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Let Br􏼈 􏼉r≥ 0, Jr􏼈 􏼉r≥ 0, and Cr􏼈 􏼉r≥ 0 be the balancing, Jacobsthal, and Lucas balancing numbers, respectively. In this paper, the
diophantine equations Br � Js + Jt and Cr � Js + Jt are completely solved. Te solutions rely basically on Matveev’s theorem on
linear forms in logarithms of algebraic numbers and a procedure of reducing the upper bound due to Dujella and Pethö.

1. Introduction

Balancing numbers are generated by the equation Bn+1 �

6Bn − Bn− 1 for n≥ 1 with B0 � 0 andB1 � 1. So, the initial
terms are as follows:

0, 1, 6, 35, 204, 1189, 6930, . . . . (1)

Lucas balancing numbers are strongly related to bal-
ancing numbers and defned by C0 � 1, C1 � 3, and Cn+1 �

6Cn − Cn− 1 for ≥1. Its frst terms are as follows:

1, 3, 17, 99, 591, 3543, 21255, . . . . (2)

Te initial terms of the Jacobsthal sequence are J0 � 0
and J1 � 1, and it follows the equation Jn+1 � Jn + 2Jn− 1 for
n≥ 1. So, we have the following equation:

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, . . . . (3)

Balancing numbers and associated sequences have been
considered in many papers concerning diophantine equa-
tions. In [1], Ray solved some diophantine equations that
involve balancing and Lucas balancing numbers. In [2], Dey
and Rout found the perfect powers in the sequences of
balancing and Lucas balancing numbers and identifed the
Lucas balancing numbers which are products of a power of 3
and a perfect power. In addition, they proved that many
diophantine equations that contains balancing and Lucas

balancing numbers have no solutions. In [3], Rayaguru and
Panda found all the repdigits that exist in the product of
consecutive balancing or Lucas balancing numbers, and in
[4], they explored the repdigits that are expressible as
products of balancing and Lucas balancing numbers with
their indices in arithmetic progressions. In [5], Erduvan and
Keskin studied and determined Fibonacci numbers which
are products of two balancing numbers. In [6], Rayaguru
et al. found the factoriangular numbers in the sequences of
balancing and Lucas balancing numbers. In [7], Ddamulira
obtained all the repdigits that can be written as sums of three
balancing numbers. In [8], Patra and Panda solved the
equation xs − 8Cnxy + 16yt � ±2r for (s, t) ∈ (2, 2),{

(2, 4), (4, 2)}. In [9], Nansoko et al. solved completely the
diophantine equation Bx

n + Bx
n+1 + · · · + Bx

n+k− 1 � Bm in
positive integers (m, n, k, x).

In this paper, our purpose is to solve the following
equations:

Br � Js + Jt, (4)

and

Cr � Js + Jt. (5)

All the solutions of the two equations are given as
follows:
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Theorem 1. Let s≥ t and let (r, s, t) be a non-negative so-
lution of equation (4). Ten, the solutions are as follows:

(1, 1, 0), (2, 3, 3), (2, 4, 1), (2, 4, 2). (6)

Theorem 2. Let s≥ t and let (r, s, t) be a non-negative so-
lution of equation (5). Ten, the solutions are as follows:

(0, 1, 0), (0, 2, 0), (1, 3, 0). (7)

Te key idea is to use a variant of Baker’ theory due to
Matveev to fnd an upper bound for all the implied variables
in terms of a single variable. Te obtained upper bound is
usually too large to be investigated by computer calculations.
Terefore, we apply a reductionmethod of Dujella and Pethö
to cut down the upper bound. Lastly, we use Sage to de-
termine all the solutions.

2. Preliminary Results

Tis section gathers the relevant background material that
will be used throughout the paper.

2.1.BalancingandLucasBalancingSequences. Te sequences
of balancing and Lucas balancing numbers are characterized
by the following equation:

Θ(]) ≔ ]2 − 6] + 1 � 0. (8)

Let ρ � 3 +
�
8

√
and δ � 3 −

�
8

√
be the solutions. Teir

Binet formulas are as follows:

Bn �
ρn

− δn

2
�
8

√ for all n≥ 0,

Cn �
ρn

+ δn

2
for n≥ 0.

