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In this study, two classes of hybrid boundary value problems involving ψ-weighted Caputo–Fabrizio fractional derivatives are
considered. Based on the properties of the given operator, we construct the hybrid fractional integral equations corresponding to
the hybrid fractional diferential equations. Ten, we establish and extend the existence theory for given problems in the class of
continuous functions by Dhage’s fxed point theory. Furthermore, as special cases, we ofer further analogous and comparable
conclusions. Finally, we give two examples as applications to illustrate and validate the results.

1. Introduction

Te theory of fractional calculus has attracted the attention
of a remarkable number of researchers from various felds in
recent years. Te physical meaning of fractional orders is
that the dynamical systems of fractional order can be rep-
resented by a fractional diferential equation (FDE) with
a noninteger derivative.Tese systems are referred described
as having fractional dynamics. Undoubtedly, it has been
demonstrated that the use of fractional derivatives (FDs) is
very benefcial for modeling a wide range of problems and
natural phenomena in engineering and applied sciences; for
example, see renowned monographs by Osler [1], Samko
et al. [2], Kilbas et al. [3], and Diethelm and Ford [4]. Te
literature contains a variety of FD concepts, including those
presented by Riemann–Liouville and Caputo [3], which
include the singular kernel k(t, s) � (t − s)− ]/Γ(1 − ]),
0< ]< 1.

Tese FDs play an important role in modeling nu-
merous physical and biological phenomena. In any case, as
was referenced in Caputo and Fabrizio [5, 6], certain

peculiarities connected with material heterogeneities
cannot be well modeled utilizing Riemann–Liouville or
Caputo FDs. Because of this reality, the authors in [5]
proposed another FD involving the nonsingular kernel
k(t, s) � exp(−] (t − s)/1 − ]), 0< ]< 1; then, Losada and
Nieto [7] studied some of its properties. Te existence and
uniqueness of solutions are essential properties of math-
ematical models [8, 9] and are among the advantages of
applied theory. Te model must possess these properties in
order to be reliable and useful. Existence refers to the fact
that the model must describe a well-defned problem,
which can be solved within a certain mathematical
framework. In other words, the model should not have any
ambiguity or inconsistency that would make it impossible
to solve. In [10–18], the authors studied the existence of
solutions for various types of FDEs involving the Capu-
to–Fabrizio FD and other fractional operators. For in-
stance, Abbas et al. [11] handled some existence results for
Caputo–Fabrizio type implicit FDEs in b-metric spaces.
Te existence and uniqueness of solutions for the following
problem
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CF
D

]
0+ x(s) � f(s, x(s)), 0< ]< 1,

x(0) � x0,

⎧⎨

⎩ (1)

were demonstrated by Shaikh et al. [14]. It is possible to
think of hybrid diferential equations as quadratic per-
turbations of nonlinear diferential equations. Tey are of
great interest to scholars because they are particular
instances of dynamical systems. Dhage and Lakshmi-
kantham [19] provide details on various perturbations for
nonlinear diferential and integral equations. For addi-
tional updates on the availability of hybrid FDEs theory,
we refer to [19–21]. For instance, the following hybrid
classical

d

ds

x(s)

Z(s, x(s))
􏼠 􏼡 � f(s, x(s)), 0≤ s<T,

x s0( 􏼁 � x0 ∈ R,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

has been studied by Dhage and Lakshmikantham [19].
Taking on the analogous approach of [19], Zhao et al. in [20]
extended the investigation of hybrid (2) to the following
Riemann–Liouville type hybrid FDE:

RL
D

]
0+

x(s)

Z(s, x(s))
􏼠 􏼡 � f(s, x(s)), 0≤ s<T,

x(0) � 0, 0< ]< 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

Herzallah and Baleanu [21] discussed the existence
results of hybrid FDE (3) using the Caputo FD. Fur-
thermore, various classes of hybrid FDEs subject to
diferent conditions have additionally been concentrated
on by many specialists, see [22–27]; e.g., Ali et al. [26]
developed an existence analysis for nonlinear hybrid
FDEs with ψ-Hilfer FD and hybrid boundary conditions.
For a nonlocal hybrid of Caputo fractional inte-
grodiferential equations, Ahmad et al. [22] presented the
existence results.

Almeida [28] proposed a general operator so called
ψ-Caputo FD when the kernel is k(t, s) � ψ(t) − ψ(s) and
the derivative is ((1/ψ′(t))(d/dt)). Ten, the authors in [29]
expanded some of the properties of this operator to include
the Laplace transform of it. Regarding this, Jarad et al. [30]
developed the idea of weighted FDs with another function.
Abdo et al. [31] proved the positive solutions of the following
ψ-weighted Caputo problem:

C
D

];ψ,w
0+ x(s) � f(s, x(s)), 0< ]≤ 1,

x(0) � x0.

⎧⎨

⎩ (4)

Recently, Al-Rafai and Jarrah [32] extended the concept
of weighted FD to the ψ-weighted Caputo–Fabrizio FD,
where ψ and w are monotone function and weight function,
respectively.

