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This paper deals with the existence and nonexistence of solutions for the following weighted quasilinear elliptic system,
~div(q, ()IVul?*Vu) = pylulP2u + (a+ Dul* 'uylf  inQ

a2y | =iV (@ IV 9) = o2y (B + DIl ™y in©Q where QcR®RY(N23)2<p<N, q
2”0, v>0 inQ
u=v=0 onoQ,

G €W (Q)NC(Q), a, 20, yy, thy, 20 and a, B> 0 satisfy a + f = p* — 2 with p* = pN/N — p is the critical Sobolev exponent.
By means of variational methods we prove the existence of positive solutions which depends on the behavior of the weights g,
g, near their minima and the dimension N. Moreover, we use the well known Pohozaev identity for prove the nonexistence
result.

1. Introduction and Main Results

Let Q be a bounded smooth domain in RN (N >3) and
consider the following weighted quasilinear elliptic system:

—div(q, ()IVul? V) = py [l ?u+ (o + Dlul* ulvf™, inQ,

(s ~div(g, (OIVVP V) = P2y + (B + DIl vy, inQ, 0

Histhy .
u>0, v>0, inQ,

u=v=0, on oq,

where 2<p<N, and g, and g, are given positive weights =~ noncompact embedding Wé’p (Q) into L' (Q), &,f>0
defined on Q such that g, and g, € W (Q)NC(Q), p* =  satisfy a + B = p* — 2, and the parameters y;and y, satisfy
PN/N —p is the critical Sobolev exponent of the  the following assumption:
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()0 <py <py <)y, (2)

where A, = min{A?, 1 <z<2} and A% denotes the first ei-
genvalue of —div(g; (x)V.) in W, P(Q)

Note that [u|* 'ulv/f*! and |u/*'|vP"'v are called
strongly-coupled terms and [ulP~2u, |v|P~%v are called
weakly coupled terms.

The problem (&7%) is important in many fields of
sciences; it arises in b1010g1cal applications (e.g., population
dynamics) or physical applications (e.g., models of a nuclear
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reactor) and have drawn a lot of attention (see [1-4] and
references therein).

Our system is posed in the framework of the Sobolev
space E =W Lp (Q) x W1 P (Q), endowed with the following
norm:

1/
el = ([ @ @Nara+ | g mv i) ’
(3)

The energy functional of (cS’q1 ‘72) is defined on E by the
following equation:

T u,v) = —||(u,v)||f’——j (g al? + gyl dx - j|u|““|v|ﬂ“dx. @)
p p Q

It is clear that J € C'(E,R) and

J (), (9, 9)) = Jo(q1 (O)IVul?">VuVe + g, (x)|Vv[*>VyV¢)dx +

_”1J |u|P72u(pdx—y2J- |v|p72v¢ dx—(oc+1)J |u|“71u|v|ﬁ“¢dx+ (5)
Q Q Q

—(B+ 1)J [ul* ! v)P~ tvgdx = 0,
Q

where (u,v), (¢,¢) € E, and J (u,v) denote the Fréchet
derivative of J at (u,v).

A pair of functions (u,v) € E is said to be a weak so-
lutlon of (5‘11 42) if u>0 and v>0 on Q satisfy
J (w,v), (o, (/))) 0 for all (¢, ¢) € E. Therefore, the weak
solutions of (<~S"11 ‘12) are the critical points of J.

Before statmg our main results, let us recall a brief
history.

For the scalar case, that is, when a =3, a + f = p* -
=y = q1 = q, = q, and u = v, then the system (S ‘b)
reduces to the single elliptic equation as follows:

~div(q(x)|Vul” *Vu) = plul” u+[ul” *u, inQ,
(@Z) u>o0, inQ,
u=0, on o).
(6)

In the special case g = 1, much interest has grown on this
critical problem, starting from the celebrated paper by Brézis
and Nirenberg [5] for the semilinear equation (p = 2). They
established existing results in dimension N =3 when Q is
a ball, namely, they ensured the existence of a positive
constant A, such that problem (9}4) admits a positive so-
lution for all u € JA,, A, [, where A] is the first eigenvalue of
the operator —A. In higher dimensions, N >4, they proved

the existence of a positive solution for all x4 € ]0,A] [ and no
positive solution for u>A] or #<0 and Q is a star-shaped
domain. After that, many authors generalized the results of
reference [5] for the quasilinear case, for example, see [6-9]
and the references therein.

In the case where g is not constant, Hadiji and Yazidi
[10] extended the results of [5] to the weighted problem
(@Z) with p =2 and g € H' (Q) N C(Q) such that

q(x) = q(xp) + a|x - xoik +|x - x0|k0(x), (7)

where x, € Q, q(x,) = min{q(x), x€Q}, k>0, a;>0,
and 6(x) — 0 when x — x;. They showed that the ex-
istence of solutions depends not only on parameter A but
also on the behavior of g near its minima. More recently,
Benhamida and Yazidi [11] have generalized the results of
reference [10] for the quasilinear case (2< p < N).

