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Tis work aimed to present the infuence of the magnetic feld and Ohmic dissipation on the non-Newtonian Casson fuid on a vertical
stretched sheet to numerically solve the problem. Here, the variable thermal conductivity is taken as a linear function of temperature.
Electric felds, thermal slip, and viscous dissipation efects are taken into consideration. A collection of physical conditions on the sheet’s
enclosing wall and the momentum and heat transport processes are expressed as partial diferential equations (PDEs). Some of the
similarity transformations are used to convert the collection of PDE into a system of ordinary diferential equations. Tis system is
numerically treated by implementing the Vieta-Lucas spectral collocation method. Some observations are made for the investigation of
method convergence. Te efect of some diferent parameters on the velocity and temperature profles is graphically represented.
Additionally, this area of study has signifcant practical applications in a variety of industries, including paper production, thermal power
generation, nuclear reactors, cooling of metallic sheets, glass fber, and lubrication.

1. Introduction

Te fow of non-Newtonian fuids (n-NFs) has gained a great
deal of interest in recent decades because it has a wide range of
important technological applications. Tis type of fuid has
many uses in industrial applications, including the wide-
spread use of molten plastics, blood, slurries, and paints. Non-
Newtonian fuids respond to stress in diferent ways: some
growmore solid and some become more fuid. Depending on
the amount of tension applied or the length of time the stress
is applied, the properties of non-Newtonian fuids may alter.
Tese n-NFs are divided into distinct classes based on their
diferent properties. As a result, the expanding kinds of n-NFs
have recently aroused the curiosity of researchers. Te n-NFs
models of many distinct types have been studied, including

the power-law model [1], the viscoelastic model [2], the
Carreau model [3], the Maxwell model [4], the Williamson
model [5], the micropolar model [6, 7], the Powell-Eyring
model [8], and the Sisko model [9].

Te Casson model class, which combines shear-thinning
with shear-thickening, is the most popular of the aforemen-
tioned non-Newtonian models. If the fuid’s shear stress does
not exceed its yield stress, the Casson fuid model behaves
similar to a solid. Researchers became particularly intrigued by
Casson fuids because of their uses in the manufacture of bi-
ological fuids, pigments, and China clay [10]. Tere are
a number of intriguing articles pertaining to the Casson fuid
fow model [11–13]. Due to their many applications in fuid
mechanics, biology, viscoelasticity, engineering, and physics,
ordinary and PDEs have been the subject of many
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investigations. As a result, the solutions of ordinary diferential
equations (ODEs) of physical relevance have received a lot of
attention.We used the Vieta–Lucas spectral collocationmethod
(SCM) to solve the nonlinear ODEs that regulate the physical
problem quantitatively.

Having carefully read the aforementioned works and to
the best of our knowledge, for the non-Newtonian Casson
fuid fow with viscous dissipation and slip velocity, no at-
tempt has been made to obtain the numerical solutions by
using the Vieta–Lucas spectral collocation method. Due to
this, the goal of this research is to investigate the approximate
solutions for the model under study by implementing the
SCM based on the shifted Vieta–Lucas polynomials (VLPs)
[14]. Te most famous advantage of these methods is their
capability to generate accurate outcomes with a very small
degree error of freedom [14]. Te orthogonality property of
the shifted Vieta–Lucas polynomials is used to approximate
functions on its domain. Tese polynomials have a main and
important role in these methods for ODEs [15]. Many re-
searchers used and implemented these polynomials to solve
numerically many problems, such as in [16], they were used to
solve the nonlinear generalized Benjamin–Bona–Mahony–
Burgers equation, and in [17], they were used to solve the
sinh–Gordon equation.Te study’s novelty and purpose stem
from the fact that it is the frst of its type to implement the
proposed numerical technique to solve the proposed model.