(9)

One can show that

ρn− 1 ≤Bn < ρ
n holds  for all n≥ 1, (10)

and

ρn

2
≤Cn <

ρn+1

2
holds  for all k≥ 2. (11)

For more details concerning balancing and Lucas bal-
ancing numbers, see [10, 11].

2.2. Jacobsthal Sequence. Te Jacobsthal numbers obey the
following Binet formula:

Jn �
2n

− (− 1)
n

3
. (12)

For n≥ 1, one can show that

2n− 2 ≤ Jn ≤ 2
n− 1

. (13)

We refer to [12, 13] for more details. Te next inequality
of linear forms is fundamental. Bugeaud, Mignotte, and
Siksek deduced it, see [14], from Matveev’s theorem [15].

2.3. ATeoremofMatveev. Consider an algebraic number α.
Suppose the minimal polynomial (over Z) of α has degree m

and let α(i)’s be the conjugates of α. Ten, the minimal
polynomial can be written as follows:

c0x
m

+ c1x
m− 1

+ · · · + cm � c0􏽙

m

i�1
x − α(i)

􏼐 􏼑, (14)

where c0 is positive integer. Te logarithmic Weil height
(over algebraic real feld) of α is given by the following
equation:

h(α) ≔
1
m

logc0 + 􏽘
m

i�1
log max α(i)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 1􏼚 􏼛􏼒 􏼓⎛⎝ ⎞⎠. (15)

Te function of logarithmic height satisfes the following
properties (see [16] for proofs):

h α1 ± α2( 􏼁≤ h α1( 􏼁 + h α2( 􏼁 + log 2,

h α1α
±1
2􏼐 􏼑≤ h α1( 􏼁 + h α1( 􏼁,

h αs
( 􏼁 � |s|h(α)(s ∈ Z).

(16)

Theorem 3 (Matveev). Suppose that α1, . . . , αk are positive
real algebraic numbers in a real algebraic number feld A of
degree DA and that t1, . . . , tk are nonzero integers such that
the quantity

Ω1 ≔ αt1
1 α

t2
2 . . . αtk

k − 1≠ 0. (17)

Let Hi ≥max DAh(αi), |logαi|, 0.16􏼈 􏼉, for i � 1, . . . , k and
β≥max |t1|, . . . , |tk|􏼈 􏼉. Ten,

log|Ω|> − 1.4 · 30k+3
· k

4.5
· D

2
A · 1 + logDA( 􏼁 · (1 + log β)H1 . . . Hk. (18)

2.4. Reduction Lemma. Let ‖θ‖ the distance between a real
number θ and the closest integer. Te subsequent result is
due to Dujella and Pethö, see [17].

Lemma  . Let λ, θ, A> 0, B> 1 be given real numbers. Let K

be a positive integer. Assume p/q is a convergent of λ with
q> 6K. If ϵ ≔ ‖θq‖ − K‖λq‖> 0 and s, t,ω> 0 satisfy
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0<|sλ − t + θ|<
A

B
ω, (19)

with s≤K, then

ω<
log(Aq/ϵ)

logB
. (20)

2.5. Legendre Teorem. Legendre proved the following es-
sential result in his book [18]. We will use this theorem in
some cases of our investigation of balancing numbers. Te
interested reader can see [19] for more details.

Theorem 5. Let p, q ∈ Z. Assume r is a real number and
r � [a0, a1, . . .]. If

p

q
− r

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<

1
2q

2, (21)

then p/q is a convergent of the continued fraction of r. Let S
and t be integers (non-negative) such that qt > S and let
b � max0≤i≤t ai􏼈 􏼉. Ten,

1
(b + 2)q

2 <
p

q
− r

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (22)

We assume, by symmetry of equations (4) and (5), that
s≥ t.

3. Solving the Equation Br = Js + Jt

3.1. Bounding the Variables. Applying the inequalities (10)
and (13), we get the following inequalities:

ρr− 1 ≤Br ≤ 2
s
,

2s− 2 ≤Br ≤ ρ
r
.