Concerning the vectorial case and without weights,
a lot of papers have appeared in recent years dealing with
system involving Laplacian or p-Laplacian operator, see
for instance [1, 12-15] and the references therein. On the
other hand, it should be mentioned that when p =2,
Bouchekif and Hamzaoui [13] studied the following
weighted system:
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(252)4 —div(gy (x)V) = bu + v + (B+ Dlul* )y,

u=v=0,

where a, b, ¢ are real parameters and 2* = 2N/N — 2 denotes

3
—div(q, (x)Vu) = au + bv + (a + D)|u|™ ' inQ,
inQ, (8)
on o),
inf
Y(ql’qZ) = E I(u) V): (14)
(u,v) €

the critical Sobolev’s exponent of the embedding H; () into
L* (Q). They proved the existence of at least one positive
solution under suitable assumptions on the data.

A natural interesting question is whether the results
concerning the solutions of (&Zi’ﬁi ) with p =2 in [13] re-
main true for 2< p<N. By using [11, 13], we gave some
positive answers. To the best of our knowledge, the results
are new in the case when p#2. Note that this quasilinear
problem creates many difficulties in applying variational
methods in the fact that (&Zi’ﬁi ) contains the critical ex-
ponent p* and weights g, and g,, then the functional ] does
not satisty the Palais—-Smale condition in all the range. To
overcome the lack of compactness, we need to determine
a good level of the Palais-Smale condition. On the other
hand, it is very difficult to prove that the critical value is
contained in the range of this level, so we need more delicate
estimates where g, and g, play an essential role.

Now, we introduced some notations and hypotheses.

We assume the existence of x, in Q such that, in
a neighborhood of x,, the weighted g, and g, behave similar
to

91 (%) = q, (%) + akl|x - xo|k1 +x xolkl 6,, (), (9)
and

g, (x) = g, (xo) + Tzk2|x - xolk2 +|x - x0|k2 0, (x),  (10)

where x, € Q, g; (x,) = znen—qi (x), 1<i<2,ky, ky, 4y , and
dy, are positive constants and 6, (x) tends to 0 as x goes
to x;.

The parameters k; and k, will play an essential role in the
study of our system. In fact, if N > p?, the case k, > p and
k, > p is treated by a classical procedure. For the other cases,
we restricted ourself to the case where g, and g, satisfy the
following additional conditions:

klaklng)k, aex €, (11)
|x - x0| !
and
k.3 Q2 (x) .
28, S———7, a.e.x € Q,respectively (12)
|x = x|
where
q, (x) = Vg (x). (x — x,) and
_ (13)
g (x) = Vg, (x). (x — x;).
Let

{(0,0)}

where I(u,v) = (1/p)( (IQ (G, (x)IVul? + g, (x)|Vv|P)dx)/
(J (1 + IvIP)dx)).
Now, we are in a position to state the results of our paper.
For the nonexistence results, we have the following
theorem.

Theorem 1. Assume that u,<y(q,,q,) and Q is a star-
shaped domain with respect to x,. Then, (SiI) has no
nontrivial solution.

For the existence results, we have the following theorems.

Theorem 2. Suppose that N = p?, (¥ ) holds and q, and q,
satisfy equations (9) and (10), respectively. Then, there exist
constants vy, v, >0 such that ($]"2) has a positive solution,
under one of the following hypot)’teses:

(#)ky>N-p/p-1,k,>N-p/p—1, and y, >0.
(# )k, =N —-p/p-1,k,>p, and y, >v,.
(Z3)k,>p,k,=N—-p/p-1, andy, >v,.

(Z )k, =k, =N-p/p-1, andy, >v, +7,.

Theorem 3. Suppose that N # p*, (#,) holds and q, and q,
satisfy equations (11) and (12), respectively. Then, there exist
constants vs,vy,vs >0 such that (S1%2) has a positive so-
lution, under one of the following hypotheses:

(#5)N > p* .k, > p,k, > p, and y; > 0.
(N > p* .k, > p,ky > p, and yy > vs.
()N > p*k, = p,ky = p, andy, >v,.
(N > p> k) = p,ky=p, andy, > vy + v,
(Z)p<N<p*k >N-p/
p-Lk,>N-p/p-1, andy, >vs.

This paper is organized as follows: In Section 2, we
collected some preliminaries results that will be used
throughout the work. In Section 3, we proved Theorem 1
(nonexistence result). In Section 4, we proved Theorems 2 and
3 (existence results) by using the mountain pass theorem.

