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In this study, we consider timelike revolution hypersurfaces of constant ratio in Minkowski space-time. At frst, we exhibit the
representations of revolution hypersurfaces given by three diferent forms.Ten, we yield the conditions for such hypersurfaces to
correspond to constant ratio surface. As a result of these conditions, we present the position vectors of constant ratio timelike
rotational hypersurfaces in IE4

1.

1. Introduction

Te concept of constant ratio submanifolds was frst dis-
cussed by Chen in 2001, and then many researchers eval-
uated this concept on curves and surfaces from diferent
perspectives [1–6].

Let S: ψ(u, v, w): (u, v, w) ∈ D(D ⊂ E3) be a hypersur-
face in Minkowski 4–space. Te parameterization of the
hypersurface can be separated into tangent component and
normal component as

ψ � ψT
+ ψN

. (1)

Te name “constant ratio” comes from the ratio of this
tangent component and the normal component. Denoting
the orthonormal frame σ1, σ2, σ3, σ4  and the distance
function ρ � ‖ψ‖, the gradient of ρ is known as

grad(ρ) � 
4

k�1
σk(ρ)σk. (2)

Moreover, by the use of

σk(ρ) �
g σk,ψ( 

‖ψ‖
, (3)

equation (2) becomes

grad(ρ) � 
4

k�1

g σk,ψ( 

‖ψ‖
σk. (4)

Here, g indicates the Lorentzian metric in IE4
1. Hence,

the norm of gradient function is congruent to the equality

‖grad(ρ)‖
2

� 
4

k�1

g σk,ψ( ( 
2

‖ψ‖
2 . (5)

If this relation is equal to a positive constant, then related
surface is called as constant ratio surface, i.e.,

‖grad(ρ)‖ � k, . . . k ∈ IR+
. (6)

Revolution surface that has many applications in mul-
tidisciplinary sciences are also used theoretically in geometry
with the forms catenoid, tube surface, canal surface, ruled,
and developable surface. Some of them have characteristic
features as being minimal (catenoid) and being fat (de-
velopable surface) [7–9].

In the present work, we evaluate the timelike constant
ratio hypersurfaces of revolution in four-dimensional
Minkowski space. Firstly, we present the three types of
parameterizations of rotational hypersurfaces. Ten, we
yield the conditions for them to become constant ratio
surface. We classify these types of hypersurfaces with respect
to satisfying ‖grad(ρ)‖ � 0,‖grad(ρ)‖ � 1, and ‖grad(ρ)‖ � k

[1, 2].
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2. Preliminaries

In Minkowski space-time, the Lorentzian metric is given by

g(u, v) � − u1v1 + u2v2 + u3v3 + u4v4, (7)

and the vector product is known as

u × v × w �

− σ1 σ2 σ3 σ4
u1 u2 u3 u4

v1 v2 v3 v4

w1 w2 w3 w4





, (8)

where u � (u1, u2, u3, u4), v � (v1, v2, v3, v4), and w �

(w1, w2, w3, w4).
A vector u in IE4

1 is called as timelike, null, or spacelike
with respect to satisfying g(u, u)< 0, g(u, u) � 0, or
g(u, u)> 0, respectively. Also, the norm of this vector is
presented by

‖u‖ �

�������

|g(u, u)|



. (9)

In Minkowski space-time, a hypersurface

ψ(u, v, w) � ψ1(u, v, w),ψ2(u, v, w),ψ3(u, v, w),ψ4(u, v, w)( ,

(10)

is named as timelike (spacelike), based on its unit normal
vector (or Gauss map) being spacelike (timelike), and the
normal vector feld is calculated by

N �
ψu × ψv × ψw

ψu × ψv × ψw

����
����
. (11)

Te matrix that corresponds to the frst fundamental
form is [10]

I �

E F A

F G B

A B C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (12)

where the coefcients are

E � g ψu,ψu( , F � g ψu,ψv( , G � g ψv,ψv( ,

A � g ψu,ψw( , B � g ψv,ψw( , C � g ψw,ψw( .
(13)

For a timelike hypersurface, the coefcient E, G, or C is
negative defnite.