Motivated by the abovementioned studies, we discuss
the existence of solutions of the following weighted hybrid
FDE:

CF
D

]
0;w

x(s) − U(s, x(s))

Z(s, x(s))
� f(s, x(s)), s ∈ ℧ ≔ [0, T],

a
x(s) − U(s, x(s))

Z(s, x(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

+ b
x(s) − U(s, x(s))

Z(s, x(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�T

� c,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

and the following ψ-weighted hybrid FDE

CF
D

];ψ
0;w

x(s) − U(s, x(s))

Z(s, x(s))
� f(s, x(s)), s ∈ ℧ ≔ [0, T],

a
x(s) − U(s, x(s))

Z(s, x(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

+ b
x(s) − U(s, x(s))

Z(s, x(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�T

� c,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where 0< ]< 1 and a, b, c ∈ R, with a≠ 0, f, U ∈ C

(℧ × R,R), Z ∈ C(℧ × R,R\ 0{ }), and CFD
];ψ
0;w denote the

weighted Caputo–Fabrizio and ψ-weighted Capu-
to–Fabrizio FDs, respectively, and w,ψ ∈ C1(℧,R) with
w, w′,ψ′ > 0 on ℧. Our frst contribution focuses on several
special cases of problems (5) and (6) connecting the
weighted function to another monotone function. Ten,
using Dhage’s fxed-point theory and some added conditions
of functions f(., .), U(., .), andZ(., .), we show the existence
of solutions to (5) and (6) under ψ-weighted Capu-
to–Fabrizio FDs or the diverse hybrid cases. Specifcally, our
results support, extend, and enhance those found in [31–33].

Remark 1. Tis work can be a generalization of some of the
studied problems in the literature, for example,

(i) In problem (5), if we choose w � 1, U(s, x(s)) ≡ 0,
and Z(s, x(s)) ≡ 1, then we obtain the following
problem:

CF
D

]
0x(s) � f(s, x(s)), 0< ]< 1,

ax(s)|s�0 +bx(s)|s�T � c,

⎧⎨

⎩ (7)

which has been studied by Salim et al. [33].
(ii) If we choose a � 1, b � 0, U(s, x(s)) ≡ 0, and

Z(s, x(s)) ≡ 1, then our problem (6) reduces to
problem (4), which was considered by Abdo
et al. [31].

Remark 2

(1) If ψ(s) � s, then problem (6) reduces to problem (5)
(2) If ψ(s) � s, w � 1, U ≡ 0, and Z ≡ 1, then problem

(6) reduces to problem (7), see [33]
(3) If ψ(s) � s, w � 1, a � 1, b � 0, U ≡ 0, and Z ≡ 1,

then problem (6) reduces to problem (1), see [14]
(4) Many problems with less general operators with

various values of w and ψ, such as the one proposed
by Caputo and Fabrizio in [5] are part of our current
problems
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Te rest of this work is arranged as follows. Section 2
gives some basic results about generalized Caputo–Fabrizio
FD and functional spaces. Our main results of problems (5)
and (6) are discussed in Section 3. Two examples that
confrm the validity of the main results are provided in
Section 4. Finally, we include the conclusions in Section 5.

2. Primitive Results

We start of this section by providing some defnitions and
fundamental results. Let ℧ ≔ [0, b], 0< b<∞. R will con-
stantly represent real space. Defne the supremum norm ‖·‖

in X ≔ C(℧,R) by ‖x‖X � sups∈℧|x(s)|, and the multi-
plication in X by (xy)(s) � x(s)y(s). Obviously, X is
a Banach algebra with the norm and multiplication in it. Te
weight function and the monotone function, respectively,
are represented by ψ(s) and w(s) with w,ψ ∈ X1 and
w, w′,ψ′ > 0 on ℧.

Defnition 3 (see [32]). Let 0< ]< 1, and x ∈ X. Ten, the
ψ-weighted Caputo–Fabrizio FD of x is given by the fol-
lowing equation:

CF
D

];ψ
0;wx(s) �

ℵ(])

1 − ]
1

w(s)
􏽚

s

0
e

− λ](ψ(s)−ψ(ξ)) d

dξ
(wx)(ξ)dξ,

(8)

where λ] � ]/1 − ], and ℵ(]) is a normalization function
satisfying ℵ(0) � ℵ(1) � 1.

Te above-given operator can be written as follows:

CF
D

];ψ
0;wx(s) �

ℵ(])

1 − ]
e

− λ]ψ(s)

w(s)
􏽚

s

0
e
λ]ψ(ξ) d

dξ
(wx)(ξ)dξ. (9)

Defnition 4 (see [32]). Let 0< ]< 1, and x ∈ X. Ten, the
ψ-weighted Caputo–Fabrizio fractional integral is defned as
follows:

CF
I
];ψ
0;wx(s) �

1 − ]
ℵ(])

x(s) +
]
ℵ(])

1
w(s)

􏽚
s

0
ψ′(ξ)w(ξ)x(ξ)dξ.