2. Some Preliminary Results

Throughout this paper, we shall denote by C and C;, (i =
0,1,2,...) for the various positive constants. The diameter of
Q will be denoted by diam (€2), we use — and ¢ to denote
the strong and weak convergence in the related function
spaces, respectively, and u* = max{u,0} and B, (x,r) rep-
resents the ball of radius r centered at x.
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We define the following equation:

inf inf
SZ = l,p(_Q)QZ(”) andSZ]ﬁ/‘Z = (u,v) € LQZﬁZﬁ (1, v), (15)
"0 (0,0}
where
Q) - [ 0d @) IVulPdx - uf JulPdx

(IQ Jul” dx)P/P*

[ o (@ OIVul? + g, )V )dox = [ ) (g [ul? + py|v]P)dx
(IQIMIMIWIﬁﬂdx)p/P

(16)

91-92 —
Q.“b!‘z (w,v) =

First, we recall the following Hardy’s inequality, see for =~ Lemma 1. Let t € R such that N +t >0, we have the fol-

example [16]. lowing equation:
p
J Il lul?dx < (£-) j Il % VulPdx, forallu € WP (Q). (17)
Q N+t/ Ja
Moreover, the constant (p/N +t)? is optimal and not (2) Suppose that q, and q, € WP (Q)NC(Q) satisfy
achieved. equations (9) and (10), respectively, and G, (x) > 0and
We note that direct calculations imply that if t =0, g, (x)=0 a.e. x € Q, we have

Lemma 1 applies even if we replace x with x — x,,. (i) ifk, > pand k,> p and q, and q, € C' (Q), then

¥(491,4) = 0.
Lemma 2 (ii) If k, = p and k, > p or k, > p and k, = p, then

(1) Assume that q, and g, € C' (Q), and there exists b € Q
such that g, (b) + g, (b) <0, then y(q,,q,) = —00.

0<y(q1 ) < %"A} (diam () or0<y (g1, ) s%’)t} (diam (Q))?, (18)

respectively. (iii) If 0<k, <p, 0<k,<p, q;, and q, satisfy the
conditions (11) and (12), respectively, then

NP . .
y(ql,qz)zﬁmin{klakl(diam(ﬂ))kl P kzakz(diam(Q))k2 p}. (19)

Remark 1. If k; = k, = p and q;, g, € C' (Q), we obtain the  Proof
following estimate:

N\? 3! 1) Let(peCSO(IRN)suchthatOS(pslonRN,q)Elon
<—) min{ap,gp} <y(q91-9,) s—l(ap + ap) (diam (Q))?. B(0,r) and ¢ = 0 on RY/B(0,2r), where 0<r<1.
p p Let (pj(x) =¢(j(x-b)) for j e N*. We have the

(20) following equation:
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- ~ o l? Using the change of variable y = j(x — b), we obtain
1 IQ (@ () + 2, (x))|V(p] (x)' dx the following equation:
2p (0|'d
[ole; ()| dx

Y41 4) <

1 Jswny @0+ (x))|vg; (0] dx
2 Js.com|# ()" dx

(21)

i 02 @ (i +0) +3,(y1j + 1))V ()P dx

y(@n )< - (22)
T [a0n 9 1P dx
Letting j — o0, then by the Dominated Conver- From equation (25), we obtain the existence of r,0 <r < 1,
gence theorem we deduce the desired result. such that
(2) First, we proof 2.i). Since g;andg, € C'(Q) in e
a neighborhood V of x;, then by equations (9) and |6‘11 (x)| <= x,[" and (26)
(10), we can write the fOHOWiI;(g equations: |6q2 (x)| <|x- xolkz’for all x € B(xg,2r) C V.
91 (%) = gy (%) + ay, |x = x| " + 6, (x), (23)
! (%) | Ol 1 Defining (p]-(x) =¢(j(x —xp)), then
and
- ~ p
_ k, 1 (x) +,(x))|Ve; (x)| dx
9> (x) = q, (x,) + ak2|x - xOl + 0y, (x), (24) 0<y(q1-9) <5 JQ @ x )| % | > (27)

2p jg'goj (x)|‘Ddx
where 0,0, € CY (V) such that
and from equations (23) and (24), we deduce the following

lim |6q1 (x)| _ equation:
e 2
25
lim |9‘12(x)| _
X — X |x—x0|k2

1 '[B(xo)zﬂj)<k1akllx - x0|k1 + kzakzlx — X1|k2>'v¢j (_x)|de

0<y(qpa:) <5~ +
2p .[B(xo,Zr/j)l(Pj (X)‘pdx
(28)
p
1 () (Vg (- (= x0) + V6, (). (x %0)) |V, ()| dx
il 5 :
2p IB(xO,zr/j)'¢j (X)| dx
Using the change of variable y = j(x - x,), and in-
tegrating by parts, we obtain the following equation:
02y (qan) <% [0z 1Yo I dy 27 [505)00, (51 + Xo)div (yIVe (1)I7)dy
T T [paleOlidy  2p [s0ml0IPdy
(29)