In four-dimensional Minkowski space, with the help of
spacelike, timelike, and lightlike axis spanned by (0, 0, 0, 1),
(1, 0, 0, 0), and (1, 1, 0, 0), the three rotation matrices are
given by [11]

R1 �

cosh v coshw sinh v coshw sinhw 0

sinh v cosh v 0 0

cosh v sinhw sinh v sinhw coshw 0

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R2 �

1 0 0 0

0 cosw − sin v sinw − cos v sinw

0 0 cos v − sin v

0 sinw sin v cosw cos v cosw

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R3 �

v
2

+ w
2

2
+ 1 −

v
2

+ w
2

2
v w

v
2

+ w
2

2
1 −

v
2

+ w
2

2
v w

v − v 1 0

w − w 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(14)

3. Hypersurfaces of Constant Ratio in
Four-Dimensional Minkowski Space

Defnition 1. Let S: ψ(u, v, w): (u, v, w) ∈ D(D ⊂ E3) be
a hypersurface inMinkowski space-time. In case of the norm
of grad(ρ) being positive real constant, S is said to be
constant ratio surface:

‖grad(ρ)‖ � k, . . . k ∈ IR. (15)

As it can be understood from the defnition, satisfying
the condition ‖grad(ρ)‖ � k means that

ψT
����

���� � k‖ψ‖. (16)

By the use of (16) and the inequality ‖ψT‖≤ ‖ψ‖, we can
say k≤ 1.

Let σ1, σ2, σ3, σ4  be the orthonormal frame in
IE4

1. σ1 can be considered as parallel to ψT. Terefore, the
following relations can be written:
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ψ � ψT
+ ψN

,

ψT
� aσ1,

ψN
� bσ4,

(17)

where a and b are diferentiable functions.
In case the hypersurface is of constant ratio, we get

ψT
����

���� � k‖ψ‖. (18)

Terefore,

a � k‖ψ‖,

b �

�����

1 − k
2



‖ψ‖.

(19)

3.1. Timelike Revolution Hypersurfaces of Type I

Defnition 2. Let r be a smooth function and C: I ⊂ IR→ π
be a curve on a plane parameterized by C(u) � (u, 0, 0, r(u))

in IE4
1. Te surface S formed by the rotation of the curve C

around the spacelike axis (0, 0, 0, 1) is called as revolution
hypersurface of type I. Terefore, with the help of the matrix
R1, the parameterization of S is given by

ψ(u, v, w) � (u cosh v coshw, u sinh v, u cosh v sinhw, r(u)).

(20)

Te tangent vector felds are

ψu � cosh v coshw, sinh v, cosh v sinhw, r′(u)( , (21)

ψv � (u sinh v coshw, u cosh v, u sinh v sinhw, 0), (22)

ψw � (u cosh v sinhw, 0, u cosh v coshw, 0). (23)

Using vector product (11), the unit normal vector is
calculated by

N � −
1

�������

1 − r′( 
2

 r′ cosh v coshw, r′ sinh v, r′ cosh v sinhw, 1( ,

(24)

where r � r(u). Since we suppose the surface is timelike,
1 − (r′)2 > 0. Let the frst unit tangent vector σ1 be parallel
to ψT and timelike ((σ1, σ1) is negative defnite). Ten, by
the use of (9) and (21), we write

σ1 �
1

�������

1 − r′( 
2

 cosh v coshw, sinh v, cosh v sinhw, r′(u)( ,

(25)

and denote σ4 � N. With the help of the relation

ψ � aσ1 + bσ4, (26)

we get

u �
a − br′
�������

1 − r′( 
2

 ,

r �
ar′ − b
�������

1 − r′( 
2

 .

(27)

Tus, the functions a and b are

a �
u − r′(u)r(u)

����������

1 − r′(u)( 
2

 ,

b �
r′(u)u − r(u)

����������

1 − r′(u)( 
2

 .

