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As a novel metaheuristic algorithm, fruit fy optimization algorithm (FOA) can efectively deal with the inversion problem of one-
dimensional magnetotelluric data. However, FOA still has the disadvantage of premature convergence and falling into local
extreme value. Terefore, based on standard FOA, we improve the FOA algorithm by introducing evolutionary strategies. Firstly,
crossover and mutation strategies are introduced to improve the updating process of FOA population individuals. Secondly, by
improving the variation scale factor, the global search and local search capabilities of the algorithm are balanced, and these
improvements can accelerate the algorithm convergence. Te improved algorithm is compared with other algorithms. After the
benchmark function test, the improved algorithm has better optimization ability. Finally, the MT theoretical model and feld data
are used to test that the evolutionary strategy can efectively improve the convergence speed of the algorithm, and the inversion
accuracy of the new algorithm is greatly improved.

1. Introduction

Te magnetotelluric (MT) technology is an active electro-
magnetic exploration method using the natural electro-
magnetic feld as the feld source [1, 2]. Te MTmethod can
be applied to explore the electrical structure of the earth's
interior according to the theory that electromagnetic waves
have diferent frequenciesat diferent skin depths. Because
the MT method has the characteristics of large detection
depth (from the surface to thousands of kilometers un-
derground), is not afected by the shielding of high resistance
layer, and is sensitive to the low resistance layer, it has
become one of the main methods to understand the deep
electrical structure of the Earth. It is widely used in solid
mineral exploration, oil and gas exploration, and other felds
[3]. Te inversion of MT data is to infer the underground
geoelectric structure from the observation data. Te in-
version process is essentially an optimization problem, and
an optimization algorithm is needed to realize it.

Inversion methods can be divided into linear inversion
methods and nonlinear inversion methods. Te early MT

inversion methods are based on linear inversion theory, but
the inversion problem of MT inversion is nonlinear in nature.
Te linear inversion method needs to linearize the nonlinear
inversion problem and then use the optimization method to
fnd the extreme value. Te linearization process will in-
evitably produce errors, so the linear inversion algorithm
depends on the initial model and is easy to fall into the local
minimum. Compared with the linearization method, the
nonlinear inversion method has advantages. Te nonlinear
inversion method treats the inversion problem as a direct
solution of the nonlinear problem without systematic error
and involves no matrix inversion calculation, thus reducing
the computational complexity and improving the inversion
accuracy. Although the dependence of nonlinear inversion
algorithm on the initial model is greatly weakened, the search
space increases geometrically with the increase of model
parameters. Terefore, the development of efcient nonlinear
inversion algorithm has important theoretical and practical
signifcance.

Since the 1980s, with the development of computer
technology, many classical optimization algorithms have
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been proposed and applied to engineering calculation [4, 5],
economics [6], optimization and scheduling [7–12], resource
exploration, and many other felds. Especially in the 21st
century, metaheuristic algorithms (also named intelligent
optimization algorithms) have quickly become a research
hotspot of optimization algorithms, and many excellent
intelligent optimization algorithms have been proposed.
According to the principle of the algorithm, it can be mainly
divided into the following categories: (1) algorithms based
on biological evolution theory: e.g., genetic algorithm (GA)
[13–15] and diferential evolution (DE) [16–19]; (2) algo-
rithms based on swarm intelligence technology such as
particle swarm optimization (PSO) [20–27], ant colony
optimization (ACO) [28–30], artifcial fsh swarm algorithm
(AFSA) [31, 32], and fruit fy optimization algorithm (FOA);
and (3) algorithms based on physical phenomena such as
simulated annealing (SA) [33–35] and water wave optimi-
zation algorithm (WWO) [8].

Fruit fy optimization algorithm is a novel swarm in-
telligence optimization algorithm proposed by Pan [6]. Te
algorithm is based on the foraging behavior of fruit fies,
using their sense of smell and vision to sense their sur-
roundings and food. Te algorithm is easy to understand,
easy to implement, and computationally efcient. Terefore,
FOA is widely used in many felds such as in solving power
load forecasting model [36], GRNN parameter optimization
[37], joint replenishment problems [38], electricity con-
sumption forecasting [5], multidimensional knapsack
problem [39], structural optimization of transmission line
tower [40], and energy consumption prediction [41].