N kay, jza(o,zr)lylk2 Vo (y)IPdy _ ﬁ .[B(O,zr)eqz (y/j + xo)div (yIV ()I")dy
ZPJ.kzip J‘B(O)Zr)lq)(y)lpdy 2p JB(O)ZT)Iq)(y)Ide
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Hence, by using equation (26), we obtain the following

equation:
kl 1
0<y(q:,9) < Koy, [0z Vo (I"dy P Jp02n 21" dy +
SYWn9) s 5= -
2pF IB(O,zr)lq’(y)lpdy 2pjP .[B(O,Zr)l(P(y)lpdy
(30)
N kyay, jB(o,zr)|)’|k2|V‘P(}’)|pdy N C .[B(o,zr)lylkzdy
2pjF IB(O,Zr)|¢(y)|de 2pj it .[B(O,Zr)l(P(y)Ide
where C = maexB (0,2r)|div (y|Ve (»)IP)I. We have the following equation:
Therefore, for k; > p and k, > p, we reach that y (q;,g,) = ~ ~ P
0. This concludes the proof of 2.i. 0<y(q1-9) Si JQ (@ )+, (x))'ij (x)‘ dx, (31)
To prove 2.ii, first we start by the case k; = p and k, > p. 2p fﬂ'fj (x)'pdx

Let fj(x) =¢,(j(x—x,)) for jeN is large enough,
where ¢, is the positive eigenfunction corresponding to the ~ Using equations (23) and (24), we obtain the following
first eigenvalue A} of the operator -A, in W(l)‘P (Q). equation:

0<y( )< 1 Ixo—l/jo(klakllx - xOlk1 + kzakzlx - x0|k2>|ij (x)|pdx
=YW 92) =5

P
2p Jx0+1/j0|gf(x)' dx
(32)
1 a0y, (0. (x = x0) + V8, (x). (x = xo) )|V (x)]"dx
2p P '
p Ix0+1/j0'£j (x)| dx
By a simple change of variable y = j(x - x,) and in-
tegrating by parts, we obtain the following equation by
equation (28):
0<y(q,,) <2 Jal Vo1 Ifdy € Jol"dy
> 1°>42) = -~ .
2 Jale Wy 227 [olei (nI'dy
(33)
kai, [ Ve ffdy  c [ylyidy
207 JaleefPdy2pi T [olen (] dy
where C = ;%:(Q |div (y|Ve, (»)IP)]. Letting j — oo, we Similarly, we deduce in the case k; > p and k, = p, that
obtain the following equation: 5
a, [V |[Ve, ()| dy 0<y(q,q,) < A (diam (). (36)

0<y(qna) < SN CS

[olor[Fdy

Now, we proof 2.ii). Since g, and g, satisfy equations
a (11) and (12), respectively, for all (u,v) € E/{(0,0)} we have
0<y(q1q) < 71’ )Li (diam (Q))*. (35)  the following equation:

thus
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OO O Pt o (1) . e e )
o [ o (ul? +1v/7)dx p e [ o (Il +1v/7)dx
(37)
x = xo).VulPdx x = xo).Vv|fdx
2&(1,{] (diam(Q))kl_PIQK 5 0) pl k—akz(dlam(Q))k2 PJQ 5 0 p| .
P L (P +P)dx  p [ (ul” +v/P)dx
By applying Lemma 1 for ¢t = 0, we obtained the fol-
lowing equation:
P rq P rq
I(u, v)>k—ak (dlam(Q)) ! P(N) % ks ak (dlam(Q)) (N) %. (38)
P [ (lul? +v/P)dx p) ol +1P)dx
Thus,
NP
y(q1,92) = PPH mln{k ay, (dlam(Q)) =P ki, (dlam(Q)) 2 p} (39)
The proof is complete. Proof. Consider a minimizing sequence w, for S. Let
Inspired by [1], we obtain the following result. O  s,t,>0be chosen later. Taking u, = s,w, and v, = t,w,, in

Lemma 3. We have the following equation:

quotient (15), we obtain the following equation:

fﬂ(sﬁql (x) +t0q, (x))|Vw, |pdx

Lo+ La+ 2 B+1/a+f+2 . h Shvh <
K (. B)(S3') (S°) <Si6" <K(a, B)S;, 0.0 plactD)/actpe2, p(Be1)facep+2 a2 4 placp2
(40) Sn n jﬂlwnl X
with 3 L+ th [ (@ (%) + g, (x))|Vw,|dx
o+l B+1/a+p+2 at1 —ot+1/a+f+2 —sp(a+1)/a+/3+2tp(/3+1)/¢x+ﬂ+2 M'B” pla+p+2
cen-(ir) () - Y
(42)
h(x) =g, (x) + g, (x). Observe that
(41)
Sf; + tf: B <sn>p(/3+1)/oc+,8+2 +(5n>—p(¢x+1)/a+/§+2 w
55 (a+1)/oc+[)’+2t5 (B+1)/a+p+2 t, t, :
h(x)|Vw,|"dx
Let r = (s,/t,)? and define the following function: St <K (a, p) JQ [V Parpe (46)
a+ﬁ+2
f(r) = r(ﬁ+1)/a+l3+2 n r*(:x+1)/‘x+l3+2, r>0. (44) <.fﬂ )
The minimum of the function f is achieved at the point ~ hence,
ro = a+ 1/ + 1 with minimum value St <K (a, ﬁ)Slg. (47)

f(ro) = K(a, B). (45)