2. Mathematical Modeling of the Problem

We considered the fow of a non-Newtonian Casson fuid
across the vertical rough stretching sheet that is electrically
conducting, steady, and incompressible. In the energy
equation relationship, the Ohmic dissipation, and viscous
dissipation properties are taken into account. Te motion of
the Casson fuid is produced by velocity Uw � ax. Te elastic
sheet’s plane is the x-axis selection, and the plane’s normal to
it is the y-axis as depicted in Figure 1. In this study, we
assumed that the fuid fow is constrained by the presence of
magnetic feld of strength B0, whereas the fuid temperature
is afected by the viscous dissipation phenomenon. Where u

and v are the velocity components in the x and y directions,
respectively. Likewise, the density of the Casson fuid is
symbolized by ρ. Te controlling nonlinear expressions are
as follows under the aforementioned assumptions [18, 19]:
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where β, μ, κ, σ, B0, T, cp, ], g, and δ are, respectively, the
Casson parameter, fuid viscosity, thermal conductivity, elec-
trical conductivity of fuid,magnetic feld strength, temperature
of fuid, specifc heat, kinematic viscosity, gravitational accel-
eration, and the coefcient of thermal expansion.Te subjected
boundary constraints are as follows [20]:
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(4)

u⟶ 0, T⟶ T∞, asy⟶∞. (5)

Here, it is crucial to highlight that this study considers
the slip velocity phenomenon, as shown by the frst portion
of equation (4), whereas the sheet is impermeable according
to the second portion of the same equation, where K denotes
the thermal slip coefcient and λ1 denotes the slip velocity
coefcient, both of which have the dimension m. Te di-
mensionless of velocity and temperature exists if we in-
troduce the following transformations [21]:
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where θ is the dimensionless temperature and f′ is the
dimensionless velocity. Furthermore, the accurate estima-
tion of the heat transfer mechanism can be achieved for the
assumption of fuid variable thermal conductivity. Tere-
fore, here, the thermal conductivity κ is assumed to obey the
following relation [22]:

κ � κ∞(1 + εθ(η)), (8)

where ε is the thermal conductivity parameter and κ∞ is the
ambient thermal conductivity. Evidently, equation (6) al-
ready meets the continuity equation (1). Utilizing the pre-
viously stated relations (6) and (7) leads to the following
governing equations:
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with the following applicable boundary constraints:

f(0) � 0,

f
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f
′
(η)⟶ 0, θ(η)⟶ 0, as η⟶∞, (12)

where the mixed convection parameter, slip velocity pa-
rameter, local electric parameter, magnetic parameter,
thermal slip parameter, Prandtl number, Eckert number are
defned, respectively, as follows:
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Te importance physical quantities in this study are the
skin friction coefcient and the local Nusselt number which
is given by the following equation:
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where Rex � Uwx/] is the local Reynolds number.

3. Procedure of Solution

3.1. Approximate the Solution. In this subsection, we give
some defnitions and properties of the shifted VLPs to solve
the problem under study in [0, Z]. We used the trans-
formation z � (4/ℏ)η − 2 to generate a new orthogonal
family of the VLPs on [0, Z] and so-called the shifted VLPs
which is denoted by VLs

k(η) and may be given as follows
[23, 24]:

VLs
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4
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Te polynomials VLs
k(η) yield from the following re-
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where, VLs
0(η) � 2,VLs

1(η) � (4/ℏ)η − 2. It is easy to fnd
that VLs

k(0) � 2(− 1)k,VLs
k(ℏ) � 2, k � 0, 1, 2 . . ..

Te function ψ(η) ∈ L2[0, ℏ] may be approximated by
ψm(η) as a fnite sum with the frst (m + 1)-terms as follows:
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m
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Figure 1: Schematic diagram of the model.
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Here, we used an approximate formula of D(n)ψm(η) of
the approximated function ψm(η) defned in form (18),
where the authors in [25] derived this formula in the fol-
lowing form:
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For more details about these polynomials and the con-
vergence analysis of approximations (18) and (19), see [25].

3.2. Procedure Solution Using SCM. We are going to apply
the proposed method (SCM) to solve numerically systems
(9) and (10). We approximated the unknowns f(η) and θ(η)

by fN(η) and θN(η), respectively, in the following form:
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By substituting from formula (16) and the formula (15)
in equations (9) and (10), we can get the following equations:
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We collocate the previous equations (21) and (22) with
N of nodes ηp to obtain the following nonlinear system of
algebraic equations:
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We substituted from equation (20) in the boundary
conditions (11) and (12) to expressed in the following
equations:
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Equations (23)–(26) construct a system of 2(N + 1)

algebraic equations. Ten, we used the Newton iteration
method to solve this system for the unknowns al, bl, where
l � 0, 1, . . . , N, to obtain the approximate solution.