(23)

Tese imply that

(s − 2)
log 2
log ρ
≤ r≤ s

log 2
log ρ

+ 1. (24)

Te value of (log 2/ log ρ) is approximately 0.39, so we
can take r< 2s. Binet formulas can be inserted into equation
(4) to give the following equation:

ρr
− δr

2
�
8

√ �
2s

− (− 1)
s

3
+
2t

− (− 1)
t

3
. (25)

Ten,

ρr

2
�
8

√ −
2s

3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�
2t

3
−

(− 1)
s

+(− 1)
t

􏼐 􏼑

3
+

δr

2
�
8

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (26)

Tis implies that

ρr

2
�
8

√ −
2s

3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<
4 · 2t

3
. (27)

Tus,

3ρr2− s

2
�
8

√ − 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<

4
2s− t. (28)

Let

Ω1 �
3ρr2− s

2
�
2

√ − 1, k � 3, α1 �
3

2
�
8

√ , α2 � ρ, α3 � 2, t1 � 1, t2 � r, t3 � − s. (29)

If Ω1 � 0, then 3ρk � 2s+2.
�
2

√
. Let σ be the automor-

phism given by σ(ρ) � δ. Terefore, |3δr| � 2s+2.
�
2

√
. Indeed,

|3δr|< 3, a contradiction. So, Ω1 ≠ 0.
Take A � Q(ρ). Ten, DA � 2. Te logarithmic heights

are as follows:

h α1( 􏼁≤ h(2
�
8

√
) + h(3)≤

5
2
log 2 + log 3,

h α2( 􏼁 �
1
2
log ρ,

h α3( 􏼁 � log 2.

(30)

Setting

H1 � 5 log 2 + 2 log 3, H2 � log ρ, H3 � 2 log 2,

β � 2s,
(31)

and using the theorem of Matveev, we obtain the following
inequality:

log Ω1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> − c1(1 + log 2s), (32)

where c1 � 1.4 × 306 × 34.5 × 4 × (1 + log 2)(2 log 3 + 5
log 2)(2 log 2 log ρ). So,

log Ω1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> − 2 × 1013(1 + log 2s). (33)

On the other hand, by inequality (28), one gets the
following inequality:

log Ω1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<(t − s)log 2 + log 4. (34)

A combination of inequalities (33) and (34) gives the
following inequality:

− log 4 +(s − t)log 2< 2 × 1013(1 + log 2s). (35)

Hence,

t log 2> s log 2 − 2 × 1013(1 + log 2s) − log 4. (36)

From equation (25),

Journal of Mathematics 3



ρr

2
�
8

√ −
2s 1 + 2t− s

􏼐 􏼑

3
�

δr

2
�
8

√ −
(− 1)

s
− (− 1)

t

3
. (37)

Terefore,

3ρr2− s

2
�
8

√
1 + 2t− s

􏼐 􏼑
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

3 · 2− s

2
�
8

√
1 + 2t− s

􏼐 􏼑

δr

2
�
8

√ −
(− 1)

s
− (− 1)

t

3
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (38)

Hence,

3ρr2− s

2
�
8

√
1 + 2t− s

􏼐 􏼑
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<
5
2t. (39)

Let Ω2 � (3ρr2− s)/(2
�
8

√
(1 + 2t− s)) − 1. Ten,

log Ω2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< log 5 − t log 2. (40)

Let

α1 �
3

2
�
8

√
1 + 2t− s

􏼐 􏼑
, α2 � ρ, α3 � 2, k � 3, t1 � 1, t2 � r, t3 � − s, B � 2s. (41)

First, we show that Ω2 ≠ 0. If Ω2 � 0, then
3ρr � 2

�
8

√
(2s + 2t). Again, let σ(ρ) � δ. Tis gives

|3δr| � 2
�
8

√
(2s + 2t). Since |3δr|< 3, a contradiction, then

we take A � Q(ρ). Immediately, we get the following
equation:

h α1( 􏼁≤ h(3) + h(2
�
8

√
) + h 1 + 2t− s

􏼐 􏼑≤ log 3 +
7
2
log 2 +(s − t)log 2,

h α2( 􏼁 �
1
2
log ρ,

h α3( 􏼁 � log 2.

