magic sum 0,
B∗2 and C∗2 are SMS (4n) s with magic sum
2(64n2+1)Sn, and A∗2 and D∗2 are MS (4n) s with
magic sum 2(64n2+1)Sn.

Te following defnition is from [11]. Let T be an n-set.
A diagonal Latin square of order n over T, denoted by DLS

(n), is an n × n array such that the set of the entries in each
row, each column, and each of two diagonals is T. Two
DLS (n) s are called orthogonal if each symbol in the frst
square meets each symbol in the second square exactly
once when they are superposed. In this paper, we need the
following.

Lemma 2 (see Abel et al. [19]). Two orthogonal diagonal
Latin squares of order n exist if and only if n ∉ 2, 3, 6{ }.

Using the literature [20], we give the following defni-
tion. An n × n array W with the entries in an n-set T is
a balanced square if each element of T appears n times in W.
Two balanced squares are called orthogonal if each symbol in
the frst square meets each symbol in the second square
exactly once when they are superposed.

For an integer set T and an integer x, denote
x + t: t ∈ T{ } by x + T.

3. Results and Discussion

In this section, frst we shall show that a normalMS (n, t) can
be obtained by constructing a quasi-normal MS (n, t), then
construct bimagic subset pairs and semibimagic squares,
next use new product construction to get a quasi-normal MS
(16n, 3) for n> 3 and prove our main theorem, and fnally
give a generalization.

3.1. A Transformation. For a normal MS (n, t) A, if the
smallest entry integer is s, then it is readily verifed that A −

sJn is a normal MS (n, t) over In2 . Furthermore, it is also
readily verifed that 2A − (n2 − 1 + 2s)Jn is a quasi-normal
MS (n, t) over [1 − n2, n2 − 1]2. Obviously, if B is a quasi-
normal MS (n, t), then (1/2)(B + (n2 − 1)Jn) is a normal
MS (n, t) over In2 . Based on the above observation, we have
the following.
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Lemma 3. Let n and t be two positive integers. If there is
a quasi-normal MS (n, t) over [1 − n2, n2 − 1]2, then there is
a normal MS (n, t) over In2 .

Terefore, we reduce the problem for the construction of
a normal MS (n, t) to the problem for the construction of
a quasi-normal MS (n, t).

3.2. Construction of Bimagic Subset Pairs. In this section, we
shall prove the following core result.

Lemma 4. Tere exists a BSP (n) for n≥ 4.

Proof. Let v ∈ I4 and u be a positive integer. Now, we prove
the statementPv(u). Tere exists a BSP (4u + v) for u≥ 1 by
induction. Te base case Pv(1) is obviously true by
Example 1.

For the induction step, let w be a positive integer and
k � 4w + v and assume that Pv(w) is true; that is, there
exists a BSP (k), Pk, and Qk, satisfying the following
conditions:

B1(  Pk, Qk, Pk, Qk  � [1 − 8k, 8k − 1]2,

Pk


 � Qk


 � 2k,

B2(  
x∈Pk

x � 
x∈Qk

x� 0,

B3(  
x∈Pk

x
2

� 
x∈Qk

x
2

� Sk.

(2)

Let m � k + 4. We want to show that then Pv(w + 1) is
true; that is, there exists a BSP (m), Pm, and Qm, satisfying
the following conditions:

B4(  Pm, Qm, Pm, Qm  � [1 − 8m, 8m − 1]2,

Pm


 � Qm


 � 2m,

B5(  
x∈Pm

x � 
x∈Qm

x � 0,

B6(  
x∈Pm

x
2

� 
x∈Qm

x
2

� Sm.

(3)

Let

P
∗

� 8k + 1, − 8k − 3, − 8k − 13, 8k + 15, 8k + 21, − 8k − 23, − 8k − 25, 8k + 27{ },

Q
∗

� 8k + 5, − 8k − 7, − 8k − 9, 8k + 11, 8k + 17, − 8k − 19, − 8k − 29, 8k + 31{ }.
(4)

Ten, it is easy to check that

P
∗ ∪Q
∗ ∪P
∗ ∪Q
∗

� [1 − 8m, − 1 − 8k]2 ∪ [8k + 1, 8m − 1]2,


l∈P∗

l � 
l∈Q∗

l � 0,


l∈P∗

l
2

� 
l∈Q∗

l
2

� 512k
2

+ 2048k + 2728

�
1
2



4m− 1

l�4k

(2l + 1)
2
.

