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This paper aims to study the existence and uniqueness of the solution for nonlocal multiorder implicit differential equation
involving Hilfer fractional derivative on unbounded domains (a, 00),a > 0, in an applicable Banach space by utilizing the Banach
contraction principle. Furthermore, we discuss various types of stability such as Ulam-Hyers—Rassias (UHR), Ulam-Hyers (UH),
and semi-Ulam-Hyers-Rassias (SUHR) for nonlocal boundary value problem. Absolutely, our results cover that several outcomes

have existed in the literature.

1. Introduction

The subject of fractional calculus is an extension of classical
calculus, and this means extend an integer order to an ar-
bitrary order. In the field of fractional calculus, there are
many definitions of integrals and derivatives. Most of the
general public fractional definitions are Caputo and Rie-
mann-Liouville (R-L), which attracted many researcher to
extend differential equations of integer orders to fractional
such as [1]. Newly, Hilfer has connected the Caputo and R-L
derivative by a general formula, and it is known by Hilfer or
generalized R-L derivatives [2], which is attracted attention
of many authors in the literature, such as [3] studied the
Ulam stability and existence results of differential equations
in the sense of fractional Hadamard and Hilfer derivatives.
Bulavatsky [4] proved the closed solutions to several
problems for the anomalous diffusion equation involving
Hilfer fractional derivative. The author of this work [5]
derived an equivalent form of the Hilfer derivative. Fur-
thermore, the authors in [6] constructed operational cal-
culus of generalized R-L derivatives and used it to solve
linear equation of n—term with constant coefficients via
Hilfer derivative. The authors in [7, 8] established existence

and uniqueness of solutions for a nonlinear Hilfer fractional
problem in weighted spaces by employing various fixed
point theorems. Thabet et al. [9] studied an abstract Hilfer
fractional integrodifferential equation via technique of
measure of noncompactness and established continuous
dependence of e-approximate solutions by using generalized
Gronwall’s inequality. In 2020, Abdo et al. [10] investigated
sufficient conditions UH stability and the existence and
uniqueness of solutions for y-Hilfer fractional inte-
grodifferential equations by Schaefer, Banach, and Schauder
theorems with helping of generalized Gronwall’s inequality.

The subject of fixed point theory represents a highly
important part of various areas of mathematics and may be
regarded a wealth in nonlinear analysis. The fixed point for
an adequate map is equivalent to the existence and
uniqueness of the solutions for many engineering problems
and realistic phenomena. We indicate that some works have
been concerned on fixed point theorems and its applications;
for example, the authors in [11-13] proved UH, UHR,
sUHR, and asymptotic stability as well as the existence and
uniqueness of solutions for some fractional problems by
topological degree theory and Banach contraction principle.
The Banach, Schauder, and Monch fixed point theorems
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with helping of the measure of noncompactness used to
study some qualitative properties and stability of fractional
integrodifferential equations [14, 15]. Moreover, several
fixed point theorems are employed to treat the qualitative
properties of various class systems such as implicit problems
[16, 17], hybrid multifractional problem [18], and thermistor
fractional problem [19]. In the literature, engineering and
physical problems have proved that the dealing with
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nonlocal initial conditions has a good effect more than the
classical initial, and see some papers considered nonlocal
conditions [20-23].

In 2018, the authors in [24] studied the existence,
uniqueness, and stability of the solution for the following
nonlocal implicit differential equation via Hilfer fractional
derivative on the bounded interval [0, T]:

Hay o (u) = h(u,go(u),Hi‘)glﬁ <p(u)>, wel=[0,T],

o 9 (0) = Z(?jq)(ej), € €J,0<a<l,0<f<lLy=a+f-ap.
=1

In 2021, the authors of these works [25, 26] established
sufficient conditions of the existence and uniqueness solu-
tion and discussed UHR stability, UH stability, and sUHR
stability for initial y—Hilfer fractional integrodifferential
equations. Ali et al. [27] discussed the stability of
pantograph-type implicit fractional differential equations
with impulsive conditions. Also, the existence, uniqueness,
and UH stabilities result for a coupled y—Hilfer fractional
integrodifferential equation on bounded domains in-
vestigated by [28]. Almalahi et al. [29, 30] established
qualitative theories for fractional functional differential
equation with boundary condition and finite delay as well as
a coupled system of hybrid fractional differential equations
via ¢—Hilfer fractional derivatives. Very recently, Xie et al.
[31] investigated some qualitative properties of multiorder