(42)

Set

H1 � 2 log 3 + 2(s − t)log 2 + 7 log 2, H2 � log ρ,

H3 � 2 log 2.
(43)

By Matveev’s Teorem, we get the following inequality:

log Ω2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> − c2(1 + log 2s)(2 log 3 + 2(s − t)log 2 + 7 log 2),

(44)

where c2 � 1.4 × 306 × 34.5 × 4 × (1 + log 2)(2 log 2 log ρ).
Using equations (35), (36), and (40) with simple cal-

culations give the following inequality:

s log 2< 6 × 1013(1 + log 2s) + 1.2 × 1026(1 + log 2s)
2

+ 3.

(45)

By a simple Mathematica calculation, we fnd the fol-
lowing estimation:

s< 3 × 1029. (46)

3.2. Reducing theUpper Bound. It is known that |a|< |ea − 1|

for a ∈ (− 1/2, 1/2). Now, we aim to cut down the bound on
n. Let

Δ1 � log
3

2
�
8

√􏼠 􏼡 + r log ρ − s log 2. (47)

Equation (28) gives, for t − s≥ 5,

Ω1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � e
Δ1 − 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<
4

2t− s <
1
4
, (48)

which implies that

Δ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
1
2
. (49)

Ten, |Δ1|< 2|eΔ1 − 1|. Terefore, we get

Δ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
8

2s− t. (50)

We observe that Δ1 ≠ 0 since Ω1 ≠ 0. Ten,
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0<
log(3/2

�
8

√
)

log 2
− s + r

log ρ
log 2

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<

8
2s− t log 2

<
12
2s− t. (51)

Using Lemma 4 with K � 6 × 1029 (K> 2s> r),
λ � (log ρ/ log 2), θ � (log(3/2

�
8

√
)/ log 2), A � 12, and

B � 2, let λ � [a0, a1, . . .], we fnd that
q61 � 6332847229674209482244367144203> 6K. Compute

ϵ � θq61
����

���� − K λq61
����

����> 0.4. (52)

It follows, by Lemma 4, that s − t< 108. Set

Δ2 � log
3

2
�
8

√
1 + 2t− s

􏼐 􏼑
⎛⎝ ⎞⎠ + r log ρ − s log 2. (53)

Let m≥ 5. By equation (39), we have the following
inequality:

Ω2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � e
Δ2 − 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<
5
2t <

1
4
. (54)

Tis implies that

Δ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
1
2
. (55)

Ten, |Δ2|< 2|eΔ2 − 1|. Terefore,

Δ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
10
2t . (56)

Ten,

0<
log 3/ 2

�
8

√
1 + 2t− s

􏼐 􏼑􏼐 􏼑􏼐 􏼑

log 2
− s + r

log ρ
log 2

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<
15
2t . (57)

Applying Lemma 4 with K � 6 × 1029 (K> 2s> r),
λ � (log ρ/ log 2), θ � (log(3/2

�
8

√
(1 + 2t− s)))/(log 2),

A � 15, and B � 2, we have q65 > 6K. Consider ϵ in the
following cases:

Case I: s − t< 108 and s − t≠ 1

ϵ � θq65
����

���� − K λq65
����

����> 0.0008. (58)

By Lemma 4, we get t< 124, so s< 232 and <464.
Case II: s − t � 1. In this case the value of ϵ will be
always negative and equation (4) becomes as follows:

Br � 2t
. (59)

Ten, r< 2t, and from equation (89), we get t< 3 × 1029.
As before, we can prove that

c
r2− (t+3)

− 1<
1
2t, (60)

Tis gives, for t≥ 3, that

r
log c

log 2
− (t + 3)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<
4
2t <

1
4
. (61)

Since 16t< 2t for t≥ 7, we get 4/2t < 1/2r2. Ten,
|(log ρ/ log 2) − t + 3/r|< 1/2r2. So, t + 3/r is a convergent of
(log ρ/ log 2). Using r<K and some computations we fnd
that

q58 <K< q59,

b � max
0≤i≤59

ai􏼈 􏼉 � 200.
(62)

Terefore,
1

(200 + 2)r
<
4
2t. (63)

Tus,

2t < 5 · 1032. (64)

Ten, t≤ 108. Solving, using Sage, equation (102) for
t< 108 gives no solutions and for t< 124, s< 232, and r< 464
gives the triples in Teorem 1.