4. Code Verification

By completing the particular validations shown in Table 1,
this section checks the technical correctness of the com-
pleted numerical code. For the case of Newtonian fuid
β⟶∞, Table 1 compares the numerical values of − f″(0)

that were reported by Hasnain et al. [26] for various values of
M2 when E1 � ∆ � λ � 0. Te fndings are seen to be in very
good agreement with the published studies. Terefore, Ta-
ble 1 ensures that the current numerical solutions are val-
idated against earlier literature.

5. Main Results

Te following fgures and table describe many pertinent
parameters related to dimensionless velocity, dimensionless
temperature, local Nusselt number, and skin friction co-
efcient. Firstly, the range of the parameters that govern our
model can be mentioned as 0.0≤M≤ 0.8, 0.0≤E1 ≤
1.0, 0.0≤∆ ≤ 0.5, 0.5≤ β≤ 0.5, 0.0≤ λ≤ 0.3, 0.0≤ ε≤ 0.6 and
0.0≤Ec≤ 0.6. Terefore, the fxed values for the same
controlling parameters can be employed through the
graphical illustrations: M � 0.2, E1 � 0.5,∆ � 0.2, β �

0.5, λ � 0.1, ε � 0.2, and Ec � 0.5. Te fuid velocity is
considerably suppressed when subjected to an increased
magnetic number, as seen in Figure 2(a). In actuality,
a stronger magnetic feld produces more drag force, which
slows down the movement of the fuid. Terefore, it is
projected that this drag force will have an enhanced efect on
the thermal feld at high magnetic number values as noted in
Figure 2(b). Physically, adding a magnetic feld increases
magnetic irreversibility; however, Lorentz forces reduce
fuid fow velocity and increase fuid temperature.

Figures 3(a) and 3(b) showed how the local electric
parameter E1 afected the profles of velocity and temper-
ature. Te increasing value of the local parameter in these
graphs demonstrates an increase in the momentum and
temperature felds of the Casson fuid. As a result, at higher
values of the local electric parameter, the boundary layer
(BL) thickness increases. Physically, the presence of an
electric feld may provide an induction force for the fuid
particles, causing the fuid fow motion within the boundary
layer to increase.

Te efects of the mixed convection parameter ∆ on the
momentum feld and the thermal feld are presented in
Figure 4 for diferent quantities of the parameter. Figure 4(a)
shows that at higher values of ∆, the velocity curves are of
a rising nature through the BL region. Furthermore, the
thermal feld is slightly diminished by the same parameter ∆
as observed from Figure 4(b). Physically, there is an increase
in fuid velocity and a minor reduction of the temperature
distribution due to the strong mixed convection parameter,
which works as a pressure gradient and dominates over the
resistance.

Figure 5 shows, respectively, how f′(η) and θ(η) felds
are afected by the Casson parameter β. Physically, the
Casson fuid behaves more similar to a Newtonian fuid
when the values of β are increased. Terefore, increasing β
results in a declining phenomenon in f′(η) and θ(η).

Figure 6 shows the characteristics of θ(η) and f′(η)

under the impact of the slip velocity parameter λ. Clearly,
greater resistive forces via the fuid layers are produced by
slip velocity parameter λ with bigger values, which reduce
fuid velocity and marginally raise the temperature. Physi-
cally, it is obvious that as the slip velocity impact rises, the
fuid fow becomes more impeded, limiting the thickness of
the boundary layer and the temperature distribution.

Figures 7(a) and 7(b), respectively, show the thermal
feld’s behaviors for the ranges of the thermal conductivity
parameter ε, and the Eckert number Ec were taken into
consideration. Tis analysis shows that increasing the values
of Ec and ε improves the temperature distribution. Addi-
tionally, the thickness of the thermal BL increases as the
same parameters are gradually improved. Physically, an
increase in the Eckert number increases the thermal system’s
kinetic energy. As a result, the thermal feld grew. Also, the
fuid receives thermal energy from the thermal conductivity
characteristic. More thermal energy will travel through the
fuid when this value rises.