(1)

differential equations with initial condition involving R-L
fractional derivatives of the following form:

{ (D)o w) = h(1t.p (. *D'p W), ue ] =[0,00)

U P ()] = 0,
(2)

where & (RD) = R®™ — Z?;llchQ%’j,n e N.

Inspired by these works [24, 31], this work aims to study
the existence and uniqueness results along with stability
types of the UH, UHR, and sUHR for the following nonlocal
multiorder implicit differential equation involving Hilfer
fractional derivative on unbounded domains:

. n-1 " 0,9
H@ai’ﬁn(P(u) - Z ciHQ)aTﬁ"q?(u) = h(u> ¢(u)> HQQ* (P(u)>’

i=1

(3)

S V(a’) = Z 8j<p(€j), eju€l=(a00),az0,

j=1

where oy <ay<---<a,, P<By<-<Pch

i=1,2,...,n-1;j=12,...,m),n,meN,

@Zi’ﬂ" HD% are the Hilfer fractional derivatives of order
a,,a;,0¢€ (0,1], and types S,,[5;,9 € [0,1], respectively,
such that O<a,a; +0<a,, and S;ZV” is R-L fractional
integral of order (1-y,),0<y,=a,+p,—-«,B,<1, and
a function h: I x y x y — x, where x is the real Banach
space. The novelty and contributions of this paper are to
consider a more general problem containing n-term of
generalized fractional derivative in applicable Banach
space Z on unbounded domains, in order to include a lot
of outcomes which are existing in the literature, for
example, the results in [24, 31].

8j eR,
H@Zzﬁn)H

The organization of this work is as follows: in Section 2, we
recall some notations, definitions, and preliminaries. Section 3
establishes the existence and uniqueness of the solution of the
problem (3), in an applicable Banach space by utilizing the
fixed point theorem. In Section 4, we prove various types of
stability by employing the nonlinear analysis topics.

2. Preliminaries

Throughout this section, we present some interesting notations
and preliminaries, in order to use it in achieving desired results.
Let the Banach space of continuous functions denoted by
€ (1,x), with supremum norm II(pIIX = sup,;llo (u)|. For
reaching our goal, we define the following Banach space:
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H 09
. g9 1 lp ) "=z o]
E=40lpu) e€Ly), Dieu) €€ (I,y),su pud < 00, supu617<oo , (4)
where p > 1, endowed with the norm Definition 1 (see [35]). The R-L fractional integral of order
u>0 of a function g is given by
Iy ) "2 g 0] " -
ol = max] sup,ed “h supue st (5) @)W =i [ - gwana o)
It is easy to prove that (5, || -[|z) be a Banach space as

Definition 2 (see [35]). The R-L fractional derivative of order

a procedure in the works [32-34]. 4 (0,1] of a function g is given by

( a+g)(u) ( ’( ) )(u) ) ! 2 dd r (w-v)"*g(v)dv,u>a, (7)

where ® := d/du. Definition 3 (see [35]). The Caputo fractional derivative of
order p € (0,1] of a function g is given by

(C®Z+g)(u) (C"(l ”)Qg) (u) = J: (u- v)_”g” (v)dv, u > a. (8)

I(1-u)

Definition 4 (see [2]). The Hilfer fractional derivative of (D" = 5)5;1_” ) = Rt and returns to the Caputo de-
order 0< <1 and type 0<v<1 of a function g is given by ~ rivatives when » = 1, i.e., (1D} = M = D).