Although FOA algorithm is widely used, it still has some
problems such as insufcient global optimization ability, low
precision, and slow convergence speed. Terefore, many
scholars have improved FOA algorithm in their own ways.
Pan et al. [42] brought a new control parameter and an
efective solution generating method to improve the efec-
tiveness of the FOA algorithm for solving continuous
function optimization problems. Yuan et al. [43] employed
multiswarm behavior to signifcantly improve the perfor-
mance of FOA, named multiswarm fruit fy optimization
algorithm (MFOA), and several subswarms moving in-
dependently in the search space with the aim of simulta-
neously exploring the global optimum at the same time and
the local behavior between subswarms were also considered.
Marko et al. [44] improved the standard FOA by introducing
a novel parameter integrated with chaos. To improve the
convergence performance of FOA, a normal cloud model-
based FOA (CMFOA) was proposed by Wu et al. [45]. Lv
et al. [46] proposed an improved FOA based on hybrid
location information exchange mechanism (HFOA) aiming
at improving the swarm diversity in a more efcient way and
balancing the global search and local search abilities. Du
et al. [47] proposed an improved FOA based on linear
diminishing step and logistic chaos mapping (named DSLC-
FOA) for solving constrained structural engineering design
optimization problems. To solve both continuous function
optimization and clustering parameter problems, Han et al.
[48] proposed a novel FOA with trend search and co-
evolution (CEFOA); trend search was applied to enhance

the local searching capability of fruit fy swarm, and co-
evolution mechanism was employed to avoid the premature
convergence and improve the ability of global searching. Hu
et al. [41] used the normal distribution function to improve
the search mode of the FOA, named normal distribution
fruit fy optimization algorithm (NFOA). It enhances search
accuracy in the central area and efectively expands the
search scope. Experimental results show that the accuracy
and stability of the algorithm were improved.

Te structure of this paper is as follows. Firstly, the
basic FOA algorithm is introduced, then the improved
strategy based on DE algorithm is proposed, and the test
function is used to test the improved algorithm. Te test
results are compared with the results of other algorithms,
and the results show that the optimization ability of the
improved FOA algorithm is better than the above algo-
rithms. Finally, the algorithm is applied to the MT data
inversion problem.

2. The Basic Theory of the Fruit Fly
Optimization Algorithm

Te FOA is a new kind of global optimization algorithm that
simulates the foraging process of a fruit fy. According to the
process of a fruit fy searching for food, shown in Figure 1,
the basic idea of the FOA can be found as follows. (1) Ol-
faction search stage: the fruit fy has well-developed olfac-
tion. First, it uses its olfaction to detect various odors in the
surrounding environment. (2) Visual positioning stage: the
fruit fy fies to the vicinity of the food through the olfactory
positioning within its visible range, accurately locates the
food position through its vision, and fies to the food.
Terefore, the FOA can be summarized into the following
steps.

Step 1. Initialization: it includes the fruit fy swarm size,
swarm location, and maximum number of iterations.

InitX axis,

InitY axis.
(1)

Step 2. Provide a random direction and distance of
individual fruit fy foraging. i stands for the ith fruit fy.

Xi � X axis + RandomValue,

Yi � Y axis + RandomValue.
(2)

Step 3. Since the location of the food is unknown, frst
calculate the distance Dist between the individual fruit
fy and the initial position and then calculate the smell
concentration judgment value S according to Dist (Disti
and Si represent the distance between the ith fruit fy
and the initial position and the smell concentration
judgment value, respectively).

Disti �

�������

X
2
i + Y

2
i

􏽱

,

Si �
1

Disti
.

(3)
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Step 4. Substitute the taste concentration judgment
value S into the ftness function to calculate the taste
concentration value of the individual fruit fy.

Smelli � Function Si( 􏼁. (4)

Step 5. Find the fruit fy with the best favor concen-
tration in the fruit fy swarm:

[bestSmell bestIndex] � min(Smell). (5)

Step 6. Te optimal smell concentration value is saved
along with the corresponding x, y coordinates, and the
fruit fy fies to that location using its vision.

Smellbest � bestSmell,

X axis � X(bestIndex),

Y axis � Y(bestIndex).

(6)

Step 7. Execute the optimization repeatedly from Steps
2 to 5, each time, judge if the smell concentration is
superior to the previous one, and if so, implement
Step 6.

3. The Improvement of Fruit Fly
Optimization Algorithm

Te FOA has a wide range of applications in the feld of
engineering due to its advantages of fewer control pa-
rameters and no constraints. However, the evolutionary
process of the FOA learns only from the best fruit fy in the
evolutionary iteration process of the entire fruit fy swarm.
When the optimal individual for this evolution is found,
all individuals will gather towards the optimal individual
and will search randomly within this small area. If the
optimal individual of this evolution is only a local ex-
tremum, it will cause the algorithm to fall into the local

optimum, from which it cannot leave, which makes the
algorithm converge prematurely. Terefore, the algorithm
needs to be improved.