(5)

Clearly, we have
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[1 − 8m, 8m − 1]2 � [1 − 8m, − 1 − 8k]2 ∪ [1 − 8k, 8k − 1]2 ∪ [8k + 1, 8m − 1]2

� [1 − 8k, 8k − 1]2 ∪ [1 − 8m, − 1 − 8k]2 ∪ [8k + 1, 8m − 1]2( 

� Pk ∪Qk ∪Pk ∪Qk( ∪ P
∗ ∪Q
∗ ∪P
∗ ∪Q
∗

 

� Pk ∪P
∗

( ∪ Qk ∪Q
∗

( ∪ Pk ∪P
∗

 ∪ Qk ∪Q
∗

 .

(6)

By our induction hypothesis (B2), we get


l∈Pk ∪P∗

l � 
l∈Pk

l + 
l∈P∗

l

� 0 + 0 � 0,


l∈Qk ∪Q∗

l � 
l∈Qk

l + 
l∈Q∗

l

� 0 + 0 � 0.

(7)

By our induction hypothesis (B3), we obtain


l∈Pk ∪P∗

l
2

� 
l∈Pk

l
2

+ 
l∈P∗

l
2

�
1
2



4k− 1

l�0
(2l + 1)

2
+

1
2



4m− 1

l�4k

(2l + 1)
2

�
1
2



4m− 1

l�0
(2l + 1)

2
� Sm,


l∈Qk ∪Q∗

l
2

� 
l∈Qk

l
2

+ 
l∈Q∗

l
2

�
1
2



4k− 1

l�0
(2l + 1)

2
+

1
2



4m− 1

l�4k

(2l + 1)
2

� Sm.

(8)

Taking Pm � Pk ∪P∗ and Qm � Qk ∪Q∗, from the in-
duction hypotheses (B1), (B2), and (B3), we see that the
conditions (B4), (B5), and (B6) hold; in other words, the
statement Pv(w + 1) is true. Tus, assuming Pv(w) is true,
it follows that Pv(w + 1) is true. For v ∈ I4, by induction,
Pv(u) is true for u≥ 1. In summary, there exists a BSP (n)

for n≥ 4. □

3.3.Construction of ExtendableTuples (Semibimagic Squares).
In this section, we shall construct the building blocks
forming quasi-normal trimagic squares by taking advantage
of extendable tuples consisting of semibimagic squares. We
shall take advantage of construction methods for quasi-
normal MS (4n, 2) s introduced by Pan and Huang [21],
that is, combine the existence of a pair of orthogonal di-
agonal Latin squares of order 2n such that n≥ 4 with a BSP
(n), to construct such an ET (4n). Now, we state the
following.

Lemma 5. Tere exists an extendable tuple of order 4n for
n≥ 4.

Proof. Let k∗ denote 4n − 1− k for k ∈ I4n and let
δk � (− 1)⌊k/n⌋ for k ∈ I2n. Let the pair of P and Q be a BSP
(n) and (L, R) ∈ (P, P), (P, Q), (Q, P), (Q, Q){ }. Suppose
that E and F are orthogonal diagonal Latin squares over L

and R, respectively. Write E � (ei,j) and F � (fi,j). If L � R,
we suppose that ek,k � f2n− 1− k,2n− 1− k for k ∈ I2n. Defne
4n×4n matrices G and H by

gi,j gi,j∗

gi∗,j gi∗ ,j∗

⎛⎝ ⎞⎠ �
ei,j ei,j

− ei,j − ei,j

⎛⎝ ⎞⎠,

hi,j hi,j∗

hi∗,j hi∗ ,j∗

⎛⎝ ⎞⎠ �
δjfi,j − δjfi,j

δjfi,j − δjfi,j

⎛⎝ ⎞⎠, i, j ∈ I2n.