(28)

3.2. Timelike Revolution Hypersurfaces of Type II

Defnition 3. Let r be a smooth function and C: I ⊂ IR→ π
be a curve on a plane parameterized by C(u) � (r(u), 0, 0, u)

in IE4
1. Te surface S formed by the rotation of the curve C

around the timelike axis (1, 0, 0, 0) is called as revolution
hypersurface of type II.Terefore, with the help of thematrix
R2, the parameterization of S is given by

ψ(u, v, w) � (r(u), − u cos v sinw, − u sin v, u cos v cosw).

(29)

Te tangent vector felds are

ψu � r′(u), − cos v sinw, − sin v, cos v cos w( ,

ψv � (0, u sin v sinw, − u cos v, − u sin v cosw),

ψw � (0, − u cos v cosw, 0, − u cos v sinw).

(30)

Using vector product (14), the unit normal vector is
calculated by

N �
1

�������

r′( 
2

− 1
 1, − r′ cos v sinw, − r′ sin v, r′ cos v cosw( ,

(31)

where r � r(u). Since we suppose the hypersurface is
timelike, the unit normal vector feld is spacelike
((r′)2 − 1> 0). Let the frst unit tangent vector σ1 be parallel
to ψT and timelike. Using ψu and (9), we write

σ1 �
1

�������

r′( 
2

− 1
 r′(u), − cos v sinw, − sin v, cos v cosw( ,

(32)

and denote σ4 � N. With the help of the relation

ψ � aσ1 + bσ4, (33)

we get
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r(u) �
ar′ + b
�������

r′( 
2

− 1
 ,

u �
a + br′
�������

r′( 
2

− 1
 .

(34)

Tus, the functions a and b are

a �
r′(u)r(u) − u

����������

r′(u)( 
2

− 1
 ,

b �
r′(u)u − r(u)

����������

r′(u)( 
2

− 1
 .

(35)

3.3. Timelike Revolution Hypersurfaces of Type III

Defnition 4. Let r be a smooth function and C: I ⊂ IR→ π
be a curve on a plane parameterized by C(u) � (u, r(u), 0, 0)

in IE4
1. Te surface S formed by the rotation of the curve C

around the lightlike axis (1, 1, 0, 0) is called as revolution
hypersurface of type III. Terefore, with the help of the
matrix R3, the parameterization of S is given by

ψ(u, v, w) �
v
2

+ w
2

2
+ 1 u −

v
2

+ w
2

2
r(u),

v
2

+ w
2

2
u + 1 −

v
2

+ w
2

2
 r(u), uv − r(u)v, uw − r(u)w , (36)

where u ∈ R − 0{ }. Tis parameterization can be written as

ψ(u, v, w) �
v
2

+ w
2

2
 (u − r(u)) + u,

v
2

+ w
2

2
 (u − r(u)) + r(u), v(u − r(u)), w(u − r(u)) . (37)

Te tangent vector felds are

ψu �
v
2

+ w
2

2
1 − r′(u)(  + 1,

v
2

+ w
2

2
1 − r′(u)(  + r′(u), v 1 − r′(u)( , w 1 − r′(u)(  ,

ψv � (u − r(u))(v, v, 1, 0),

ψw � (u − r(u))(w, w, 0, 1).

(38)

Using vector product (11), the unit normal vector is
calculated by

N �
1

2
��������

1 − r
′

 
2

 v
2

+ w
2

− v
2

+ w
2

+ 2 r
′
, v

2
+ w

2
− 2 − v

2
+ w

2
 r

′
, 2v 1 − r

′
 , 2w 1 − r

′
  ,

(39)

where r � r(u). Since we suppose the surface is timelike,
1 − (r′)2 > 0. Let the frst unit tangent vector σ1 be parallel
to ψT and timelike. Ten, by the use of ψu and (9), we note

σ1 �
1

�������

1 − r′( 
2


v
2

+ w
2

2
1 − r′(u)(  + 1,

v
2

+ w
2

2
1 − r′(u)(  + r′(u), v 1 − r′(u)( , w 1 − r′(u)(  , (40)
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and denote σ4 � N. With the help of the relation

ψ � aσ1 + bσ4, (41)

we get the functions a and b as

a �
u − r′(u)r(u)

����������

1 − r′(u)( 
2

 ,

b �
r′(u)u − r(u)

����������

1 − r′(u)( 
2

 .