Te diferential evolution (DE) algorithm is also a kind of
swarm intelligent optimization algorithm [16, 49, 50]. Its
core idea is to use the diference between diferent in-
dividuals in the population to carry out evolutionary opti-
mization through crossover and mutation. Compared with
the traditional genetic algorithm, it has the advantages of fast
convergence, fewer control variables, being easy to un-
derstand, and programming implementation, so it has
a wide range of applications [19, 51, 52].

Te performance of DE algorithm is greatly afected by
the control parameters of the algorithm. DE algorithm
mainly has three control parameters: population size, var-
iation scale factor, and crossover probability. Population size
is always an important control parameter of evolutionary
algorithms, which directly afects the population diversity of
algorithms. If the population size is large enough, the
population diversity performance is guaranteed, the opti-
mization ability of the algorithm is enhanced, and the
probability of obtaining the optimal solution is increased.
However, the increase of population is accompanied by the
decrease of computational efciency. So, there is a trade-of
between population diversity and computational efciency.

Variation scale factor F and crossover probability are
important control parameters of DE algorithm. Similar to
the search step size, the size of the scale factor directly
afects the optimization ability of the DE algorithm, and the
global search ability and local search ability of the algo-
rithm can be balanced by adjustment.Te scale factor of the
standard DE algorithm is fxed in the optimization process,
and diferent scholars have proposed appropriate thresh-
olds for some parameters according to the actual situation
of the problem to be solved. Considering that most pa-
rameter settings depend on the problem, the artifcial
adjustment is extremely time-consuming. At present, the
adaptive parameter adjustment method has become
a hotspot in the research of DE algorithm. Many im-
provements to DE algorithms are based on adaptive scaling
factors. In the early stage of algorithm evolution, appro-
priately setting a large scale factor will help the algorithm
quickly search the near optimal solution in the early stage
and reduce the scale factor in the later stage, so that the
algorithm can quickly fnd the optimal solution.

In order to enhance the optimization ability of FOA, this
study introduces the crossover and mutation process from
the DE algorithm into the FOA and proposes a novel FOA
algorithm based on the DE algorithm.

In the standard FOA, each search step size of a fruit fy is
a random value under a fxed step size, which leads to the
poor ability of the algorithm to jump out of the local extreme
values. Terefore, we replaced the standard FOA with
a mutation operation. After comparing several mutation
strategies, we chose the “DE/best/2” mutation strategy [53].
After the mutation operation, the obtained diference vector
and the optimal individual of the parent generation were
crossed again to obtain the fnal search step size. In the DE
algorithm, in order to improve the optimization ability of the

Fly 1 (x1, y1)

Fly 2 (x2, y2)

Fly 3 (x3, y3)

Food

Dist 1

Dist 3

iterative evolution

Fly Group
(X, Y)

(0, 0) X

Y

Figure 1: Te interactive food search process of fruit fy swarm.
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algorithm, the method of gradually decreasing the scale
factor was adopted. Te improvement strategy was as
follows.

3.1. Search Step Size Improvement Strategy. Te search step
size of the standard fruit fy optimization algorithm is fxed, that
is, the individual search step size is randomly generated under
a given step size value, themutation operation of the diferential
evolution algorithm was introduced, and the step size was
updated based on the diference of the population individuals,
enhancing the algorithm’s optimization capabilities.

Ux,j � X axis + F × Xr1 ,j − Xr2 ,j􏼐 􏼑 + F × Xr3 ,j − Xr4 ,j􏼐 􏼑,

Uy,j � Y axis + F × Yr1 ,j − Yr2 ,j􏼐 􏼑 + F × Yr3 ,j − Yr4 ,j􏼐 􏼑,

⎧⎪⎨

⎪⎩

(7)

where r1, r2, r3, r4 are random numbers between the in-
tervals [1, NP] and NP represents the swarm size. In order to
further increase the diversity of the fruit fy swarm, we
continue to use the crossover operation to update the
mutation operation.

RandomValuex �
Ux,j, if rand≤CRor j � randn(j),

X axis, otherwise,
􏼨

(8)

RandomValuey �
Uy,j, if rand≤CR or j � randn(j),
Y axis, otherwise,

􏼨

(9)

where rand is a random number uniformly distributed in the
interval [0, 1], CR is the crossover probability, randn (j) is
a random integer between [1, N], and N represents the
dimension of the unknown quantity.