Te curves in Figure 8 show how temperature profles
have changed over time about changes in the Prandtl Pr and
thermal slip ST parameters. Figure 8(a) shows temperature
profles for three diferent values of Pr (Pr � 1.0,Pr �

2.0, Pr � 3.0,) at (ST � 1.0), while Figure 8(b) shows tem-
perature profles about the thermal slip parameter ST at
Pr � 2.0. Tis graphical illustration shows that both pa-
rameters show a discernible diminishing in the sheet tem-
perature θ(0) and for the temperature profles θ(η).
Physically, these observations are made because the thermal
properties between the heating fuid and the solid surface are
greatly weakened by the advanced values of the Prandtl and
thermal slip parameters.
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Table 1: Comparison of − f″(0) with the results of Hasnain et al. [26] when E1 � ∆ � λ � 0 and β⟶∞.

M2 Hasnain et al. [26] Present work
0.0 1.000 1.000000000
0.2 1.095 1.095101208
0.5 1.224 1.223999820
1.0 1.414 1.414104019
1.2 1.483 1.482998590
1.5 1.581 1.581205891
2.0 1.732 1.732015980
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Figure 2: (a) f′(η) versus M. (b) θ(η) for picked M.
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Figure 3: (a) f′(η) versus E1. (b) θ(η) for picked E1.
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Figure 4: (a) f′(η) versus ∆. (b) θ(η) for picked ∆.
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To observe the behavior of parameters afecting the local
Nusselt number NuxRe− 1/2

x and the skin friction coefcient
CfRe1/2x , Table 2 is now generated. Tis table makes it
abundantly clear that the CfRe1/2x and the NuxRe− 1/2

x have
inverse relationships with the magnetic number. Te local
Nusselt number NuxRe− 1/2

x decreases as both the thermal
slip parameter and the magnetic number rises, yet the
CfRe1/2x upsurges. Additionally, the NuxRe− 1/2

x rises together

with the value of the thermal conductivity parameter,
whereas the CfRe1/2x declines. Te skin friction coefcient
CfRe1/2x also decreases when the Eckert number rises, as does
the NuxRe− 1/2

x , whereas the reverse trend is noted for the
Prandtl number. Additionally, the CfRe1/2x decreases, but the
local Nusselt number increases when the local electric,
mixed convection, Casson, and slip velocity parameters are
improved.
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Figure 5: (a) f′(η) versus β. (b) θ(η) for picked β.
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Figure 6: (a) f′(η) versus λ. (b) θ(η) for picked λ.
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Figure 7: (a) θ(η) versus ε. (b) θ(η) for picked Ec.

Journal of Mathematics 7



6. Conclusions

Under the impacts of Ohmic dissipation and the slip velocity
conditions, the mixed convection fow of non-Newtonian
Casson fuid is studied numerically. To compute and outline
the changing reactions of fow velocities and temperature
when the physical parameters are altered in their proper
ranges, SCM based on the shifted VLPs is introduced as
a numeric technique. Te important results are listed below:

(1) Te local electric parameter causes a rise in local
temperature and the Nusselt number.

(2) Increasing the Ec values causes a decrease in the local
Nusselt number and skin friction coefcient.

(3) Te heat transfer rate increases while the local skin
friction reduces for high Casson and mixed con-
vection parameter values.

(4) By raising the value of the slip velocity parameter, the
temperature distribution is enhanced with slight
changes in thermal boundary layer thickness.

(5) Te presence of M enhances the local skin friction
coefcient, but it also limits fuid fow and raises the
fuid temperature.

(6) In contrast to ∆ and β, the temperature marginally
drops across the boundary layer.

(7) Since the modifed Darcy law is more appropriate for
the non-Newtonian fuid fow within the porous
medium, therefore, in the future, this work can be
expanded by taking into consideration the impact of
thermal slip and the variable heat fux on the fow
behavior through a porous medium that is con-
strained by the modifed Darcy law.

Nomenclature

a: Constant (s− 1)

B0: Magnetic feld strength (T)

cp: Specifc heat (Jkg− 1K− 1)

Cf: Skin friction coefcient
E0: Electric feld (Vm− 1)

E1: Local electric parameter
Ec: Eckert number
g: Gravitational acceleration (ms− 2)

f: Dimensionless stream function
K: Termal slip coefcient (m)

M: Magnetic parameter
Nux: Local Nusselt number
Pr: Prandtl number
Rex: Local reynolds number
ST: Termal slip parameter
T: Temperature of the fuid (K)

Tw: Sheet temperature (K)
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Figure 8: (a) θ(η) versus Pr. (b) θ(η) for picked ST.