(9)

When (L, R) � (P, P), denote G + 8nH by A; when
(L, R) � (P, Q), denote G + 8nH by B; when (L, R) � (Q, P),
denote G + 8nH by C; when (L, R) � (Q, Q), denote
G + 8nH by D. Let W ∈ A, B, C, D{ }. Next, we shall prove
that the square tuple (A, B, C, D) is an ET (4n).

First, we prove that A, B, C, and D satisfy (E1). Since E

and F are orthogonal, αE and βF are orthogonal, where
(α, β) ∈ (1, − 1), (− 1, 1), (− 1, − 1){ }. We have

gu,v, hu,v : u, v ∈ I4n  � 
i,j∈I2n

gi,j, hi,j , gi,j∗ , hi,j∗ , gi∗ ,j, hi∗ ,j , gi∗,j∗ , hi∗ ,j∗  

� 
i,j∈I2n

ei,j, δjfi,j , ei,j, − δjfi,j , − ei,j, δjfi,j , − ei,j, − δjfi,j  

� 
i,j∈I2n

ei,j, fi,j , ei,j, − fi,j , − ei,j, fi,j , − ei,j, − fi,j  

� (L × R)∪ (L × R)∪ (L × R)∪ (L × R) � (L∪ L) ×(R∪R).

(10)

Terefore, we obtain
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SA ∪SB ∪SC ∪SD

� x + 8ny: (x, y) ∈ (P∪P) ×(P∪P) ∪ x + 8ny: (x, y) ∈ (P∪P) ×(Q∪Q) 

∪ x + 8ny: (x, y) ∈ (Q∪Q) ×(P∪P) ∪ x + 8ny: (x, y) ∈ (Q∪Q) ×(Q∪Q) 

� x + 8ny: (x, y) ∈ (P∪P∪Q∪Q) ×(P∪P∪Q∪Q) 

� x + 8ny: (x, y) ∈ [1 − 8n, 8n − 1]2 ×[1 − 8n, 8n − 1]2 

� 1 − (8n)
2
, (8n)

2
− 1 2.

(11)

Next, we prove that A, B, C, and D satisfy (E2). Since
SA ∪SB ∪SC ∪SD � [1 − (8n)2, (8n)2− 1]2, we see at once
that W consists of (4n)2 distinct integers. From (9), for
i, j ∈ I2n, we have

wi,j � gi,j + 8nhi,j

� ei,j + 8nδjfi,j,

wi∗ ,j∗ � gi∗ ,j∗ + 8nhi∗,j∗

� − ei,j − 8nδjfi,j,

wi,j∗ � gi,j∗ + 8nhi,j∗

� ei,j − 8nδjfi,j,

wi∗,j � gi∗ ,j + 8nhi∗ ,j

� − ei,j + 8nδjfi,j.

(12)

Hence, the square W is self-complementary and each of
two diagonals consists of opposite numbers. Since
W ∈ A, B, C, D{ }, we prove that A, B, C, and D are self-
complementary and each of their diagonals consists of
opposite numbers.

Now, we prove that A, B, C, and D satisfy (E3). From
(9), for i ∈ I2n, we have



4n− 1

v�0
wi,v � 

j∈I2n

wi,j + 
j∈I2n

wi,j∗

� 
j∈I2n

gi,j + 8nhi,j  + 
j∈I2n

gi,j∗ + 8nhi,j∗ 

� 
j∈I2n

ei,j + 8nδjfi,j  + 
j∈I2n

ei,j − 8nδjfi,j 

� 2 
j∈I2n

ei,j � 2 
x∈L

x � 0,



4n− 1

v�0
wi∗,v � 

j∈I2n

wi∗ ,j + 
j∈I2n

wi∗,j∗

� 
j∈I2n

gi∗ ,j + 8nhi∗,j  + 
j∈I2n

gi∗,j∗ + 8nhi∗ ,j∗ 

� 
j∈I2n

− ei,j + 8nδjfi,j  + 
j∈I2n

− ei,j − 8nδjfi,j 

� − 2 
j∈I2n

ei,j

� − 2 
x∈L

x � 0.