3.2. Variation Scale Factor Improvement Strategy. In the
early stage of the algorithm, since the swarm position is far
from the optimal solution, a larger step size can improve
the global search ability of the algorithm, so that the fruit
fy individual can quickly fnd the vicinity of the optimal
solution. Te step size can also improve the local search
ability of the algorithm, to quickly fnd the optimal so-
lution. Terefore, based on the above ideas, the variation
scale factor was improved so that it gradually decreased in
the iterative process of the algorithm, and the local search
ability of the algorithm was increased while ensuring the
diversity of the population. Te scaling factor improve-
ment formula is

Ft+1 � Ft −
F0

tmax
, (10)

where t is the current number of iterations, tmax is the
maximum number of iterations, and F0 is the initial scale
factor, which is generally in the range of [0.4, 0.9].

3.3. Te Steps of the Improved Fruit Fly Optimization Algo-
rithm (IFOA)

Step 1. Initialization: it includes fruit fy swarm size,
swarm location, maximum number of iterations, and
mutation scale factor.

InitX axis,

InitY axis,
(11)

Step 2. Execute Steps 2 to 6 of the original FOA.

Smellbest � bestSmell,

X axis � X(bestIndex),

Y axis � Y(bestIndex).

(12)

Step 3. Perform mutation and crossover operations
according to formulas (7)–(9).
Step 4. Update the positions of fruit fies using the
candidate values from Step 3.

Xi � X axis + RandomValuex,

Yi � Y axis + RandomValuey.
(13)

Step 5. Execute the iterative optimization repeatedly
from Steps 2 to 4, each time judging if the smell
concentration is superior to the previous smell con-
centration until the maximum number of iterations is
reached.

4. Experiments and Numerical Analysis

4.1. Benchmark Functions and Algorithm Parameter Setting.
In order to test the performance of IFOA algorithm, 14
benchmark functions which are shown in Table 1 are used
in this section to test the algorithm. We selected 14
classical benchmark functions for testing, among which
F1–F10 are unimodal and F11–F14 are multimodal.
Unimodal function is relatively simple, while multimodal
function is more complex, with local extreme values and
other complicated cases. Te algorithms discussed in this
section were coded in Matlab 2017b, and computations
were conducted on a personal computer with Intel(R)
Core(TM) i7-9700 CPU 3.00 GHz, 32 GB RAM, and
Windows 10 operation system.

4.2. Te Infuence of the Two Introduced Strategies. In order
to fnd out the efectiveness of the above two improvement
strategies, we also conducted a set of comparison tests. F was
fxed as a constant and the comparison algorithmwas named
IFOA-1. Tree classic benchmark functions (from the
functions in Table 1) were also used to test the three al-
gorithms of standard FOA, IFOA, and IFOA-1 to verify the
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efectiveness of the improved strategies.Te population is set
to 100. Due to the need to gradually decrease, the initial F of
IFOA is set to 1, the F of IFOA-1 is set to the constant 0.5,
and the number of iterations is 100. Te results of mean and
standard deviation are shown in Tables 2–4.

Trough the above comparative test, it is found that
compared with FOA, the convergence speed of the improved
algorithm is faster, which is mainly due to the crossover and
mutation strategies.Te improvement of F has little efect on
the algorithm.

4.3. Comparison with Other Algorithms. In this section, we
verify the performance of the IFOA algorithm. Te above test
functions have both unimodal andmultimodal functions, so the
global search ability and local search ability of the algorithm are
considered the key to fnding the optimal solution quickly. For
comparison, we choose three common intelligent optimization
algorithms, DE, PSO, and GWO. In order to test the perfor-
mance of the algorithm in high-dimensional space, we set two
schemes with parameter dimensions of 30 and 50, respectively.
Te parameter settings of each algorithm are shown in Table 5.
Te number of iterations is set to 5000 times, each algorithm
runs independently for 30 times, and then the mean value and
standard deviation of the optimal solution are obtained. Te
results are shown in Tables 6 and 7.

As shown inTable 6, whenDim� 30, for functions F1–F14,
except F5 and F11, IFOA algorithm performs well, and the
mean and standard deviation results are superior to other
algorithms. For most test functions, IFOA can fnd the true
optimal solution directly. For F5, the DE algorithm is superior,
and the case of Dim� 50 is similar to that of Dim� 30.