(10)

Lemma 5 (see [32]). Let 0< ]< 1, and x ∈ X. Ten,
CF
D

];ψCF
0;w I

];ψ
0;w x(s) � x(s),

CF
I
];ψCF
0;w D

];ψ
0;w x(s) � x(s) −

w(0)x(0)

w(s)
.

(11)

In particular, if x(0) � 0, then CFI
];ψCF
0;w D

];ψ
0;w x(s) � x(s).

Lemma 6 (see [32]). Let 0< ]< 1, and x ∈ X with f(0) � 0.
Ten, the following FDE

CF
D

];ψ
0;wx(s) � f(s),

x(0) � c,
(12)

has the unique solution

x(s) �
w(0)

w(s)
c +

1 − ]
ℵ(])

f(s) +
]
ℵ(])

1
w(s)

􏽚
s

0
ψ′(ξ)w(ξ)f(ξ)dξ, s ∈ ℧. (13)

Theorem 7 (Dhage’s fxed point theorem [34]). Let D be
a nonempty, convex, closed subset of a Banach algebraX. Let
the operators O1,O3: X⟶ X and O2: D⟶ X such that
(i) O1 and O3 are Lipschitzian with a Lipschitz constants κ1
and κ2, respectively; (ii) O2 is continuous and compact; (iii)
x � O1xO2y + O3x⟹x ∈ X for each y ∈ D, (iv) κ1N +

κ2 < 1, where N � ‖O2(D)‖. Ten, there exists x ∈ D such
that O1xO2x + O3x � x.

3. Main Results

Here, we provide some qualitative analyses of two types of
Caputo–Fabrizio hybrid problems that are (5) and (6).

Lemma 8. Let g be continuous function on ℧ with g(0) � 0
and assume that x⟶ x − U(s, x)/Z(s, x) is increasing in
R, a.e., for each s ∈ ℧. Ten, the solution of the ψ-weighted
hybrid FDE

CF
D

];ψ
0;w

x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡 � g(s), s ∈ ℧, 0< ]< 1,

a
x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡

s�0
+ b

x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡

s�T

� c,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14)

satisfes the following equation:

Journal of Mathematics 3



x(s) � Z(s, x(s))

·
βw

w(s)

c

a
−

bμ]
a

g(T) −
bη]

aw(T)
􏽚

T

0
ψ′(ξ)w(ξ)g(ξ)dξ􏼠 􏼡􏼢

+ μ]g(s) +
η]

w(s)
􏽚

s

0
ψ′(ξ)w(ξ)g(ξ)dξ􏼣

+ U(s, x(s)), s ∈ ℧,

(15)

where μ] ≔ 1 − ]/ℵ(]), η] ≔ ]/ℵ(]), and βw ≔
aw(0)w(T)/aw(T) + bw(0) with aw(T) + bw(0)≠ 0.

Proof. Applying the operator CFI
];ψ
0;w of the frst equation of

(14), we have the following equation:

CF
I
];ψCF
0;w D

];ψ
0;w

x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡�

CF
I
];ψ
0;w g(s). (16)

Using Lemma 5, we have the following equation:

CF
I
];ψCF
0;w D

];ψ
0;w

x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡 �

x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡 −

w(0)

w(s)

x(0) − U(0, x(0))

Z(0, x(0))
􏼠 􏼡. (17)

Comparing (16) and (17), we obtain the following
equation:

x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡 −

w(0)

w(s)

x(0) − U(0, x(0))

Z(0, x(0))
􏼠 􏼡�

CF
I
];ψ
0;w g(s), (18)

which implies

x(s) � Z(s, x(s))
w(0)

w(s)

x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡

s�0
+ μ]g(s) +

η]
w(s)

􏽚
s

0
ψ′(ξ)w(ξ)g(ξ)dξ􏼢 􏼣

+ U(s, x(s)).

(19)

Taking s⟶ T to both sides of (19), we have the fol-
lowing equation:

x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡

s�T

�
w(0)

w(T)

x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡

s�0
+ μ]g(T) +

η]
w(T)

􏽚
s

0
ψ′(ξ)w(ξ)g(ξ)dξ􏼢 􏼣. (20)

Applying the boundary condition of (14) and using (20),
we obtain the following equation:
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x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡

s�0
�

c

a
−

b

a

x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡

s�T

�
c

a
−

b

a

w(0)

w(T)

x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡

s�0
+ μ]g(T) +

η]
w(T)

􏽚
T

0
ψ′(ξ)w(ξ)g(ξ)dξ􏼢 􏼣.

(21)

Hence,

x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡

s�0
�

βw

w(0)

c

a
−

bμ]
a

g(T) −
bη]

aw(T)
􏽚

T

0
ψ′(ξ)w(ξ)g(ξ)dξ􏼠 􏼡. (22)

Substituting (22) into (19), we obtain (15).
Due to Lemma 8, we can infer the following result: □

Corollary  . Let Z ∈ C(℧,R\ 0{ }) and f, U ∈ C(℧,R) with
f(0, x(0)) � 0. Ten, the solution of (6) satisfes the following
equation:

x(s) � Z(s, x(s))

·
βw

w(s)

c

a
−

bμ]
a

f(T, x(T)) −
bη]

aw(T)
􏽚

T

0
ψ′(ξ)w(ξ)f(ξ, x(ξ))dξ􏼠 􏼡 + μ]f(s, x(s)) +

η]
w(s)

􏽚
s

0
ψ′(ξ)w(ξ)f(ξ, x(ξ))dξ􏼢 􏼣

+ U(s, x(s)), s ∈ ℧,

(23)

where η], μ], and βw as in Lemma 8.