4. Solving the Equation Cr = Js + Jt

4.1. Bounding the Variables. By equations (11) and (13), we
have the following equation:

ρr

2
≤Cr ≤ 2

s
,

2s− 2 ≤Cr ≤
ρr+1

2
.

(65)

Tese imply that

(s − 1)
log 2
log ρ

− 1≤ r≤ (s + 1)
log 2
log ρ

. (66)

We take r< 2s. Using Binet formulas, equation (5) can be
written as follows:

ρr
+ δr

2
�
2s

− (− 1)
s

3
+
2t

− (− 1)
t

3
. (67)

Ten,

ρr

2
−
2s

3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�
2t

3
−

(− 1)
s

+(− 1)
t

􏼐 􏼑

3
− δr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (68)

Terefore,

ρr

2
−
2s

3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
2t

3
+
2
3

+ δr
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (69)

Ten,

ρr

2
−
2s

3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<
4 · 2t

3
. (70)

Tus,

3ρr

2s+1 − 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<

4
2s− t. (71)
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Consider the following:

Ω3 � 3ρr2− (s+1)
− 1, k � 3, α1 � 3, α2 � ρ, α3 � 2, t1 � 1, t2 � r, t3 � − (s + 1). (72)

As before, we can prove thatΩ3 ≠ 0. LetA � Q(ρ). Ten,

h α1( 􏼁 � log 3,

h α2( 􏼁 �
1
2
log ρ,

h α3( 􏼁 � log 2.

(73)

Setting

H1 � 2 log 3, H2 � log ρ,

H3 � 2 log 2.
(74)

Taking β � 2s, it follows that

log Ω3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> − c3(1 + log 2s), (75)

where c3 � − 1.4 × 306 × 34.5 × 4 × (1 + log 2)(2 log 3)(2 log
2 log ρ).

Consequently,

log Ω3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> − 3 × 1012(1 + log 2s). (76)

In addition, it follows from inequality (71) that

log Ω3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< log 4 +(t − s)log 2. (77)

Comparing inequalities (76) and (77) entails that

(s − t)log 2 − log 6< 3 × 1012(1 + log 2s). (78)

Hence,

t log 2> s log 2 − 3 × 1012(1 + log 2s) − log 4. (79)

Equation (67) is equivalent to

ρr

2
−
2s 1 + 2t− s

􏼐 􏼑

3
� −

δr

2
−

(− 1)
s

− (− 1)
t

3
. (80)

So,

3ρr2− (s+1)

1 + 2t− s − 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

3 · 2− s

1 + 2t− s −
δr

2
−

(− 1)
s

− (− 1)
t

3
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (81)

Ten,

3ρr2− (s+1)

1 + 2t− s − 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<
5
2t. (82)

Let Ω4 � 3/1 + 2t− sρk2− (s+1) − 1. Ten,

log Ω4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< log 5 − t log 2. (83)

Set

α1 �
3

1 + 2t− s, α2 � ρ, α3 � 2, k � 3, t1 � 1, t2 � r, t3 � − (s + 1).

(84)

Again, Ω4 ≠ 0. Let A � Q(ρ). Ten,

h α1( 􏼁≤ log 3 +(s − t)log 2 + log 2,

h α2( 􏼁 �
1
2
log ρ,

h α3( 􏼁 � log 2.

(85)

Let

H1 � 2 log 3 + 2(s − t)log 2 + 2 log 2, H2 � log c, H3 � 2 log 2,

β � 2s.

(86)

Ten,

log Ω4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> − c4(1 + log 2s)(2 log 3 + 2 log 2 + 2(s − t)log 2),

(87)

where c4 � 1.4 × 306 × 34.5 × 4 × (1 + log 2)(2 log 2 log ρ).
Using equations (78), (79), and (83) and simple manipu-
lations, it follows that

s log 2< 1.1 × 1013(1 + log 2s) + 1.2 × 1025(1 + log 2s)
2

+ 3.