In order to more intuitively compare the performance of
these algorithms, we sort and score them according to their
optimization ability (the smaller the optimal solution, the
higher the score; the same optimal solution, the same score).
Te results of Dim� 30 are shown in Table 8. It can be seen
from the results that, except for some functions, the scores of
IFOA are all above 4 points. IFOA scores 63. Te fnal
ranking results show that IFOA is an excellent optimization
algorithm, which not only has global search ability and local
search ability but also has good robustness and universality.

5. Optimization of MT Data

5.1. MT Forward Modeling. Maxwell’s equations are the
theoretical basis of all electromagnetic methods. According
to Cagniard’s classical magnetotelluric theory, the feld
source is assumed to be a plane electromagnetic wave in-
cident vertically on the ground, the Earth medium is
a uniform horizontal layered model, and the electrical
properties of each medium are uniform and isotropic.
Consider a one-dimensional layered medium; assuming that
the underground medium consists of n layers of horizontal
layered medium, there are a total of 2n− 1 parameters.

m � ρ1, ρ2, . . . , ρn, h1, h2, . . . , hn− 1( 􏼁
T
, (14)

where ρ is the conductivity, h is the depth, and hn �∞; for
the 1D layered model, the apparent resistivity ρa(ω) and
phase φ(ω) can be observed on the ground and the formulas
are as follows:

ρa(ω) �
1
ωμ

|Z(ω)|
2
,

φ(ω) � arctan
ImZ(ω)

ReZ(ω)
􏼠 􏼡,

(15)

where ω � 2π/T is the angular frequency, μ is the magnetic
permeability, and Z(ω) is the wave impedance, which can be
calculated by the following formula:

Table 2: Optimization iteration curve of Zakharov function.

Iterations FOA IFOA-1 IFOA
1 1.15E+ 04 1.01E+ 05 1.81E+ 03
20 1.15E+ 01 9.18E− 05 3.91E− 25
40 1.49E+ 00 6.30E− 12 1.47E− 42
60 5.24E− 01 3.99E− 18 4.66E− 51
80 2.64E− 01 2.77E− 25 1.55E− 54
100 1.58E− 01 6.57E− 33 3.19E− 57

Table 3: Optimization iteration curve of Rastrigin function.

Iterations FOA IFOA-1 IFOA
1 1.48E+ 01 3.62E+ 01 4.75E+ 00
20 3.44E− 01 1.57E− 04 0.00E+ 00
40 9.27E− 02 4.59E− 09 0.00E+ 00
60 4.14E− 02 0.00E+ 00 0.00E+ 00
80 2.35E− 02 0.00E+ 00 0.00E+ 00
100 1.52E− 02 0.00E+ 00 0.00E+ 00

Table 4: Optimization iteration curve of Griewank function.

Iterations FOA IFOA-1 IFOA
1 3.22E− 03 1.45E− 02 2.48E− 03
20 9.86E− 05 2.09E− 08 0.00E+ 00
40 2.86E− 05 5.60E− 14 0.00E+ 00
60 1.33E− 05 0.00E+ 00 0.00E+ 00
80 7.79E− 06 0.00E+ 00 0.00E+ 00
100 5.04E− 06 0.00E+ 00 0.00E+ 00

Table 5: Parameter setting for comparison algorithms.

Algorithm Parameters
FOA No special parameters
DE F� 0.5, CR� 0.9
PSO ω � 0.6, c1 � c2 � 2
GWO a� 2-2 (g/max_iter), max_iter: maximum iteration

IFOA Te improvement strategy described above,
F0 �1, CR� 0.9

6 Journal of Mathematics



Table 6: Te performance on benchmark functions with dimension� 30.

FOA DE PSO IFOA GWO

F01 Avg 3.13E− 08 1.27E− 63 1.76E− 40 0.00E+ 00 0.00E+ 00
Std 7.27E− 11 2.92E− 63 3.05E− 40 0.00E+ 00 0.00E+ 00

F02 Avg 9.69E− 04 3.09E− 31 9.27E− 27 0.00E+ 00 5.73E− 251
Std 1.07E− 06 3.13E− 31 1.25E− 26 0.00E+ 00 0.00E+ 00

F03 Avg 9.86E− 06 1.55E− 11 3.28E+ 00 0.00E+ 00 3.96E− 144
Std 1.78E− 08 3.20E− 11 2.27E+ 00 0.00E+ 00 2.15E− 143

F04 Avg 3.23E− 05 2.15E− 02 1.91E− 01 0.00E+ 00 2.51E− 111
Std 3.23E− 08 6.89E− 02 1.06E− 01 0.00E+ 00 5.45E− 111