Now, we need the following assumptions on U, Z, and f.

(As1) Z: ℧ × R⟶ R × 0{ } and U, f: ℧ × R⟶ R

are continuous
(As2) Tere exist positive functions ϑU and ϑZ with
bounds ‖ϑU‖ and ‖ϑZ‖, respectively, such that

|U(s, x) − U(s, x)|≤ ϑU(s)|x − x|, s ∈ ℧, x, x ∈ R and

|Z(s, x) − Z(s, x)|≤ ϑZ(s)|x − x|, s ∈ ℧, x, x ∈ R.

(24)

(As3) Tere exist two functions δf ∈ X and Υ:
R+⟶ R+ be nondecreasing continuous such that

|f(s, x)|≤ δf(s)Υ(|x|), s ∈ ℧, x ∈ R. (25)

(As4) Tere exists r> 0 such that

r≥
Z0ϖ + U0

1 − ϑZ

����
����ϖ − ϑU

����
����􏼐 􏼑

, (26)

and ‖ϑU‖ϖ + ‖ϑZ‖< 1, where U0 � sups∈℧|U(s, 0)|, Z0 �

sups∈℧|Z(s, 0)|, and

ϖ ≔
βw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|c|

w(0)|a|
+ δf

�����

�����Υ(r)

× μ] +
βw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|b|μ]

w(0)|a|
+

|b|η]
|a|w(T)

+
η]

w(0)
􏼠 􏼡w(T)[ψ(T) − ψ(0)]􏼢 􏼣.

(27)
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Theorem 10. Suppose that (As1)–(As4) hold, then the
ψ-weighted problem (6) has at least one solution defned on℧.

Proof. Defne the set D � x ∈ X: ‖x‖X ≤ r􏼈 􏼉, where r sat-
isfes (As4). Certainly, D is a convex, closed, and bounded
subset of X. By Corollary 9, we defne three operators
O1,O3: X⟶ X and O2: D⟶ X by

O1x(s) � Z(s, x(s)), s ∈℧,

O2x(s) �
βw

w(s)

c

a
−

bμ]
a

f(T, x(T)) −
bη]

aw(T)
􏽚

T

0
ψ′(ξ)w(ξ)f(ξ, x(ξ))dξ􏼠 􏼡

+ μ]f(s, x(s)) +
η]

w(s)
􏽚

s

0
ψ′(ξ)w(ξ)f(ξ, x(ξ))dξ, s ∈ ℧ and

O3x(s) � U(s, x(s)), s ∈ ℧.

(28)

So, we can write the formula (23) in the operator form as
follows:

x(s) � O1x(s)O2x(s) + O3x(s), s ∈ ℧. (29)

Now, we show that O1, O2, and O3 fulfll all the as-
sumptions of Teorem 7, through the following claims: □

Step 11. O1 and O3 are Lipschitzian on X.
For s ∈℧ and x, x∈ X, we have from (As2) that

O1x(s) − O1x(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � |Z(s, x(s)) − Z(s, x(s))|≤ ϑZ(s)|x(s) − x(s)|and

O3x(s) − O3x(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � |U(s, x(s)) − U(s, x(s))|≤ ϑU(s)|x(s) − x(s)|,
(30)

which implies

O1x − O1x
����

����≤ ϑZ

����
����‖x − x‖and

O3x − O3x
����

����≤ ϑU

����
����‖x − x‖.

(31)

Tus, O1,O3: X→X are Lipschitzian on X with Lip-
schitz constants ‖ϑZ‖ and ‖ϑU‖, respectively.

Step 12. O2: D⟶ X is a completely continuous.
In the beginning, we show that O2 is continuous on D.

Let xn􏼈 􏼉n≥1 be a sequence in D with xn⟶ x ∈ D. Ten,
from Lebesgue’s convergence theorem [35], we obtain the
following equation:

lim
n⟶∞

O2xn(s) �
βw

w(s)

c

a
−

bμ]
a

lim
n⟶∞

f T, xn(T)( 􏼁 −
bη]

aw(T)
lim

n⟶∞
􏽚

T

0
ψ′(ξ)w(ξ)f ξ, xn(ξ)( 􏼁dξ􏼠 􏼡

+ μ] lim
n⟶∞

f s, xn(s)( 􏼁 +
η]

w(s)
lim

n⟶∞
􏽚

s

0
ψ′(ξ)w(ξ)f ξ, xn(ξ)( 􏼁dξ

�
βw

w(s)