(42)

3.4. Results for Timelike RevolutionHypersurfaces of Constant
Ratio in IE4

1

Theorem 5. Let S be a hypersurface of revolution given by
(20), (29), or (37). Ten, S corresponds to a constant ratio
surface satisfying ‖grad(d)‖ � 0 if and only if the diferen-
tiable function r(u) is presented by

r(u) � ±
������

u
2

+ c1



, (43)

where c1 ∈ (0,∞) for (20) and (37), c1 ∈ (− ∞, 0) for (29).

Proof. Let S: ψ(u, v, w) be a constant ratio hypersurface of
revolution with ‖grad(d)‖ � 0. Using (6) and (19), k � a � 0.

In this case, ‖ψ‖ must be constant (see [1]). Tus, one can
write

b �

�����

1 − k
2



‖ψ‖ � ‖ψ‖ �

����������

r
2
(u) − u

2




� const. (44)

By the use of (28) or (35) or (42), we obtain the dif-
ferential equations

u − r′(u)r(u) � 0,

r′(u)u − r(u)
����������

1 − r′(u)( 
2

 � const,
(45)

which have the solution

r(u) � ±
������

u
2

+ c1



. (46)

Tis completes the proof. □

Theorem  . Let S be a hypersurface of revolution given by
(20), (29), or (37). Ten, S corresponds to a constant ratio
surface satisfying ‖grad(d)‖ � 1 if and only if the diferen-
tiable function r(u) is presented by

r(u) � c1u, (47)

where c1 is a real constant.

Proof. Let S: ψ(u, v, w) be a constant ratio hypersurface of
revolution with ‖grad(d)‖ � 1. Using (6) and (19), k � 1 and

b � 0, a � ‖ψ‖ �

����������

r
2
(u) − u

2




. (48)

By the use of (28) or (35) or (42), we obtain the dif-
ferential equations

u − r′(u)r(u)
����������

1 − r′(u)( 
2

 �

����������

r
2
(u) − u

2




,

r′(u)u − r(u) � 0,

(49)

which have the solution

r(u) � c1u, (50)

where c1 ∈ R. Tis completes the proof. □

Theorem 7. Let S be a hypersurface of revolution given by
(20), (29), or (37). Ten, S corresponds to a constant ratio
surface satisfying ‖grad(d)‖ � k, 0< k< 1, if and only if

Figure 1: Projection of constant ratio timelike hypersurface.
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u � 
− k

2
+

���������

− r
2
(u) + 1



r(u)

���������

− r
2
(u) + 1



k
2

+ r
2
(u) − 1 

���������

− r
2
(u) + 1

 dr(u),

(51)

holds.

Proof. Let S: ψ(u, v, w) be a constant ratio hypersurface of
revolution with ‖grad(d)‖ � λ, 0< λ< 1. Ten, for the length
of the position vector of S,

‖ψ‖ � k.u, (52)

is satisfed (see, [1, 2]). With the help of this equation and
(16), we get

ψT
����

����

k.u
� k, (53)

a � ψT
����

���� � k
2
u. (54)

Combining (28) or (35) or (42) with (43) and (54), we get

u − r′(u)r(u)
����������

1 − r′(u)( 
2

 � k
2
u, (55)

which indicates (51). Tis completes the proof. □

Example 8. Taking w � π and r(u) �
�����
u2 + 4

√
in the pa-

rameterization (20), we can plot the projection of the hy-
persurface of constant ratio shown in Figure 1 by using
Maple command:

plot3d([u∗ cosh v∗ (cosh(Pi) + sinh(Pi)), u∗ sinh v, sqrt(u942 + 4)], u � − 2∗Pi..2∗ Pi, v � − 2∗Pi..2∗ Pi). (56)

4. Conclusion

Constant ratio submanifolds are among the signifcant
classifcations in diferential geometry. In this work, con-
stant ratio hypersurfaces in Minkowski space-time are
discussed on the parameterizations of revolution hyper-
surfaces according to three rotations. Some diferent char-
acterizations of these types of hypersurfaces can be
investigated in future studies.
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