F05 Avg 2.87E+ 01 9.74E− 18 3.52E+ 01 2.87E+ 01 2.61E+ 01
Std 2.04E− 14 2.58E− 17 3.21E+ 01 7.07E− 02 8.53E− 01

F06 Avg 3.03E− 02 1.42E− 57 4.16E− 34 0.00E+ 00 0.00E+ 00
Std 5.95E− 05 4.14E− 57 1.10E− 33 0.00E+ 00 0.00E+ 00

F07 Avg 5.64E− 05 6.09E− 15 8.75E− 04 0.00E+ 00 2.37E− 205
Std 1.23E− 07 7.11E− 15 7.91E− 04 0.00E+ 00 0.00E+ 00

F08 Avg 2.89E− 04 8.87E− 95 3.11E− 70 0.00E+ 00 0.00E+ 00
Std 1.58E− 03 4.57E− 94 1.70E− 69 0.00E+ 00 0.00E+ 00

F09 Avg 4.85E− 07 2.50E− 64 1.53E− 39 0.00E+ 00 0.00E+ 00
Std 9.18E− 10 5.11E− 64 7.68E− 39 0.00E+ 00 0.00E+ 00

F10 Avg 4.82E− 05 1.71E− 02 7.51E− 03 2.41E− 05 3.84E− 05
Std 1.57E− 05 1.01E− 02 2.50E− 03 2.74E− 05 2.15E− 05

F11 Avg 5.02E− 09 1.50E− 32 1.50E− 32 2.86E+ 00 7.77E− 01
Std 7.17E− 09 1.11E− 47 1.11E− 47 1.43E− 01 2.07E− 01

F12 Avg 1.29E− 04 3.55E− 15 1.86E− 14 0.00E+ 00 6.51E− 15
Std 1.03E− 07 0.00E+ 00 3.92E− 15 0.00E+ 00 1.35E− 15

F13 Avg 6.22E− 06 7.51E+ 01 1.66E+ 01 0.00E+ 00 0.00E+ 00
Std 1.29E− 08 2.74E+ 01 5.60E+ 00 0.00E+ 00 0.00E+ 00

F14 Avg 2.09E− 09 2.47E− 04 1.76E− 02 0.00E+ 00 0.00E+ 00
Std 4.09E− 12 1.35E− 03 1.64E− 02 0.00E+ 00 0.00E+ 00

Table 7: Te performance on benchmark functions with dimension� 50.

FOA DE PSO IFOA GWO

F01 Avg 5.22E− 08 1.44E− 39 1.31E− 17 0.00E+ 00 2.42E− 322
Std 9.64E− 11 1.67E− 39 2.44E− 17 0.00E+ 00 0.00E+ 00

F02 Avg 1.62E− 03 7.28E− 20 2.09E− 13 0.00E+ 00 1.16E− 187
Std 1.43E− 06 5.30E− 20 2.30E− 13 0.00E+ 00 0.00E+ 00

F03 Avg 4.48E− 05 1.11E+ 00 3.56E+ 03 0.00E+ 00 6.49E− 85
Std 8.99E− 08 5.23E− 01 1.04E+ 03 0.00E+ 00 3.09E− 84

F04 Avg 3.23E− 05 5.61E+ 00 1.50E+ 01 0.00E+ 00 2.72E− 73
Std 3.07E− 08 2.44E+ 00 2.82E+ 00 0.00E+ 00 9.48E− 73

F05 Avg 4.85E+ 01 1.63E+ 01 9.36E+ 01 4.86E+ 01 4.59E+ 01
Std 2.68E− 14 2.43E+ 00 5.11E+ 01 6.40E− 02 8.79E− 01

F06 Avg 5.11E− 02 1.27E− 33 1.36E− 11 0.00E+ 00 7.58E− 317
Std 1.25E− 04 1.45E− 33 5.17E− 11 0.00E+ 00 0.00E+ 00

F07 Avg 4.24E− 04 1.39E− 01 9.56E+ 00 0.00E+ 00 4.78E− 123
Std 8.15E− 07 7.40E− 02 3.74E+ 00 0.00E+ 00 2.43E− 122

F08 Avg 1.04E− 09 2.66E− 25 5.26E− 34 0.00E+ 00 0.00E+ 00
Std 2.27E− 12 1.42E− 24 1.20E− 33 0.00E+ 00 0.00E+ 00

F09 Avg 1.33E− 06 3.07E− 40 3.67E− 18 0.00E+ 00 1.16E− 321
Std 2.50E− 09 3.97E− 40 7.07E− 18 0.00E+ 00 0.00E+ 00