(.,v(l ) 11/(1
( ng)(u) ( yg( H) )(”)' ) Lemma 1 (see [36]). If O<u<1,0<v<1, 0<é<l,
E=pu+v—w,and ge L'(), 3! o'g € LX(I), then

Remark 1. We observe that the Hilfer fractional derivative
returns to the R-L derivative when v=0, ie,

(Si"9)(a")

D) () = $5. 0D, g () = g (1) - BTG —a)', Vuel (10)
Lemma 2 (see [36]). Let (>0 and u>0. Then, Lemma3. Leta>0,0<u<1,0<v<1,and g € L' (I). Then,
~ I'(() e
[Sh (w=-a) "] (1) = ((w)(t—a)‘“ w1
(11)
[*h (u-a)"] (1) = r(r((f) )(t —a)
( ®W°a+g) (w) =(S"g) (w), and(‘"’a Pyt )(u) = (S g) (w). (12)

Proof. The proof follows from Definition 4, with some  Definition 5 (see [37]). Let E be a nonempty set. Then,
calculations. O b: Ex E — [0,00) is called a generalized metric on &, if



1) d(u,v) =0,iffu=v, Vu,v € B
(1) d(u,v) =d(v,u),Yu,v € B
(i) D (u, v) <D (s, t) + D(t,v),Vu,v,t € B

Theorem 1 (see [37]). Assume that the generalized complete
metric space is denoted by (E,d), and let the operator
IT: E — E is contractive with the Lipschitz constant € < 1. If
there is a positive integer r, where d (IT""'u,IT"u) < co, for
some u € E, then the following hold:

(i) The sequence {I1"} converges to a fixed point u, € I1

¢ (u) i
A i=1 j=1

+Zc°“ Cip(u)+ S

provided that A =TI (y,) - 2?1:1 8;(e; - a)l" 1t £0.

o-l Vn
a" q)( )(u a)yy,

th(u, ¢ (u)," DY
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(ii)) uy, is the wunique fixed point
E* ={v e E|d(IT"u, v) < 0o}
(iii) if v € E*, then d(v,uy) <1/1 — €d (Ilv, v)

of II in

3. Existence and Uniqueness of Solution

Let us start this section by deriving the integral solution of
the problem (3), as in the following lemma.

Lemma 4. Let a function ¢ be continuously differentiable.
Then, the solution of the system (3) is equivalent to the fol-
lowing Volterra integral equation:

u-ayl ' & w-a) ' & e H e 6,9
= S Y 0e(e) o 2 8,Suh(es 0(e;). "D o(e)))

-
I
—_

(13)
¢ (w),

Proof. By applying .2 on both sides of (3), then using
Lemmas 1 and 3, we get

¢(u) = Iy + Z 3% Ha /3,(/)(”) n O’Zﬁh(anD(U),H@Z’f)(p(u))
(14)
——ﬁ‘;ynq)( )(u a4 ZCSO‘ "o (u) + “'a"h(u (u)," 2% (u))
- r(yn) & i Sar > P ’ a P .
Now, by putting u = €; into equation (14) and multiplying
by §;, we get
5 _ 8; c";+}’n(P( ) - e.oc - ~%, 0,9 15
o) = 22 M ey S el v nle) Bele). 09
Then,
S (a’) = > 5;0(e;)
=1
~1-y, +\ m _ n-1 m
S PO S o (e -a) Y et S s (16)
n j=1 i=1 j=1
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which yields that

1-y, F(Yn) < @, < r(Vn) < a, 0,9
Sy g(at) = =) lc,.sm Zléjgo(ej) ey Zlajsa+h(ej,<p(€j),ﬂgm 9(e;)) (17)
i= = Jj=
where A =T(y,) Z d;(e; - a)’ '#0. Hence, by (A;) Suppose that f,(-), f,(-)=0 are continuous
substituting equation (17) 1nt0 equation (14), the proof is functions and the continuously differentiable function
finished. O h: I x Ex 2 — B such that

Next, we need to present the following assumptions
which are required to investigate the existence and
uniqueness of the solution of the problem (3).