Choosing s, and t, in equation (42) such that sh B+1) =
Fa+1), we obtam the following equation:

To complete the proof, let (u,,v,) be a minimizing
sequence for Si;* and define z, = s,v, with the following
equation:
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a 2 a a
atpr2 JQ|un| o dx J lzn| +ﬁ+2dx = J |un| +ﬁ+2dx. (49)
(Sn) - J I |(x+ﬂ+2d ' (48) Q Q
v, x
o By Young’s inequality, it follows that
Then,
P 1 a 1 «
[ T I R TR e I A B (50)
Q a+B+2)a a+f+2)a
By equation (49), we have the following equation:
pla+p+2 pla+p+1 plot+f+2
(j [zl ax) < (j [ 2ax) T =( j o Pax) (51)
Q Q o
Consequently,
- Io(ql (x)|Vu lp +q, (x)|an|p)dx
" a+1 [3‘+1 platp+2
[l vl ™ dx
p p
- Sp(/?+1)/a+ﬁ+2.fn(q1 (x)|Vu | 49 (x)|VVn| )dx
o a+1 ﬁ+1 platp+2
(ol 2 ax) (52)
p
>sp(ﬂ+1 aipe Iqu (x)|Vu | dx .\ Sp(ﬁﬂ)/ﬁﬁﬂs,p ngz(x)|Vzn| dx
zx+ﬂ+2 plactp+2 " a+f+2 plap+2
dx
(falu " ax) (Jalzud ™" ax)
> Sglsﬁ(ﬁ+l)/“+ﬁ+2 + ngs;p(a+l)/a+ﬁ+2’
we know that
minbo(Sgl (P BrDlatpr2 | ngt—p(a+1)/a+ﬁ+2) =K (o, B) (Sgl)(tx+1)/¢x+ﬁ+2 (ng)(li+1)/zx+ﬁ+2’ (53)
then ) (N-pl/p
I,>K(ap) (Sgl)(tx+1)/tx+ﬁ+2 (ng)<ﬂ+1)/a+ﬁ+z’ (54) U, (x) =C, <W> , (56)
€ +|x — x|
Thus,

where C, is a normalization constant and ¢ is a small positive
S1:% > K (a, ) (Sylertierhz gy (Frifesfz, (55)  constant; for more details, see [17, 18]. B
Set u,(x) = &(x)U, (x), where £ e CP(Q) is a fixed
We know that S{ is achieved if and only if O = RN by the  function such that 0 <£ <1 and £ = 1 in some neighborhood
following function: of x,. We have, from [8], that
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J |Vu£|pdx =K, + o(sN_P/P),
Q

pa
(J |u£|P*dx>P”= =K, +o(sN7p/p), and
o

(57)
K3,15P_1 + o(sp_l), it N >p2,
J |u£|pdx = Kizep_llln(e)l +o(ep_1|ln(s)|), if N = pz,
Q
K3’3£N_plp + o(eN_P/p), if N<p’,
A (a+DSE
where K, K,, and K;; are positive constants. O (E) = m =s and (59)
Lemma 4. Assume that (%) hold and one of the hypotheses p(B+UP*) | - pailp’
(# })1<j<o is satisfied. Then, n =1 pq,4) = s s ’
SZVZZ < Shite, (58) Then, by (#,) and equations (15) and (59), we have the

following equation:

Proof. Let A, B>0 such that

fﬂ (g1 (x)A? +q, (x)BP)|Vu£|de - ‘ulfﬂ (A? + BP)|u£|de

(Aa+13ﬁ+1)plp* <_[Q|Me|p* dx)P/p '

<5P(ﬁ+1/p*)IQ(Q1 (x)|Vus|P _ ‘“1|”s|p)dxl
B . pip* .
(Muslp dx) (60)

s Porlp [l @|Vee]” - g |u|)dx
" /p *
<JQ|”£|P dx>P !

< spﬁ“/p*QZi (u,) + s PP QZ? (u,).

in’zz (Au,, Bu,) <




10

We know by [11] Qf (u,) <q; (x4)Sg +

—‘ulKK—Z’lspfl +o(sp71),

| 4 _Cp,l(“p) &sp—l
1
K3,1 K2
~ u _Ckl’z(akl) &spfl
! K3,2 KZ

—([41 _ Ck1,3(ak1)> &8N—p/p ‘o

K3,3 K2

K _ _
226 flog ()] + o " log (9]

2

Ckl,l(akl)ekl (p-1Dp Jro(ek1 (p—l)/p))

K,

Cklsl(akl)skl (p-Dip + O(Skl (p- 1)/p)’

K,

Cr,2(a,)
K2

and QP (u,) < g, (x,)S§ +

K3,3 KZ

2
KZ
KZ

Ckz 2 (akz )
KZ

eV PP llog ()] + o PPllog (2)]),

{4 _Ck2,2<ak2) &SIFl
' Ks, K,
_<#1 - M) &w—p/p +

K _ -
226 log(9)] + ofe llog (&)