c

a
−

bμ]
a

lim
n⟶∞

f T, xn(T)( 􏼁 −
bη]

aw(T)
􏽚

T

0
ψ′(ξ)w(ξ) lim

n⟶∞
f ξ, xn(ξ)( 􏼁dξ􏼠 􏼡
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+ μ] lim
n⟶∞

f s, xn(s)( 􏼁 +
η]

w(s)
􏽚

s

0
ψ′(ξ)w(ξ) lim

n⟶∞
f ξ, xn(ξ)( 􏼁dξ

�
βw

w(s)

c

a
−

bμ]
a

f(T, x(T)) −
bη]

aw(T)
􏽚

T

0
ψ′(ξ)w(ξ)f(ξ, x(ξ))dξ􏼠 􏼡

+ μ]f(s, x(s)) +
η]

w(s)
􏽚

s

0
ψ′(ξ)w(ξ)f(ξ, x(ξ))dξ.

(32)

Hence, limn⟶∞O2xn(s) � O2x(s), for all s ∈ ℧. Tus,
O2 is a continuous on D.

Next, let x ∈ D. Ten, by (As3), we have the following
equation:

O2x(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
βw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

w(s)

|c|

|a|
+

|b|μ]
|a|

|f(T, x(T))| +
|b|η]

|a|w(T)
􏽚

T

0
ψ′(ξ)w(ξ)|f(ξ, x(ξ))|dξ􏼠 􏼡

+ μ]|f(s, x(s))| +
η]

w(s)
􏽚

s

0
ψ′(ξ)w(ξ)|f(ξ, x(ξ))|dξ

≤
βw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

w(s)

|c|

|a|
+

|b|μ]
|a|

δf(T)Υ(|x(T)|) +
|b|η]

|a|w(T)
􏽚

T

0
ψ′(ξ)w(ξ)δf(ξ)Υ(|x(ξ)|)dξ􏼠 􏼡

+ μ]δf(s)Υ(|x|) +
η]

w(s)
􏽚

s

0
ψ′(ξ)w(ξ)δf(ξ)Υ(|x(ξ)|)dξ

≤
βw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

w(s)

|c|

|a|
+

|b|μ]
|a|

δf

�����

�����Υ(r) +
|b|η]

|a|w(T)
􏽚

T

0
ψ′(ξ)w(ξ) δf

�����

�����Υ(r)dξ􏼠 􏼡

+ μ] δf

�����

�����Υ(r) +
η]

w(s)
􏽚

s

0
ψ′(ξ)w(ξ) δf

�����

�����Υ(r)dξ

≤
βw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|c|

w(0)|a|
+ δf

�����

�����Υ(r)
βw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|b|μ]

w(0)|a|
+

|b|η]
|a|w(T)

􏽚
T

0
ψ′(ξ)w(ξ)dξ + μ] +

η]
w(0)

􏽚
s

0
ψ′(ξ)w(ξ)dξ􏼠 􏼡.

(33)

Since ψ′, w> 0 and applying the mean value theorem for
integral, we obtain the following equation:

􏽚
θ

0
ψ′(ξ)w(ξ)dξ � w(κ) 􏽚

θ

0
ψ′(ξ)dξ � w(κ)[ψ(θ) − ψ(0)],

(34)

for some 0< κ<T. It follows that

􏽚
θ

0
ψ′(ξ)w(ξ)dξ ≤w(T)[ψ(T) − ψ(0)]. (35)

Hence, (33) becomes
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O2x(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
βw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|c|

w(0)|a|
+ δf

�����

�����Υ(r)

× μ] +
βw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|b|μ]

w(0)|a|
+

|b|η]
|a|w(T)

+
η]

w(0)
􏼠 􏼡w(T)[ψ(T) − ψ(0)]􏼢 􏼣.

(36)

Terefore, ‖O2x‖≤ϖ, for all x ∈ D, where ϖ given by
(As4). Tis consequence proves that O2(D) is uniformly

bounded set onD. Finally, we show that the set O2(D) is an
equicontinuous in X.

Let s1, s2 ∈ ℧ with s1 ≤ s2, and x ∈ D. Ten,

O2x s2( 􏼁 − O2x s1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
w s2( 􏼁 − w s1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

w s2( 􏼁w s1( 􏼁
βw

c

a
−

bμ]
a

f(T, x(T)) −
bη]

aw(T)
􏽚

T

0
ψ′(ξ)w(ξ)f(ξ, x(ξ))dξ􏼠 􏼡

+ μ] f s2, x s2( ( 􏼁􏼁 − f s1, x s1( ( 􏼁􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + η] w s2( 􏼁 − w s1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
s2

0
ψ′(ξ)w(ξ)|f(ξ, x(ξ))|dξ

+
η]

w s1( 􏼁
􏽚

s2

s1

ψ′(ξ)w(ξ)|f(ξ, x(ξ))|dξ

≤
w s2( 􏼁 − w s1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

w s2( 􏼁w s1( 􏼁
βw

c

a
−

bμ]
a

f(T, x(T)) −
bη]

aw(T)
􏽚

T

0
ψ′(ξ)w(ξ)f(ξ, x(ξ))dξ􏼠 􏼡

+ μ] f s2, x s2( ( 􏼁􏼁 − f s1, x s1( ( 􏼁􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + η] w s2( 􏼁 − w s1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 δf

�����

�����Υ(r)w s2( 􏼁 ψ s2( 􏼁 − ψ(0)􏼂 􏼃

+
w s2( 􏼁

w s1( 􏼁
η] δf

�����

�����Υ(r) ψ s2( 􏼁 − ψ s1( 􏼁􏼂 􏼃.