“h (u, (1+ 1), (), (1+ 1)@, (W) = h(u, (1+u’)p, (w), (1+u°)9, (”))" <fi (”)|l¢1 (1) — ¢, (“)"

(18)
+ £ g, ) -7, W),

far all ¢,,¢,,9,,9, € Eandu eI (A,) There exist the constants P,Q, L, 2 > 0, such that
0<P+Q<1, which are verifying the following

requirements:
e nlol]) | <

et gt u)+ f,(u
) ( up) a*[fl() fz( )]}

uel

Qu-ar! o
sup{ |A1|/l(1+up <Z|c| ;|8j|(1

sup{ g +u") Z g%

uel
(19)
Qu-a) 1
su s 00 + Sk (1,0,0)|| + <L < oo,
ue?{ AI(T+ I
r _\-6
Q — sup{w} < 00,
uel r(Yn - 9)
where Q = Qor1, and % = &, or a,, — 6. O  Proof. In the light of Lemma 4, we consider the operator
IT: E — E defined as follows:
Theorem 2. Suppose that (A,) and (A,) are fulfilled. Then,
the problem (3) has an one and only one solution on un-
bounded interval I.
w-a)y 'l & w-ar ' & H 0,9
(Tlgp) (u) = . 1 foRS 3 Z;(qu)(ej) L Z;Sjﬁwh(ej, (p(ej), D (p(ej))
1= J= Jj=
(20)

+ Z ¢S () + Sh(u, 9 (1), D 9 ().
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Clearly, IT s itself mapping. Since for any ¢ € E, by using
(Ay) and (A,), we have

I(Tg) W)l _ (u - a)’ - .
O < iy 2 1 ol & el ot

L w—ay
Al 2 Z|‘S

Perstr st

(u o (u), i‘)iﬂo(u))”

( ) O~ o, —«;
IAMI 1a+uf’)ZI | S Z|‘SJH"P(€1 [+ (1+ (1+d) Z|C|°' Nl @)l

(u ayl!

|A|(1+up) Z|8

( ),H@;Sf’ga(ej)) - h(e;0,0)|

(¢;,0,0)]

(u a)'"”
|A|(1+u”) Z|6

+

(w0 . " 0 00 ) - o, o>|| S (1,0,0)]

1 g
(L+uf) ™
(U A" 4 o

“1al 1+uP)Z| <l ZWHq’ N+ p)Z|c| o)l

W)

(21)

u-—a)’ 1 m o ( ) QDZLS‘P(ej)
+|(A|(1:up)z| |:f1 )y q fz( )%‘

(-0, 0)||

(u a)'"”
Al ) 2 Z 3,155

1 e lp (W "2 ”>\| 5
) «sw[fl()(l Ry vy (1 7} S lh (0,0
(u—a)y II<p|I~ G loll: < g
AT+ ) ;I al Sa Z|‘S| 1+ 1iuP)Z| o S (1 + )
(u—a) ols & g% lolls  ~a,
R ;'5 )+ Lo+ gy S 100+ £,0)

(u a)l"”
|A|(1+up) Z|8

< (P+Qllglz + L<co.

(,,0,0) “ + s Sk (1, 0,0)]|

u’)
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Also, by using Lemma 3, we find

D196 1) -y o
u 1+u N F(E}Z g)|AT1+uP)Z|C| Z"S‘”‘P )|

a,—o;—0

|A|(1 +uf

) +up) Z Jeil Sl )l + (

iy o )

Qu-a)" 'lgls §

Dl o DI )+ 1 S el 4w)

i=1

Qu-a)" gl &
[Al(1 + ) Z|6

S [1(6) + 1))+ 1y S L @0+ 0]

Q(u a)’”
NET) Z\a

(e;,0,0)] + Sk (u,0,0)]

(1)

< (P+Q)lollz +L<oo.