F10 Avg 7.10E− 05 2.30E− 02 3.91E− 02 1.76E− 05 5.41E− 05
Std 2.23E− 05 1.49E− 02 9.65E− 03 1.59E− 05 2.87E− 05

F11 Avg 1.33E− 08 1.50E− 32 3.59E+ 00 4.68E+ 00 1.99E+ 00
Std 1.89E− 08 1.11E− 47 3.86E+ 00 1.07E− 01 3.04E− 01
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Zm � Z0m

Z0m 1 − e
− 2kmhm􏼐 􏼑 + Zm+1 1 + e

− 2kmhm􏼐 􏼑

Z0m 1 + e
−2kmhm􏼐 􏼑 + Zm+1 1 − e

−2kmhm􏼐 􏼑
,

Z0m � −
iωμ
km

,

(16)

where Z0m is the characteristic impedance of layer m, km is
the complex propagation constant of layer m, and Zm is the
wave impedance at the top of layer m.

5.2. MT Inversion Teory. Te geophysical inversion prob-
lem is to study the theory and method of using the obtained
geophysical observation data to deduce the characteristics of
the underground geophysical model. Te purpose of the
inversion problem is to fnd the appropriate geophysical
model to ft the observation data. Terefore, geophysical
inversion is essentially an optimization problem. Te in-
version problem can be expressed as

d � F(m), (17)

where d is the N-dimensional observation data vector, m is
the M-dimensional model parameter vector, and F is the
model forward response function. Geophysical inversion
aims to fnd a reasonable underground model parameter
vectorm to ft the observation data d. Te inversion problem
is an ill-posed problem, so it is necessary to obtain a stable
solution through the regularization method. According to
regularization theory, we adopted the Occam-like

regularization [54]. Terefore, the objective function of the
inversion problem is as follows:

Φ � Φd + λΦm � F(m) − d
obs

�����

�����2
+ λ‖zm‖2, (18)

where Φd is the data ftness, Φm is the model parameter
constraint, and λ is the regularization factor, set as the trade-
of between the model and data misft to regulate the model
roughness. dobs are the observation data, and F(m) are the
predicted response data.

5.3.Numerical Results of the 1D InverseModeling. In order to
test this new algorithm, we designed two theoretical models
of layered media, and the test environment was a personal
computer. Te model parameters are shown in Table 9. Te
model parameter search interval was set to [0.5m, 2m],
where m represents the true value of the model parameters,
the fruit fy swarm size was 10, the crossover factor CR� 0.9,
and the variation factor F� 0.5.

Model 1 was a three-layer geoelectric model. Te maxi-
mum number of iterations was 1000. In order to ensure the
reliability of the results, the calculation was repeated 20 times
continuously, and the average value was taken as the result.Te
inversion results are shown in Figure 2. It can be seen from the
fgure that both Bostick and IFOA obtained a good result. Te
inversion results of the IFOAwere closer to the real model than
the Bostick inversion results. Te low resistivity layer was well
inverted, and the apparent resistivity and phase results of the
prediction model ft well with the observed data.

Table 7: Continued.

FOA DE PSO IFOA GWO

F12 Avg 1.29E− 04 4.74E− 15 1.21E− 09 0.00E+ 00 8.64E− 15
Std 1.09E− 07 1.70E− 15 1.27E− 09 0.00E+ 00 2.41E− 15

F13 Avg 1.04E− 05 2.09E+ 02 7.33E+ 01 0.00E+ 00 0.00E+ 00
Std 1.76E− 08 5.81E+ 01 1.77E+ 01 0.00E+ 00 0.00E+ 00

F14 Avg 2.36E− 09 0.00E+ 00 6.48E− 03 0.00E+ 00 0.00E+ 00
Std 4.40E− 12 0.00E+ 00 9.33E− 03 0.00E+ 00 0.00E+ 00

Table 8: Ranking of FOA, DE, PSO, IFOA, and GWO on 14 benchmark functions with Dim� 30 according to their performance.

Function FOA DE PSO IFOA GWO
F01 2 4 3 5 5
F02 1 3 2 5 4
F03 2 3 1 5 4
F04 3 2 1 5 4
F05 3 5 1 2 4
F06 2 4 3 5 5
F07 1 3 2 5 4
F08 2 4 3 5 5
F09 2 4 3 5 5
F10 3 1 2 5 4
F11 3 4 5 1 2
F12 1 4 2 5 3
F13 4 2 3 5 5
F14 4 3 2 5 5
SUM 33 46 33 63 59
Ranking 4 3 4 1 2
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Table 9: Te parameters of model 1 and model 2.