(13)

Similarly, for j ∈ I2n, we have



4n− 1

u�0
wu,j � 0,



4n− 1

u�0
wu,j∗ � 0.

(14)

Noting that each of two diagonals of W consists of
opposite numbers, we know that W is an MS (4n) with
magic sum 0. Terefore, we prove that A, B, C, and D are
four MS (4n) s with magic sum 0.

Again, from (9), for i ∈ I2n, we have



4n− 1

v�0
w

2
i,v � 

j∈I2n

w
2
i,j + 

j∈I2n

w
2
i,j∗

� 
j∈I2n

gi,j + 8nhi,j 
2

+ 
j∈I2n

gi,j∗ + 8nhi,j∗ 
2

� 
j∈I2n

ei,j + 8nδjfi,j 
2

+ 
j∈I2n

ei,j − 8nδjfi,j 
2

� 
j∈I2n

e
2
i,j + 16nδjei,jfi,j + 64n

2
f
2
i,j 

+ 
j∈I2n

e
2
i,j − 16nδjei,jfi,j + 64n

2
f
2
i,j 

� 2 
j∈I2n

e
2
i,j+128n

2


j∈I2n

f
2
i,j

� 2 
x∈L

x
2
+128n

2

y∈R

y
2

� 2 64n
2

+ 1 Sn,



4n− 1

v�0
w

2
i∗ ,v� 2 64n

2
+ 1 Sn.

(15)

Similarly, for j ∈ I2n, we have



4n− 1

u�0
w

2
u,j � 2 64n

2
+ 1 Sn,



4n− 1

u�0
w

2
u,j∗ � 2 64n

2
+ 1 Sn.

(16)

Te above results show that W∗2 is an SMS (4n) with
magic sum 2(64n2 + 1)Sn. Terefore, we prove that A∗2, B∗2,
C∗2, and D∗2 are four SMS (4n) s with magic sum
2(64n2 + 1)Sn.
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Further, for L � R, we shall show that the sum of the
entries in each of two diagonals of W∗2 is 2(64n2 + 1)Sn. We
have



4n− 1

u�0
w

2
u,u � 

2n− 1

i�0
ei,i + 8nδifi,i 

2
+ − ei,i − 8nδifi,i 

2
 

� 2 
2n− 1

i�0
e
2
i,i + 16nδiei,ifi,i + 64n

2
f
2
i,i 

� 2 
2n− 1

i�0
e
2
i,i + 128n

2


2n− 1

i�0
f
2
i,i + 32n 

2n− 1

i�0
δiei,ifi,i

� 2 64n
2

+ 1 Sn + 32n 
n− 1

i�0
δiei,ifi,i + δ2n− 1− ie2n− 1− i,2n− 1− if2n− 1− i,2n− 1− i 

� 2 64n
2

+ 1 Sn + 32n 
n− 1

i�0
ei,ie2n− 1− i,2n− 1− i − e2n− 1− i,2n− 1− iei,i 

� 2 64n
2

+ 1 Sn,



4n− 1

u�0
w

2
u,u∗ � 

2n− 1

i�0
ei,i − 8nδifi,i 

2
+ − ei,i + 8nδifi,i 

2
 

� 2 
2n− 1

i�0
e
2
i,i + 128n

2


2n− 1

i�0
f
2
i,i − 32n 

2n− 1

i�0
δiei,ifi,i

� 2 64n
2

+ 1 Sn.

(17)

Hence, A∗2 and D∗2 are MS (4n) s with magic sum
2(64n2 + 1)Sn. □

3.4. New Product Construction and Proof of Main Teorem.
In this section, using an ET (4n) and a new product con-
struction, we shall give a unifed construction of all quasi-
normal MS (16n, 3) s for n≥ 4 and prove our main theorem.

Lemma 6. If there exists an ET (4n), then there exists
a quasi-normal MS (16n, 3).