In the following, we establish that IT is contractive mapping
on E. For any ¢, ¢ € B, and by using (A,) and (4,), we get

[[(TTg) (u) — (ITp) ()l ( ot g _
Pt Z|C| Z|5i|||‘l’(€f)“/’(€j)”

1+ _|A|1+u” £

(7 Ll oo -5t

f:l ey S ol (ol "2 0(e) - H{ep5(5). 21506
(1: o (u o), @i’f’(p(u))—h(u,a(u),%zf’a(u)>”

n-1
ST 1a+)—u ,-Z| IS “Z|5 llote)l+ gy 2 st oo

( ()" D, 90( ))“

P LORCYl [ ()"0
Sa| (e 7#2 €
[ (e ) <1+e,>

0,9 H09_
Do) =D, ¢(u)
| e [fl( =gl )|| ”

(u a)"”
|A| 1+u Z|

+

(1+u ) (1+u°) (1+uf)

(u—a)” " [2E %G Il ?llg goe
SWQ o[S; Z|aj|(1+€g) <‘1’+Z ;, |55 (14 o)

(u—a)" "o -l
A ) 218

(1+u)

<(P+Qly-ols.

S5 [fi(e) + Fale)] + 2= Pagn £y 4 £, ()

H]

(22)

(23)
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Similarly,
0,9 0,9
|72 Tig (1) - ", 1 )|
1+uf
Qu-a)""llp-pls § a0, o
31 (1 + €
IA[(1+ ) §E| 1% .22L2|( +¢))
o~ Ol ' | oot 1+u”)
(1+u) £ Z' |8 D (24)
Qu-a)""'lp-9ls
Al 1+MP) [fl +f2( )]
lp —olls %
+£+Z)meuxw+nwn
<(P+Qlg -9l
Therefore, we deduce that [Ilp-TIIplz:<(P+Q) 4, Stability of Solution
¢ — @llz, which yields that IT is a contractive operator, since

P +Q € (0,1). In view of the Banach contraction principle,
IT has an one and only one fixed point ¢, in E, which is
verifying I1g, = ¢,. Hence, problem (3) has an one and only
one solution on unbounded interval (a, 00). O

N lo () - p(w)
%W@—ﬁﬂMe”lﬂf

where y (1) is a nonnegative increasing continuous function
on unbounded interval I. Also, the metric b, (-) is defined by

Mell lp () -

<My (u),

Pl _

In this situation, in order to discuss UHR stability, UH
stability, and sUHR stability, we need to introduce applicable
metrics D, (-) and d, () on Banach space Z. The metric b, (-)
is defined by

||H®6 9(/)(14) ®09¢ (u)"

1+uf

<My (u) ]» (25)

” Do) - "D (p(u)“
, (26)

D, (¢, 9) = sup,;

w(u)(1+u”)

v(u)(1+u)
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where ¥ (1) is a nonnegative decreasing continuous function
on unbounded interval I. We can guarantee that d, (-) and
9, (-) are metrics on Banach space E, as given in the work
[38] and references therein.

In the following, we will give the definitions of UHR,
UH, and sUHR stability, and then state and prove their
theorems.

n-1

2 S

i=1

(u- a))’n 1

m Yn—
0 (u) - _— Z‘SJ(P( ) (u a)
st

a 6,9
o (1) - sazh(u, o), "D q)(u))

y(u),uel,

6,9
Ho o u) -

r (yn - G)A

i=1

—ZCIS“ 0 - 55 (w0 (), "Dyl p )

~a,—0

<5 y(u),uel,

where y(u) is a nonnegative nondecreasing continuous
function on unbounded interval I, and there is a unique
solution ¢, of the problem (3), and a constant M >0 in-
dependent of ¢, ¢,, where

o ) = 9o (W)

.7 <My (u),Vuel,
u

(28)
[ 2o ) - "0 gy )]

1+

<My (u),Vu e L.

i=1 j=1

-5 0 - 8100, 2 )

<Srwuel,

0.9 (Yn) (Ll _ a)y -6-1 n-1 . m
D (u) - oSy s
Y F(Yn_G)A ; le ! ( ])
L-.a —a; 6 ~,—0 H 09
_zc S5 h( p (1), ‘é)m(p(u))'

T n( _ )yn—G—ln—l - m
@S go S ap(e;) -

Yn—1 n-1 m Vo= 1
(p(u)—(u a) Cl *azéﬂ’( ) %

Definition 6 (see [12]). The solution of the problem (3) is
UHR stable if for every continuously differentiable function
¢: I = (a,00) — E verifying

1 m

« 0.9
Z{‘Sf "h<€J’¢( i) De ‘P(ej)>
p=

Moreover, if we replace y (u) by w > 0, then the solution
of the problem (3) is UH stable.