(37)

As s2⟶ s1, the continuity of f,ψ and w imply that

O2x s2( 􏼁 − O2x s1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⟶ 0, as s2⟶ s1. (38)

Tus, O2 is equicontinuous on D. As a result of the
Ascoli–Arzelà theorem [4], O2: D⟶ X is a completely
continuous.

Step 13. Assumption (iii) of Teorem 7 is satisfed.
Let x ∈ X and y ∈ D such that x � O1xO2y + O3x.

Ten,

|x(s)|≤ O1x(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 O2y(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + O3x(s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ |Z(s, x(s))|
βw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

w(s)

|c|

|a|
+

|b|μ]
|a|

|f(T, y(T))| +
|b|η]

|a|w(T)
􏽚

T

0
ψ′(ξ)w(ξ)|f(ξ, y(ξ))|dξ􏼠 􏼡􏼨
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+ μ]|f(s, y(s))| +
η]

w(s)
􏽚

s

0
ψ′(ξ)w(ξ)|f(ξ, y(ξ))|dξ􏼩 +|U(s, x(s))|

≤ [|Z(s, x(s)) − Z(s, 0)| +|Z(s, 0)|]
βw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

w(s)

|c|

|a|
+

|b|μ]
|a|

|f(T, y(T))|􏼨 􏼠

+
|b|η]

|a|w(T)
􏽚

T

0
ψ′(ξ)w(ξ)|f(ξ, y(ξ))|dξ􏼡 + μ]|f(s, y(s))|

+
η]

w(s)
􏽚

s

0
ψ′(ξ)w(ξ)|f(ξ, y(ξ))|dξ􏼩 +[|U(s, x(s)) − U(s, 0)| +|U(s, 0)|]

≤ ϑZ

����
����|x(s)| + Z0􏽨 􏽩

βw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

w(0)

|c|

|a|
+

|b|μ]
|a|

δf

�����

�����Υ(r)􏼨 􏼠

+
|b|η]

|a|w(T)
+

η]
w(0)

􏼠 􏼡 δf

�����

�����Υ(r)w(T)[ψ(T) − ψ(0)]􏼡 + μ] δf

�����

�����Υ(r)􏼩

+ ϑU

����
����|x(s)| + U0

� ϑZ

����
����ϖ + ϑU

����
����􏽨 􏽩|x(s)| + Z0ϖ + U0,

(39)

which implies

|x(s)|≤
Z0ϖ + U0

1 − ϑZ

����
����ϖ − ϑU

����
����
≤ r. (40)

Step 14. Assumption (iv) of Teorem 7 is satisfed, i.e.,
κ1N + κ2 < 1, where N � ‖O2(D)‖.

Since

N � O2(D)
����

���� � sup
x∈D

sup
x∈D

O2x(s)􏼨 􏼩≤ϖ, (41)

we have the following equation:

κ1N + κ2 ≔ ϑZ

����
����N + ϑU

����
����< ϑZ

����
����ϖ + ϑU

����
����< 1. (42)

Tus, all the assumptions of Teorem 7 are satisfed, and
hence, the equation x � O1xO2x + O3x has a solution in D.
As a result, ψ-weighted hybrid problem (6) has a solution on
℧.

3.1. Special Results. In this subsection, we discuss some
special cases of problem (6).

Consider ψ(s) � s in problem (6), we obtain the fol-
lowing weighted hybrid FDE:

CF
D

]
0;w

x(s) − U(s, x(s))

Z(s, x(s))
� f(s, x(s)), s ∈ ℧ ≔ [0, T],

a
x(s) − U(s, x(s))

Z(s, x(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

+ b
x(s) − U(s, x(s))

Z(s, x(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�T

� c,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(43)

where all constants and symbols correspond to those in
problem (6). Since the next Lemma is a duplication of
Lemma 8 with ψ(s) � s, we shall omit its proof.

Lemma 15. Let g be continuous function on℧with g(0) � 0
and assume that x⟶ x − U(s, x)/Z(s, x) is increasing in
R, a.e., for each s ∈ ℧. Ten, the solution to the following
weighted hybrid FDE

CF
D

]
0;w

x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡 � g(s), s ∈ ℧, 0< ]< 1,

a
x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡

s�0
+ b

x(s) − U(s, x(s))

Z(s, x(s))
􏼠 􏼡

s�T

� c,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(44)

satisfes the equation

x(s) � Z(s, x(s))

·
βw

w(s)

c

a
−

bμ]
a

g(T) −
bη]

aw(T)
􏽚

T

0
w(ξ)g(ξ)dξ􏼠 􏼡 + μ]g(s) +

η]
w(s)

􏽚
s

0
w(ξ)g(ξ)dξ􏼢 􏼣

+ U(s, x(s)), s ∈℧.