Ckz»l(akz)skz (p-1)/p n O(Skz (p- 1)/p)

Ckz»l(akz)ekz(p—l)/p +0(£k2(p—1)/p)

" PPllog(e)] + o(e" PP llog()]),

Journal of Mathematics

if N> p?, k> p,

if N> p’, k;, = p,

[log (¢)I +o(£p71|log(£)|), if N = pz, k, = —

llog (¢)] +o(&” Hllog(e)l) if N = p? k, = %,

N-p
p-1
ifN<p2, k1>N:‘ID,
P (61)
. N -
1fN=p2, k1>p_f,
if N> p%, 0<k, <p,
ifN<p2,p<k1<];:f,
. N -
lfN<p2, kl :ﬁ,
ifN>p2, ky > p,
if N>p’, k, = p,
ifN<p2, k2>m,
p-l (62)
. N -
1fN:p2,k2>p_f>

if N> p?, 0<k,<p,

ifN<p2,p<k2<%,

if N<p’ k, = %,
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with where wy is the area of S¥~! and by the same way we define
N - P |x|p/p— 1+k, Ckz,i (akz)'
Cp ( a ) = a, ( p ) j < dx, Using equations (61) and (62), we distinct the following
» 1 1 p_ 1 RN(l +|x|p/p—l) cases:

— 2
N p\? (l)ilfwlr\ll—p,kpN—p/p—l, and k,>N - p/p-1,
Ckl,z(akl) = F akle,

N — p
Cr, () = akl(—p - f ) (diam (@) TP

(63)

QZ:::Z (A“es Bus) < Spﬁﬂlp*‘h (xO)S(l) + 5P 92 (xo)s(l) +

Ksp po1 1 (69
- ‘ulqK—’eP* [log (€)| + o(epf |log(s)|).
2
(2 If N=p*k,=N-p/p-1, and k,>N - p/p-1,
we have the following equation:
QZifé (Au,, Bu,) < SPﬁH/P*% (xo)stl) +s PMUP*% (XO)S(I) +
. 65)
SR C S(a )\ K, (
- - L ! > ep_lllo (&) +o sp_lllo ).
<#1 Tk, [T Mog(@l ol llog()])
B If N=p*k>N-p/p-1, and k, =N -p/p-1,
we have the following equation:
QZiZZi (Au,, Bu,) < PP g, (%0)Sp + S_P(MUP*)% (x0)Sp +
- patlip* (a ) K (66)
Y ) ) =326h log (e)| + o e [log (e)]
(ul K >11 K, e log(e)l +o(" llog(e)])
4 IN=p k=N-p/p-1,and k,=N-p/p-1,
we have the following equation:
QU (Au, Bug) < 7P gy (x)S + 570 gy ()8 +
1 .C. 5la .C. ,la K
- SPBHUIp kl)Z( kl) 4 g PBHUP kz’z( kz) n 3’25P*1|10g(g)| + (67)
h 32 Ks, K,

+ o(epflllog(s)l).
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(5) If N> p%, k; > p, and k, > p, we have the following
equation:

* * K
Qiv (Auy Bu) < "0 gy (x0)S) + 577y (xo)Sy = e ' +o(e”),
2

(6) If N > p*, k, > p,and k, = p, we obtain the following
equation:

QI (Auy, Bu,) <P 1P gy (x)Sp + 57 g, (x0)Sg +

B <‘u1 ~ S*Ptxﬂ/p* Cp,l(ap)>’7K3,lcp—l N O(Sp_l).

n K;, K,

(7) If N > p?, k; = p, and k, > p, we have the following
equation:

Q1% (Au,, Bu,) <s” F1P)g, (x)Sy + 572 19D g, (x,)Sh +

p(B+1/p*) C K
O

(8) If N> p*,k, = p, and k, = p, it result in the fol-
lowing equation:

Qﬁiiquz (Au,, Bu,) < s (ﬁﬂlp*)‘h (Xo)s(l) + Sfp(ﬁl/p*)‘h (xO)S(IJ +

) (m “ (s”<ﬂ+w*>M , S-P<“+””*’Ck”l(ak2)>>"K3’1€P_1+

K, K3, K,

+o(sp_l).

(9) IfN < p* k> (N - p/p—1),and k, > (N - p/p-1),
we have the following equation:

Q1% (Au, Bu,) <s* F1P)g, (x)S + 572 19D g, (x,)Sh +

_< 1 (SP(B'*l/P*)Ckl’z’(akl) N S‘P(“+1/P*)Ck2’3(ak2)> >’7K3,3€N—P/P +

-~
! n K33 K33 K,

+o(£N_P/P).