Model 1 Model 2
Resistivity (Ω ·m) Tickness (m) Resistivity (Ω ·m) Tickness (m)
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Figure 2: Te three-layer geoelectric model and its MTresponse predicted by IFOA and Bostick inversion. (a) represents the results of the
resistivity from the IFOA and Bostick inversions. (b) and (c) are the response results of the apparent resistivity and phase, respectively.
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Table 10: Te IFOA optimization results of the synthetic data from model 2.

Parameter ρ1(Ω · m) ρ2(Ω · m) ρ3(Ω · m) ρ4(Ω · m) h1(m) h2(m) h3(m)

Real 200 10 200 300 200 10 300
No noise 199.9411 10.5728 195.9431 299.9659 199.3871 10.4977 289.7938
10% noise 199.9834 11.6584 157.0820 299.4285 197.3866 9.3255 208.1459
20% noise 199.9976 14.3623 137.1937 299.9962 199.9884 14.0154 150.0008
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Figure 3: Te IFOA optimization of the measured MT sounding. (a) represents the results of the resistivity from the IFOA and Bostick
inversions. (b) and (c) are the response results of the apparent resistivity and phase, respectively.

10 Journal of Mathematics



Model 2 was a four-layer geoelectric model. In order to
study the infuence of the equivalence problem on the al-
gorithm optimization capability, a four-layer (HA type)
geoelectric model was designed. Te parameters of this
model are shown in Table 9, and it has S equivalence. Te
maximum number of iterations was set to 5000. To illustrate
the infuence of data errors on the inversion results, 10% and
20% of Gaussian random noise were added to the original
model forward results, respectively. We repeated the cal-
culation 20 times in a row and took the average value as the
result. Te inversion calculation results are shown in Ta-
ble 10. It can be seen from the table that the IFOA inverted
the model parameters well and had good robustness.

5.4. FieldData. In order to further verify the feasibility of the
algorithm, the IFOA was used to invert the real MTdata.Te
data came from the open-source data, US Array MTstations,
by Oregon State University [55]. Te inversion result is
shown in Figure 3. It can be seen from the fgure that the
apparent resistivity and phase of the inversion model ft the
measured data well. Two low-resistivity layers were well
inverted.

6. Conclusions

As a swarm intelligence global optimization algorithm,
IFOA can be fully applied to MTdata inversion through the
inversion of a theoretical model and feld data. Trough
improvement, the algorithm overcame the equivalence
problem of the geoelectric model and accurately restored the
deep high-conductivity and low-resistance layers. Tis
shows that the IFOA can be used for one-dimensional in-
version of MT data. Te IFOA avoids the defect of the
linearization optimization theory needing to calculate the
Jacobian matrix, which easily falls into local extreme values,
and it has better global optimization ability. Te inversion
results of the measured data confrmed the capability
of IFOA.

Te following research will continue in the future. First,
research on an intelligent optimization algorithm will be
conducted. At present, due to the progress of science and
technology and the development of computer hardware, the
complete nonlinear global optimization algorithm has been
a research hotspot in the feld of mathematics and engi-
neering, asking how to improve the optimization ability of
the algorithm and how to combine diferent optimization
algorithms, to learn from each other, and put forward amore
suitable optimization method for geophysical inversion.
Tese are questions for the next step. Second, the two-
dimensional inversion of the fruit fy optimization algo-
rithm will be realized. Since time is limited, this paper
implements only the one-dimensional inversion of the
optimization algorithm, which is not enough; the next step
will continue to excavate the potential of the FOA with the
study of two-dimensional magnetotelluric data inversion.
Due to the data, the model parameters of 2D case, and the
need to consider the parameters of the space constraints, this
is a challenge for a global optimization algorithm.
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estimations from residual gravity anomalies due to simple-
shaped sources using Diferential Evolution Algorithm,”
Journal of Applied Geophysics, vol. 129, pp. 133–147, 2016.

[53] S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in
diferential evolution – an updated survey,” Swarm and
Evolutionary Computation, vol. 27, pp. 1–30, 2016.

[54] S. C. Constable, R. L. Parker, and C. G. Constable, “Occam’s
inversion: a practical algorithm for generating smooth models
from electromagnetic sounding data,” Geophysics, vol. 52,
no. 3, pp. 289–300, 1987.

[55] A. Kelbert, “Taking magnetotelluric data out of the drawer,”
AGU Fall Meeting Abstracts, vol. 565, pp. IN21A-01, 2019.

Journal of Mathematics 13