(45)

where η], μ], and βw are as in Lemma 8.
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According to Lemma 15, we can defne three operators
O1,O3: X⟶ X, and O2: D⟶ X by

O1x(s) � Z(s, x(s)), s ∈ ℧,

O2x(s) �
βw

w(s)

c

a
−

bμ]
a

f(T, x(T)) −
bη]

aw(T)
􏽚

T

0
w(ξ)f(ξ, x(ξ))dξ􏼠 􏼡

+ μ]f(s, x(s)) +
η]

w(s)
􏽚

s

0
w(ξ)f(ξ, x(ξ))dξ, s ∈ ℧,

O3x(s) � U(s, x(s)), s ∈ ℧.

(46)

In addition, we must provide some constants as follows:

ϖ ≔
βw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|c|

w(0)|a|
+ δf

�����

�����Υ(r)

× μ] +
βw

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|b|μ]

w(0)|a|
+

|b|η]
|a|w(T)

+
η]

w(0)
􏼠 􏼡w(T)T􏼢 􏼣,

(47)

and

􏽚
θ

0
w(ξ)dξ ≤Tw(T), for some 0< θ<T. (48)

Te following existence theorem can be stated
without proof.

Theorem 16. Suppose that (As1)–(As4) hold with (47) and
(48). Ten, the weighted hybrid problem (5) has at least one
solution defned on ℧.

Remark 17. Our results for problem (6) are applied for the
following special cases:

Case 1: if a � 1 and b � 0, then, we have the initial value
problem of hybrid FDE:

CF
D

];ψ
0;w

x(s) − U(s, x(s))

Z(s, x(s))
� f(s, x(s)), 0< ]< 1,

x(s) − U(s, x(s))

Z(s, x(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

� c.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(49)

Case 2: if a � 0 and b � 1, then, we have the terminal
value problem of hybrid FDE:

CF
D

];ψ
0;w

x(s) − U(s, x(s))

Z(s, x(s))
� f(s, x(s)), 0< ]< 1,

x(s) − U(s, x(s))

Z(s, x(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�T

� c.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(50)

Case 3: if a � b � 1 and c � 0, then, we have the
antiperiodic the problem of hybrid FDE:

CF
D

];ψ
0;w

x(s) − U(s, x(s))

Z(s, x(s))
� f(s, x(s)), 0< ]< 1,

x(s) − U(s, x(s))

Z(s, x(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

+
x(s) − U(s, x(s))

Z(s, x(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�T

� 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(51)

Case 4: if we choose U(s, x(s)) ≡ 0, and Z(s, x(s)) ≡ 1,
then our problems (5) and (6) reduce to the following
problems:

CF
D

]
0;wx(s) � f(s, x(s)), 0< ]< 1,

ax(s) |s�0 +bx(s) |s�T � c,

⎧⎨

⎩

and
CF
D

];ψ
0;wx(s) � f(s, x(s)), 0< ]< 1,

ax(s) |s�0 +bx(s) |s�T � c.

⎧⎨

⎩

(52)

4. Examples

Here, we give two examples to demonstrate the attained
results.

Example 1. Consider the following ψ-weighted hybrid
problem:
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CF
D

1/4;ψ
0;w

x(s) − U(s, x(s))

Z(s, x(s))
� f(s, x(s)), s ∈ [0, 1],

2
x(s) − U(s, x(s))

Z(s, x(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

+ 3
x(s) − U(s, x(s))

Z(s, x(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�1

� 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(53)

Clearly, � 1/4,ψ(s) � s/6,w(s) � es, [0, T] � [0, 1],
a � 2, b � 3, and c � 1. Set

U(s, x(s)) �
s
2

16
cos|x(s)| +

s

2
,

Z(s, x(s)) � 1 +
1
12

sin
πs

3
􏼒 􏼓|x(s)|,

f(s, x(s)) �
e

s
− 1

10 + s
2 sinx(s).

(54)

Note that f(0, x(0)) � 0. For s ∈ [0, 1] and
x, x⋆ ∈ [0,∞). Ten,

U(s, x) − U s, x
⋆

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
s
2

16
x − x
⋆􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

Z(s, x) − Z s, x
⋆

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
12

sin
πs

3
􏼒 􏼓 x − x

⋆􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

|f(s, x)|≤ e
s
|x|.

(55)

Tus, (As1), (As2), and (As3) hold with ϑU(s) � s2/16,
ϑZ(s) � 1/12 sin(πs/3), δf(s) � es and Υ(|x|) � |x|. Ten,

‖ϑU‖ � 1/16, ‖ϑZ‖ � 1/8
�
3

√
, ‖δf‖ � e, U0 � 9/16, and Z0 � 1.