(69)

(70)

(71)

(72)
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Using the fact that, and from Lemma 3, we obtain the following equation:
a1 (%0)Sp <S¢ (73)
0 (%0)Sy <S¢
5 ) (g, (xa)) S5 + 7 01 D () < K G ) (53) P77 53 ) < 74
Let (¥;),<ics5 such that
o Crialas) ( (B+1)S7 1)1 o Cral@) ( (a+ 1SE 1)1
' K, (a+1)S3 e Ks, B+ 1S ’
~ \ -1 : -1
_Cnl@) (@rvsy N\ Cuilay) (Br1SE (75)
T Ksp \(B+DSE YKy, \(a+ DS ’
L (Brst N\ Cuo(ak) | ((@rnsE )M Cus(@)
>\ (a+1)SE K, (B+1)Si Ky;
then, we have infé (Au,, Bu,) <
K (N =p’,
S™ — =22 llog (&)l + o(elog (&)1, if{ N-p N-
2 k1>p—1’k2>p—l’
K [N =7,
S66™ = (= v)n 22" llog ()| + o(e” llog (&)1, i1 N-p, N-p
2 =
1 p _ 1 » V) > p _ 1 >
K N=p
, 32 p-1 -1 .
St = (uy - vz)nK—zsp llog (¢)| + o(sp |log(£)|), if 4 B} >N P . N-p
| T p-177 p-U
K [N =7
St = (uy — (v, + VZ))ﬂ%SP_IHOg(S” + o(sp_lllog(£)|), if o N-p
) 2 1=k =" (76)
| p-1
K 2
sg}(;‘b 17%# £P_1+o(ep_1), if 1 N>p',
2 ky>p,k, > p,
. L[ N>p?
Sql’qZ_ py =V ﬂig‘o 1+o sp 1 s if ’
00 = (= 73) ) ( ) k> p.ky = p,
- | N >p2,
S — (g = va)y 2Leb~1 4 o(ef 1), if -
00 = (b = 7a) ) ( ) k = p.ky> p,
Ksp , . (N> p?
ST _ (4 — (v, +9,))—2LeP ! 4+ o(ef71), if - P
o0 = (= (v3 +v4))n K, ( ) ky, =k, = p,
K N< pz,
S%»‘iz _ (#1 _ VS)rlisN_P/P +o0 SN_P/P , if 3 _ N —
Ko el LS.




14

The conclusion follows from the previous
inequalities. O

3. Nonexistence Result

The main goal of this section is the nonexistence result. So
we use Pohozaev identity to prove Theorem 1.

- N 1 1
PR [ aomucaras— [ g ivucoras —(1 - p)jmql () (x - %))

Journal of Mathematics

Proof of Theorem 1. Let (u,v) € E be the solution of (S7%).
Multiplying the first equation in the system (S7'%) by
Vu.(x — x;) on both sides and integrating by parts, we
obtain the following equation:

ou|f
al d(T

(77)

= —ﬁ.‘hj |u|de+J V(|u|“+1).(x—xo)lvlﬂ“dx.
P Ja Q

where v denotes the outward normal to 0Q.

Similarly, we obtain for the second equation of (&Zi:ﬁi)
as follows:

- P
%jﬂqz(xnvwxw’dx —%jﬂaz(xnvmnpdx —(1 —%)jqum (- o)l do
(78)
=y j vIPdx + J lul IV (IvF*). (3 - xg)dx
P 2 a a 0 >
Combining equations (77) and (78), we write the fol-
lowing equation:
-N
P @Il + g, Iov i) +
1
- [ @ T 4, I Y+
(79)

—(1 - ;)Jm(ql (x) (x - xg)v

N
__N J (o lul? + o) - NJQ|u|“+1 WP dx.

p

On the other hand, multiplying the two equations in the
system ($7%) by (N - p/p)uand (N — p/p)v, respectively,

N-p
p
_N_
P

aj
ov

ov

ov

p
‘ +q, (x)(x = x;).v

P
)da

integrating by parts, and by summing the obtained results,
we obtain the following equation:

P jﬂ (@ (DU )P + g, (0)[Vr(x)1P)dx

N-p JQ (s ul? + iy 1P )dx + NJQ|u|““|v|ﬁ“dx.
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Combining equations (79) and (80), we obtain the fol-
lowing equation:

<1 _;>Jan<q1 () (x - xg)| 2%

15
1
j (1 ul” + py|vI”)dox —J (@, (OIVu (I + G (x)Vv (x)]7)dx+
Q P Q
p iP (81)
1%
o +q, (X) (X - xo).'V al )d(T =0.
4. Existence Results

If O is a star-shaped domain about x,, we have the
following equation:

1
jo (e ul” + | vIP)dox > » jg(q1 (OIVu () + g, (x)| Vv (x)]* ) dx.

(82)
By (), we reach that
1 | o @ OIVu () + g, (x)|Vv(x)|F)dx
o>~ Jo@ TR 2y(q1-92)-
p [ o (ul? +vP)dx
(83)
which is a contradiction. O

We first verify that J satisfies the geometric conditions of the
mountain pass theorem.

Lemma 5. Assume that () is satisfied, then

(i) There exist p>0 and R> 0 such that ] (u,v) = p for all
(u,v) € E with ||(u,v)|| = R.