Table 2: Values for CfRe1/2x and NuxRe− 1/2
x for diferent quantities

of M, E1, ∆, β, Pr, ST, λ, ε, and Ec.

M E1 ∆ β λ ε Ec Pr ST CfRe1/2x NuxRe− 1/2
x

0.0 0.1 0.2 0.5 0.1 0.2 0.5 2.0 1.0 1.309561 0.340459
0.5 0.1 0.2 0.5 0.1 0.2 0.5 2.0 1.0 1.443031 0.246962
0.8 0.1 0.2 0.5 0.1 0.2 0.5 2.0 1.0 1.624750 0.124142
0.2 0.0 0.2 0.5 0.1 0.2 0.5 2.0 1.0 1.332701 0.324096
0.2 0.5 0.2 0.5 0.1 0.2 0.5 2.0 1.0 1.298980 0.343232
0.2 1.0 0.2 0.5 0.1 0.2 0.5 2.0 1.0 1.258032 0.353212
0.2 0.5 0.0 0.5 0.1 0.2 0.5 2.0 1.0 1.551961 0.292947
0.2 0.5 0.2 0.5 0.1 0.2 0.5 2.0 1.0 1.298980 0.343232
0.2 0.5 0.5 0.5 0.1 0.2 0.5 2.0 1.0 1.280811 0.365372
0.2 0.5 0.2 0.5 0.1 0.2 0.5 2.0 1.0 1.298980 0.343232
0.2 0.5 0.2 1.0 0.1 0.2 0.5 2.0 1.0 1.089781 0.356141
0.2 0.5 0.2 5.0 0.1 0.2 0.5 2.0 1.0 0.866855 0.372145
0.2 0.5 0.2 0.5 0.0 0.2 0.5 2.0 1.0 1.623691 0.281660
0.2 0.5 0.2 0.5 0.1 0.2 0.5 2.0 1.0 1.299251 0.342753
0.2 0.5 0.2 0.5 0.3 0.2 0.5 2.0 1.0 0.943656 0.392202
0.2 0.5 0.2 0.5 0.1 0.0 0.5 2.0 1.0 1.301760 0.294773
0.2 0.5 0.2 0.5 0.1 0.3 0.5 2.0 1.0 1.298121 0.365601
0.2 0.5 0.2 0.5 0.1 0.6 0.5 2.0 1.0 1.290153 0.430821
0.2 0.5 0.2 0.5 0.1 0.2 0.0 2.0 1.0 1.334372 0.559788
0.2 0.5 0.2 0.5 0.1 0.2 0.4 2.0 1.0 1.306120 0.384397
0.2 0.5 0.2 0.5 0.1 0.2 0.6 2.0 1.0 1.283943 0.312069
0.2 0.5 0.2 0.5 0.1 0.2 0.5 1.0 1.0 1.280372 0.302028
0.2 0.5 0.2 0.5 0.1 0.2 0.5 2.0 1.0 1.298980 0.343232
0.2 0.5 0.2 0.5 0.1 0.2 0.5 3.0 1.0 1.306984 0.356784
0.2 0.5 0.2 0.5 0.1 0.2 0.5 2.0 0.0 1.274874 0.626389
0.2 0.5 0.2 0.5 0.1 0.2 0.5 2.0 1.0 1.298980 0.343232
0.2 0.5 0.2 0.5 0.1 0.2 0.5 2.0 2.0 1.308183 0.234157
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T∞: Temperature away the sheet (K)

u, v: x− and y− direction of the fuid velocity (ms− 1)

Uw: Sheet velocity (ms− 1)

x, y: Cartesian coordinates (m)

Greek Symbols
β: Casson parameter
μ: Fluid viscosity (kgm− 1s− 1)

κ: Termal conductivity (Wm− 1K− 1)

κ∞: Ambient fuid thermal conductivity (Wm− 1K− 1)

η: Similarity variable
θ: Nondimensional temperature
]: Kinematic viscosity (m2s− 1)

ε: Termal conductivity parameter
δ: Coefcient of thermal expansion (K− 1)

∆: Mixed convection parameter
ρ: Fluid density (kgm− 3)

λ: Slip velocity parameter
λ1: Slip velocity factor (m)

σ: Electrical conductivity (Vm− 1)

Superscripts
′: Diferentiation with respect to η
∞: Free stream condition
w: Wall condition.
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