Definition 7 (see [12]). The solution of the problem (3) is
sUHR stable, if for every continuously differentiable func-
tion ¢: I = (a,00) — E verifying

(29)

u—ay Hegy™
r(n)((y—> Sas k(e 0(e;). D0 ()
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where w >0, and there is a unique solution ¢, of the problem
(3), and a constant M >0 independent of ¢, ¢, for some
positive decreasing continuous function y(u) on un-
bounded interval I, where

Journal of Mathematics

Theorem 3. Suppose that (A,) and (A,) are fulfilled, v (u)
be a positive continuous increasing function on unbounded
interval I, and ¢: I = (a,00) — B is continuously differ-
entiable function verifying

lo @) = g0 ()]
T <My(u), Vucel,
(30)
6,9 6,9
[ o ) - "7 g w0
27 <My (u), Vuel
_aynln—l am u al/nl m 6,9 nl o —a
o(u) - ) Z ¢SS Z 8j¢(e-) ( A) Z 5JS§ h(e],qJ( ) D, q)(ej)) - ¢S e
i=1 = = i=1
(31)
%Zzh(u,¢(u),H§>ZLS<p(u))” <Gy yw), wel,
H 0.9 T (y,) (=)' g Ly =) "t & o H 09
D e (u) - Iy, —6)A Z S ;(?j(p(ej) - Ty, ~ 0)A ;6j\sa+h<ej,go(ej), D, <p(ej)>
. J : (32)
- Z C; Sa" i 9<p (u) - nggh<u, o (1), H@Zf(p(u)) < 522791//(14), ucel.
i=1
Then, there is one and only one solution ¢, € E such that
loeo-gow] _ K
1.7 g Q)l//(u), Vuel,0<(P+Q)<1,
(33)
[ o0 - "2, (u>|| K et 0etpeOret
2.7 _(P+Q)v/(u), uel,0<(P+Q)<1,

where sup, €l(u—a)'/T(n+1)(1+uP)<K<oo, fory =
a, or «, — 0, which yields that the solution of problem (3) is
UHR stable and consequently is UH stable.

I(TTg) () —

(1) @Il _ My (u) (u - a!

Proof. Let II: E — E be the contractive operator as given
in (20).

Now, for ¢, ¢ € E, we present from metric b, (-) and the
assumptions (4,), (A,) that

1+

Mv/(u)
(1 +u)

Z| {So % (1+ )

i=1

My () (u—a)'!
|A](1 +u”)

Mw(u)
BRSO

o [f100) + f5 ()]

T A1+ W)

Sa [file

S lefs $o)(1+¢)

)+ fa(e)]
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<(P+QMy(u), Yuel,0<(P+Q)<1,
"2 o) - "D 190 pry () (-
< ZH‘”““ |6'1+e
1+ IAl(1+ )
Mll/(u) (_-.oc -~ p
(1 +uf 121: I (1+u7)
MOy () (u — a)’! o,
|A|(l+up) Z|8‘S [fl +f2( )]
MI//(M) e—lx -6
(1+ p) [fl(u)"'fz(”)]
<(P+QMy(u), Vuel,0<(P+Q)<1.
(34)
Hence, we obtain
D, (TIIp, ITp) < (P+ Q)M = (P+Q)d, (¢, 9),0<(P+ Q)< 1. (35)
In view of the inequalities (31) and (32), we have
() (1) — (T1g) (1)l (u—a)™
v ST e W KW, uel (36)
"2l o0 - "5 g ] )
a a _ (37)
Tl <SP gy ew) VW T Kv W, uel
Due to the inequalities (36) and (37), we get Based on (i) and (ii) of Theorem 1, there is one and only
one fixed point ¢, such that I1g, = ¢,. As a consequence of
2, (¢, Ilp) <K <oo. (38) (iii) of Theorem 1, we can conclude that
b, (¢, 90) S— b, (Tlg, ) S — 0<(P+Q) <1 (39)
I(P’q)() —l_(P+Q)1 ¢’¢—1_(P+Q)’ .