In addition, the condition ‖ϑU‖ϖ + ‖ϑZ‖< 1 holds. Indeed,
we have ℵ(]) � 1, μ] � 3/4, η] � 1/4, and βw � 2e/2e + 3,
where aw(T) + bw(0) � 2e + 3≠ 0, and

ϖ �
117e + 192e

2
+ 4e

3
􏼐 􏼑r + 48

48(3 + 2e)
. (56)

When

ϑZ

����
����ϖ + ϑU

����
����< 1, (57)

we have the following equation:

ϑZ

����
����ϖ + ϑU

����
���� �

1
8

�
3

√ ϖ +
1
16
< 1⟹ϖ<

15
�
3

√

2
. (58)

From (56) and (58), we obtain the following equation:

117e + 192e
2

+ 4e
3

􏼐 􏼑r + 48
48(3 + 2e)

<
15

�
3

√

2
. (59)

Hence, r< 2.1634. Tus, there exists r> 0 such that (57)
holds. On the other hand, we have the following equation:

r≥
Z0ϖ + U0

1 − ϑZ

����
����ϖ − ϑU

����
����􏼐 􏼑

�
48ϖ + 27
45 − 2

�
3

√
ϖ

. (60)

Using theMATLAB program, we fnd that the constant r

satisfes the inequality r> 2.86862. Tus, Teorem 10 shows
that (53) has a solution on [0, 1].

Example 2. Let ψ(s) � s and consider the following
weighted hybrid problem:

CF
D

1/4
0;w

x(s) − U(s, x(s))

x(s, x(s))
�

se
s

10e
s

+ e
2s

|x(s)|

1 + |x(s)|
, s ∈ 0,

1
2

􏼔 􏼕,

2
x(s) − U(s, x(s))

x(s, x(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�0

+ 3
x(s) − U(s, x(s))

x(s, x(s))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
s�1/2

� 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(61)

Clearly, ] � 1/4, w(s) � es, T � 1/2, a � 2, b � 3, c � 1,
where

U(s, x(s)) �
s

2
1
19

cos|x(s)| +
x
2
(s) +|x(s)|

1 + |x(s)|
􏼠 􏼡 +

s

8
,

x(s, x(s)) �
e
1− s

40
cos|x(s)|,

f(s, x(s)) �
se

s

10e
s

+ e
2s

|x(s)|

1 + |x(s)|
.

(62)

Observe that f(0, x(0)) � 0. For s ∈ [0, 1/2], and
x, x⋆ ∈ 0,∞). Ten,

U(s, x) − U s, x
⋆

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
s

2
x − x
⋆􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

x(s, x) − x s, x
⋆

( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
e
1− s

40
x − x
⋆􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

|f(s, x)|≤
s

10 + e
s |x|.

(63)

Tus, (As1), (As2), and (As3) hold with ϑU(s) � s/2,
ϑx(s) � e1− s/40, δf(s) � s/10 + es and Υ(|x|) � |x|. Ten,
‖ϑU‖ � 1/38, ‖ϑx‖ �

�
e

√
/40, ‖δf‖ � 1/20 + 2

�
e

√
, U0 � 23/

304, and x0 �
�
e

√
/40. In addition, the condition ‖ϑU‖ϖ +

‖ϑx‖< 1 holds. Indeed, we have ℵ(]) � 1, μ] ≔ 3/4,
η] ≔ 1/4, and βw � 2e0.5/2e0.5 + 3 with aw(T) + bw(0) �

6.29744≠ 0 and
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ϖ �
2.144 8

2e
1/2

+ 20
r + 0.261 81. (64)

Ten, we have the following equation:

ϑx

����
����ϖ + ϑU

����
���� �

�
e

√

40
ϖ +

1
38
< 1. (65)

Using theMATLAB program, we fnd that the constant r

satisfes the inequality 0< r< 267.63. Tus, Teorem 16
shows that (61) has a solution on [0, 1/2].

5. Conclusions

Te existence and uniqueness of solutions are among the
qualitative properties of mathematical models. Tese
properties are important because they help ensure that the
model provides reliable and accurate results and that the
results are applicable to a wide range of situations. Without
these qualitative properties, a model may not accurately
refect the real-world phenomena it is meant to describe,
which can lead to incorrect conclusions and unreliable
predictions. In this work, we have successfully analyzed the
nonlinear hybrid diferential equations by the application of
fractional calculus. Specifcally, problems (5) and (6) have
been considered using the ψ-weighted Caputo–Fabrizio
FDs, which incorporate a nonsingular kernel. First, we have
provided several special results and various observations for
our proposed problems in the frame of ψ-weighted Capu-
to–Fabrizio FDs, which made our results more generalizable
and studyable to a wide range of previously studied and
research-worthy problems. Ten, through the utilization of
Dhage’s fxed point theory for sums of three operators, we
have established the existence of solutions to the proposed
hybrid problems. Finally, in order to support the theoretical
results, we have ofered two practical examples. In the future,
it will be interesting if the current systems are studied in the
frame of ψ-weighted Atangana–Baleanu–Caputo, recently
introduced in [36, 37].
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