(88)

Solution by Mathematica gives the following equation:

s< 3 × 1028. (89)

4.2. Reducing the Upper Bound. For s − t≥ 5, let

Δ3 � log(3) + r log ρ − (s + 1)log 2. (90)

From equation (71), we have the following equation:

Ω3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � e
Δ3 − 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<
4

2s− t <
1
4
. (91)

So,

Δ3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
1
2
. (92)

Ten, |Δ3|< 2|eΔ3 − 1|. Terefore, we have the following
equation:

Δ3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
8

2s− t. (93)

Since Δ3 ≠ 0, then
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0<
log 3
log 2

− (s + 1) + r
log ρ
log 2

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<

8
2s− t log 2

<
12
2s− t. (94)

Applying Lemma 4 with K � 6 × 1028 (K> 2s> r),
λ � (log ρ/ log 2), θ � (log 3/ log 2), A � 12, and B � 2, the
expansion of λ entails that q65 > 6K. Computing

ϵ � θq65
����

���� − K λq65
����

����> 0.3. (95)

Tus, by Lemma 4, we get s − t< 117. Set

Δ4 � log
3

1 + 2t− s􏼒 􏼓 + r log ρ − (s + 1)log 2, (96)

and assume that t> 5. From equation (82), we deduce that

Ω4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � e
Δ4 − 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<
5
2t <

1
4
. (97)

We conclude that

Δ4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
1
2
. (98)

Ten, |Δ4|< 2|eΔ4 − 1|. Terefore, we get

Δ4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌<
10
2m. (99)

We have Δ4 ≠ 0. So,

0<
log 3/ 1 + 2t− s

􏼐 􏼑􏼐 􏼑

log 2
− (s + 1) + r

log ρ
log 2

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<
15
2t . (100)

Applying Lemma 4 again with K � 6 × 1028,
λ � (log ρ/ log 2), θ � (log(3/1 + 2m− n))/(log 2), A � 15,
and B � 2, we get q65 > 6K. Consider ϵ in two cases.

Case I: If s − t< 117 and s − t≠ 1

ϵ � θq65
����

���� − K λq65
����

����> 0.01. (101)

Hence, t< 122, s< 239, and r< 478.
Case II: If s − t � 1, we get ϵ always negative. Solving
equation (5) for s − t � 1. In this case equation (5) can
be reduced to

Cr � 2t
. (102)

By induction, we can prove that all the Lucas balancing
numbers are odd. Terefore, we have no solutions in
this case.

Solving equation (5) for t< 122, s< 239, and r< 478
yields the solutions which appear in Teorem 2.

5. Conclusion

We determined all the balancing and Lucas balancing
numbers that are sums of Jacobsthal numbers. We mainly
used Matveev’s theorem. Also, we use a reduction lemma

due to Dujella and Pethö to reduce the obtained upper
bound. We revealed that there are four balancing numbers
and three Lucas balancing numbers expressible as sums of
two Jacobsthal numbers. In future, this work may be
extended to investigate cobalancing and k-balancing
numbers that are expressible as sums of Jacobsthal
numbers.

Data Availability

Te data used in this study are included within the article.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] P. K. Ray, “Certain Diophantine equations involving bal-
ancing and Lucas-balancing numbers,” Acta et Commenta-
tiones Universitatis Tartuensis de Mathematica, vol. 20, no. 2,
pp. 165–173, 2016.

[2] P. K. Dey and S. S. Rout, “Diophantine equations concerning
balancing and Lucas balancing numbers,” Archiv der Math-
ematik, vol. 108, no. 1, pp. 29–43, 2017.

[3] S. G. Rayaguru and G. K. Panda, “Repdigits as products of
consecutive balancing or Lucas-balancing numbers,” Fibo-
nacci Quarterly, vol. 56, pp. 319–324, 2018.

[4] S. G. Rayaguru and G. K. Panda, “Repdigits as product of
balancing and Lucas-balancing numbers with indices in
arithmetic progressions,” Fibonacci Quarterly, vol. 57,
pp. 231–237, 2019.

[5] F. Erduvan and R. Keskin, “Fibonacci numbers which are
products of two balancing numbers,” Annales Mathematicae
et Informaticae, vol. 50, pp. 1–14, 2019.

[6] S. G. Rayaguru, J. Odjoumani, and G. K. Panda, “Factor-
iangular numbers in balancing and Lucas-balancing se-
quence,” Bolet́ın de la Sociedad Matemática Mexicana, vol. 26,
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