Proof. Let (A, B, C, D) be an ET (4n), and let

E �

− 3 1 3 − 1

3 − 1 − 3 1

− 1 3 1 − 3

1 − 3 − 1 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

F � Fu,v 4×4

�

A B − B − A

C D − D − C

− C − D D C

− A − B B A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

G � (8n)
2
E⊗ J4n + F,

(18)

where E⊗ J4n is the Kronecker product of E and J4n, that is,
E⊗ J4n � (ei,jJ4n). Set G � (gi,j) (i, j ∈ I16n). Write Fu,v �

(f(u,v)
r,s ), and then we have

gi,j � (8n)
2
eu,v + f

(u,v)
r,s ,

i � 4nu + r,

j � 4nv + s, u, v ∈ I4, r, s ∈ I4n.

(19)

In the following, we prove that G is a quasi-normal
MS (16n, 3).

First, we shall prove that G is quasi-normal. Noting that
S− A � SA, S− B � SB, S− C � SC, and S− D � SD, we get
a special array F∗ as follows:

F
∗

�

SA SB S− B S− A

SC SD S− D S− C

S− C S− D SD SC

S− A S− B SB SA

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

SA SB SB SA

SC SD SD SC

SC SD SD SC

SA SB SB SA

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(20)

Terefore, F∗ is an array of order 4 over the symbol set
SA,SB,SC,SD , that is, SF∗. Obviously, E and F∗ are
both balanced squares, and E and F∗ are orthogonal.
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Terefore, noting that SF � SA ∪SB ∪SC ∪SD, for
α ∈ − 3, − 1, 1, 3{ }, we obtain

(8n)
2
eu,v + f

(u,v)
r,s : eu,v � α, r, s ∈ I4n, u, v ∈ I4 

� α(8n)
2

+ SA ∪ α(8n)
2

+ SB ∪ α(8n)
2

+ SC ∪ α(8n)
2

+ SD 

� α(8n)
2

+ SA ∪SB ∪SC ∪SD( 

� α(8n)
2

+ SF � α(8n)
2

+ 1 − (8n)
2
, (8n)

2
− 1 2

� 1 + (α − 1)(8n)
2
, (α+ 1)(8n)

2
− 1 2.

(21)

It follows that

gi,j: i, j ∈ I16n  � ∪
α∈ − 3,− 1,1,3{ }

1 + (α− 1)(8n)
2
, (α+ 1)(8n)

2
− 1 2

� 1 − (16n)
2
, (16n)

2
− 1 2,

(22)

which means that G is quasi-normal.
Now, we show that G is a magic square. Noting that E is

a DLS(4) over − 3, − 1, 1, 3{ } and ±A, ±B, ±C and ±D are
magic squares with magic sum 0, for i ∈ I16n, we have



16n− 1

j�0
gi,j � (8n)

2


4n− 1

s�0


3

v�0
eu,v + 

3

v�0


4n− 1

s�0
f

(u,v)
r,s

� (8n)
2

× 4n × 0 + 4 × 0 � 0.

(23)

Similarly, one can prove that



16n− 1

i�0
gi,j � 0, j ∈ I16n,



16n− 1

i�0
gi,i � 0,



16n− 1

i�0
gi,16n− 1− i � 0.

(24)

Next, we show that G∗2 is a magic square. Let
Tn� 2(64n2+1)Sn. Noting that E∗2 is a magic square with
magic sum 20, matrices (±A)∗2 and (±D)∗2 are magic
squares with magic sum Tn, and (±B)∗2 and (±C)∗2 are
semimagic squares withmagic sumTn, for i ∈ I16n, we obtain



16n− 1

j�0
h
2
i,j � (8n)

4


4n− 1

s�0


3

v�0
e
2
u,v + 2(8n)

2


3

v�0
eu,v 

4n− 1

s�0
f

(u,v)
r,s

+ 
3

v�0


4n− 1

s�0
f

(u,v)
r,s 

2

� (8n)
4

×(4n) × 20 + 2(8n)
2

× 0 × 0 + 4 × Tn

� (8n)
4

× 80n + 4Tn.