According to the above conclusions, the solution of
problem (3) is UHR stable. Along with this, if y (1) = 1, then
the solution of problem (3) is UH stable. O

Theorem 4. Suppose that (A,) and (A,) are fulfilled, v (u)
be a positive decreasing continuous function on unbounded
interval I, and ¢: I = (a,00) — B is continuously differ-
entiable function verifying
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VYu—1 n-1 PR e
o () - (w—a)y" a) chc.a az8j¢(€j)_(u Z)
=1

I

(SjSZZh(ej,(p(ej),Hi)lego(ej)) Zc"“ o (u)

(40)
H 0.9 o
-3 2h<u,go(u), D, (p(u))“ <Jjw, uel,
R O (Rl L <P SRS (0 (AT L S el
3o - Y ast z oler) = = 08 (e 0(e;). @i ()
! (41)
_ Z ;o e(p(u) - Sgi_gh(u,go(u),HQ)zls(p(u)) <3% %0, uel,
where w > 0. Then, there is one and only one solution ¢, € E,
and a constant ¥ >0 such that
||(p(u) @0 (u)“ wKY
17 _(P+Q)1//(u), Vuel,0<(P+Q)<1,
(42)
Ha o (u) - "D g, (u)” DKW
7 (P+Q)1//(u), Vuel,0<(P+Q)<1,

where sup, €I (u—a)"/T(n+1)(1+w’)<K<oo, forn=a,  Proof. Similar to Theorem 3, we take the contractive op-
ora, — 0, which yields that the solution of problem (3) is  erator II: £ — E as given in (20). From metric d, (-) and
sUHR stable. assumptions (A;), (4,), we find that

I(Tg) () — (ITg) (W)

<(P+QM, Vuel,0<(P+Q)<1

v(u) (1 +u)
(43)
0,9 09
||Hs>a+ Mg (1) - "D H(p(u)"
<(P+QM, Vuel,0<(P+Q)<l1.
v(u) (1 +u’)
Then, we get 1
<V, Vuel,0<V. (45)
b, (Mg, ITp) < (P + QM = (P + Q)d, (¢, 9),0< (P + Q< L. ¥ (u)
(44) Based on the inequalities (40) and (41), we obtain
Due to the positiveness, continuity of a decreasing
function v (u), Vu € I, we find
I(¢) (u) — (Ig) ()| w(u—a)™ B
ywrw) P ) e HEh (46
1 p () - 1D, Tlp () et
“ " <SUp,er w(u - a) =KYw, ucl (47)

v(u) (1+uf) v()I (o, -0+ 1)(1+u”)
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From the inequalities (46) and (47), we have
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In the light of (i) and (ii) of Theorem 1, there is one and
only one fixed point ¢, such that ITgp, = ¢,. As consequence

2, (¢, 1) <K¥w < co. (48) from (iii) of Theorem 1, we can deduce that
1 KYw
b, (9, G"O)Smbz(n‘/’) (P)Sm,0<(P+Q)< L (49)

According to the above conclusions, the solution of the
problem (3) is sUHR stable, and the proof is finished. [

5. Conclusion

This paper declared that, by convenience Hilfer fractional
derivative and Banach contraction principle in an applicable
Banach space, the nonlocal multiorder implicit differential
equation (3), on unbounded domains (g, 00), a > 0, provides
existence and uniqueness of the solution as well as the
stability of UHR, UH, and sUHR. Our problem is more
general and returns to the sense of the Caputo fractional
problem when f;,9=1, (i=1,2,...,n) and returns to the
sense of the R-L fractional problem  when
B»9=0,(=12,...,n). Moreover, these results were
generalized to include many outcomes are existed in the
literature, for example, the results in [24, 31]. As a future
target, the studied problem with this approach would be
more exciting if it was discussed under integral value
conditions via y—Hilfer fractional operators.
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