(ii) There exists (uy,v,) € E, with ||(ug, vo)ll > R such that
J (ug, vy) <0.

Proof

(i) From Holder’s inequality, Sobolev embedding and
(#,) it follows that

T () = %u(u, WP - % jQ (i l? + 1) = [ Jul s

%u(u, DIF - % jQ (1ul? +1v1)dx — Cllu, W)II” (84)

Lnind(1- %2
()

where C is a positive constant. Then, there exists
(u,v) € E such that J(u,v)=p>0, for [(u,v)| =R
small enough.

(ii) We have J(tu,tv) — — 00 as t — 00, for any
(u,v) € E/{(0,0)}; thus, there exists (uy,v,) with
(249> vo)ll > R such that J (1, v,) <O0.

1

1- /%) ]’ (e, VP — Cli(, VP,
1

Next, we prove an important lemma which ensures the
local compactness of a Palais—Smale sequence for J. O

Lemma 6. If c<c* = p/N — p(1/p*)V'P (SEE)N'P, then |
satisfies (P — ), condition.

Proof. Suppose that {(u,,v,)} C E satisfies

1 a o
;”(un’ Vn)"P - JQ(#1|unlp + A“Zlvnlp)dx - JQ|un| +1|Vn|ﬂ+ldx =c+ (1),

p

(85)

v = [ b+ o) = il o = 3,0
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with &, — 0 as n — 00, then {(u,,,v,)} is bounded in E.
Going if necessary to a subsequence, we can assume that as
n— 0o

(14, v,,) = (u, v) weakly in E,

Journal of Mathematics

(4, v,) — (u,v)stronglyin LP' x LP forall p< p;, p, < p”, (86)

(U v,) — (u,v)a.e.in Q.

It follows that (u, v) is a weak solution of the system, i.e.,
J" (u,v), (9, 9)y =0, forall (p,y) € E. (87)

We set

u, =u, —u,
(88)
V,=v,— W

Applying the following relations as in Brézis-Lieb
Lemma [19]:

[V, [0 = Vel + |V, |0+ (1),
(9w 15 =19l + 75,0+ (), )

[ Jl e = [ttt [ e )
Q Q Q

we obtain the following equations: and
1 at+l |~ o
J (u,v) + =@, 7,)|° - J |, | dx = e+ (1),
p Q
(90)
N WIE + (@, )| = JQ (uylul? + py [vIP)dx + p*JQ(IuI”‘“lvlf3+1 +|ﬁn|““|vn|““)dx +(1). (91)
Ry ae Nip
Since {J' (u,v), (u,v)) =0, then T (u,v) + % =c <NLip< ;;(l ) , (95)
~ P _ ~ |+l |~ B+ °
“(u"’ V”)” =p J-Qlu"l |V”| dx+ (1). (92) and hence, J(u,v) <0, for (u,v) € E.
On the other hand, we have the following equation:
We may therefore assume that
PO P *
|@n )" — L T =2 -1 J Iz, 7, dx > 0, (96)
(93) p 0

p*J |ﬁn|“+1|§n|ﬂ+ldx — Lasn — + oo.
Q

From the definition of S{;"*, we obtain the following
equation:

.
1@ 7,7 283}5‘12“ |an|““|vn|’3“dx>P " (94)
Q

Thus, L>S7" (L/p*)P'?". Assume that L>0, then
L= (p*)"” P (st

Passing to the limit in equation (90), we obtain the
following equation:

which vyields a contradiction. Thus, (u,,v,) — (u,v)
strongly in E. O

Lemma 7. Let A, B satisfy equation (59) and u, as in Lemma
4 with JQIuelp dx = 1. Then,

sup J (tAu,, tBu,) <c". (97)

t>0

Proof. We have the following equation:
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1 .
] (tAu,, tBu,) S;tp<n(AuE,Bu£)||P — (AP + B”)Huellﬁ) — P A, (98)
Denoting by r (tu,) the function in the right-hand sideof ~ is the maximum point for r. So,
the last inequality. A forward computation assures that
1p*~p
(A, Bu)|” iy (AP + BD)Jue |, (99)
0= p*A‘”lBﬁ“ >
Nip
1 . . N/p
J (tAu,,tBu,) < (NL—p><F) [SP((/M)/P )Qzll (u,) + ¢ P (@rp )QZT (u,) (100)
¢ = inf max,¢ (o ;,J (¢ (1)),
By Lemmas 3 and 4 and for small ¢, we obtain the ¢eT (102)

following equation:

sup](tAus, tBLlE) < C*, (101)
0
and thus, equation (97) holds.
Now, we can prove Theorems 2 and 3. O

Proofs of Theorem 2 and 3. By Lemma 5, there exists
a Palais-Smale sequence a (P —S), sequence in E with

+ 1 1 + + +|atl) +p+
e IR T A e o L N T A

Repeating the above process for J*, we obtain a non-
negative solution (u, v) to the problem (cS’Zi:ZZ ). From (%)
and by using the maximum principle, we conclude that > 0
and v>0.
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