(25)

Write T � (8n)4 × 80n + 4Tn. Similarly, one can prove that



16n− 1

i�0
h
2
i,j � T, j ∈ I16n,



16n− 1

i�0
h
2
i,i � T,



16n− 1

i�0
h
2
i,16n− 1− i � T.

(26)

Terefore, G∗2 is a magic square; that is, G is a quasi-
normal bimagic square.

Finally, we show that G∗3 is a magic square. Noting that
E∗3 is a magic square with magic sum 0 and each column of
F consists of opposite numbers, for i ∈ I16n, we obtain
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16n− 1

j�0
g
3
i,j � (8n)

6


4n− 1

s�0


3

v�0
e
3
u,v+3(8n)

4


3

v�0
e
2
u,v 

4n− 1

s�0
f

(u,v)
r,s

+ 3(8n)
2



3

v�0
eu,v 

4n− 1

s�0
f

(u,v)
r,s 

2
+ 

3

v�0


4n− 1

s�0
f

(u,v)
r,s 

3

� (8n)
6

×(4n) × 0 + 3(8n)
4

× 20 × 0 + 3(8n)
2

× 0× Tn + 
3

v�0


4n− 1

s�0
f

(u,v)
r,s 

3

� 
3

v�0


4n− 1

s�0
f

(u,v)
r,s 

3
� 0.

(27)

Similarly, one can prove that



16n− 1

i�0
g
3
i,j � 0, j ∈ I16n,



16n− 1

i�0
g
3
i,i � 0,



16n− 1

i�0
g
3
i,16n− 1− i � 0.

(28)

Terefore, G∗3 is magic; that is, G is a quasi-normal
trimagic square.

We are now in a position to prove the main result. □

Theorem  . Tere exists a normalMS (16n, 3) for all positive
integers n.

Proof. For n ∈ 1, 2, 3{ }, by Benson and Jacoby [14], Chen
and Chen (see [15]; see also [16]), and Chen (see [16]), there
exists a normal MS (16n, 3). For every positive integer n

greater than 3, by Lemma 4, there exists a BSP (2n); hence,
from Lemma 5, there exists an ET (4n), and fnally using
Lemma 6, there exists a quasi-normal MS (16n, 3); therefore,
by Lemma 3, there exists a normal MS (16n, 3). □

3.5. Discussion. Our methods can be generalized. Let n, d,
and t be three positive integers and A, B, C, and D be integer
matrices of order 4n. Set T4n � [1 − (8n)2, (8n)2− 1]2 and
S4n,d � 1/8nx∈T4n

xd. We call the tuple (A, B, C, D)

a (2t + 1)-extendable tuple of order 4n, denoted by ET
(4n, 2t + 1), if the following conditions are satisfed:

(E1′)SA ∪SB ∪SC ∪SD � T4n.
(E2′) A, B, C, and D are self-complementary.
(E3′) A∗d, B∗d, C∗d, and D∗d are SMS (4n) s with magic
sum S4n,d for d � 1, . . . , 2t, and the sums of entries of
the left main diagonal of A∗d and D∗d are S4n,d for
d� 1, . . . , 2t + 1.

Similar to the proof of Lemma 6, we can prove that the
following conclusion: if there exists an ET (4n, 2t + 1), then
there exists a quasi-normal MS (16n, 2t + 1). Terefore, by
Lemma 3, if there exists an ET (4n, 2t + 1), then there exists
a normal MS (16n, 2t + 1).

4. Conclusion

In the paper, we reduce the problem for the construction of
a normal t-multimagic square of order n to the problem for
the construction of a quasi-normal t-multimagic square of
order n and give a complete solution to the existence of
normal trimagic squares of all orders 16n with the help of
many other combinatorial confgures, such as set partitions,
bimagic subset pairs, semibimagic squares, Latin squares,
and classical product construction. More precisely, we prove
that there exists a normal trimagic square of order 16n for all
positive integers n. Meanwhile, the concept of the extendable
tuple and the conclusion of Lemma 6 are generalized to the
case of (2t + 1)-th power.
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