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Tis study investigates the estimation of the regression function using the kernel method in the presence of missing at random
responses, assuming spatial dependence, and complete observation of the functional regressor. We construct the asymptotic
properties of the established estimator and derive the probability convergence (with rates) as well as the asymptotic normality of
the estimator under certain weak conditions. Simulation studies are then presented to examine and show the performance of our
proposed estimator.Tis is followed by examining a real data set to illustrate the suggested estimator’s efcacy and demonstrate its
superiority. Te results show that the proposed estimator outperforms existing estimators as the number of missing at random
data increases.

1. Introduction

In several domains of current research, including envi-
ronmental sciences, geography, econometrics, microbiology,
geophysics, climates, and other applied felds, the analysis of
massive volumes of data with a spatial argument is fre-
quently required (geographical location). To describe these
processes, you need to fnd the relationship between random
variables in one area, in terms of correlation, and those in
nearby areas. Tis step is considered one of the most es-
sential parts of analyzing spatial data. Recently, the new
statistical branch, called functional data analysis (FDA), gave
a new dynamism to theoretical and methodological im-
provements and the diversifcation of application domains.
Such improvements have been possible as computer tools’
storage capabilities have increased, allowing them to store
and analyze large amounts of data. We mention the
monographs [1] for the practical aspects, reference [2] for
the theoretical elements, and reference [3] for

a nonparametric study as reference works on the issue. For
the most recent contributions in this area, readers can
consult the book [4] as well as several bibliographic reviews
in [5, 6]. In this context, functional regression is an essential
component of the FDA because it links its regressor X to the
scalar variable Y. Te authors in [7] discussed and de-
termined the initial fndings for estimating the regression
function (in semimetric space). It should be clear to the
engaging readers that such topic theories and methods in
this feld of study are well-established; for examples, see
monograph [3] and the references included, as well as [8, 9].

Incorporating spatial statistics with functional data
analysis is made possible by functional data coupled with
geographical dependencies and spatial functional statistics.
Tis combination extends the FDA method to analyze
a sample of functions obtained at diferent regional sites
(functional data with spatial correlation). Both the theo-
retical and practical aspects of statistics stand to beneft from
this combination (for some recent, advanced, and
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noteworthy citations on the topic, see [10]). Te model of
spatial functional regression is considered and explored by
[11]. Te authors constructed the rates of almost sure
convergence using the nonparametric kernel method in
functional regression. Ten, the authors in [12] determined
the asymptotic normality of robust regression simulta-
neously. We take note that the spatial functional regression
is a particular case of two widely recognized spatial de-
pendence models that have garnered signifcant interest in
the analysis of lattice data, known as the spatial autore-
gressive (SAR)-dependent variable and the spatial autore-
gressive error (SAE), where the model error is SAR. Tese
models extend the concept of regression from a time series
framework to a spatial context (see [13] for a large
discussion).

Complete data analysis is also the topic of all the work listed.
Unfortunately, this topic has not received better attention in
many applications, such as the analysis of survival statistics.
Specifcally, the problem lies in fnding the best way to replace
missing data and control the accuracy of such an imputation; this
topic has received extensive studies and treatment in the mul-
tivariate case (see, for example, [14–16]). Imputation techniques
for missing responses commonly used involve kernel regression
imputation, linear regression imputation, and so on. Tere are
many studies on regression functions with missing data and
related statistical conclusions in the statistical literature when the
predictor variables are fnite-dimensional. For parametric re-
gression, we quote [17, 18], and for nonparametric regression
with a kernel, we cite [19, 20]. Also, references [21–23] examined
the case in which some observations on the covariates are
missing at random (MAR), whereas the observations on the
scalar response are entirely observed. Tus, reference [24] ex-
amined the presence of missing data in the robust regression
model while the author in [25] studied MAR regression using
the response variable and predictors (covariates).

Very little research has been conducted on the properties
of the functional nonparametric regression model for the
missing data when the predictors are functional. It was frst
suggested by the authors in [8], who estimated the mean of
a MAR scalar response using an i.i.d. functional sample and
observed predictors. Tey extended the result in [19] and
demonstrated the asymptotic characteristics of the re-
gression operator estimate when the functional regressor is
totally observed and some responses are randomly missed.
Later, the authors in [26] established the asymptotic
properties of the regression function, considering cases
when the explanatory variables are functional, stationary,
and ergodic with MAR response. Te local linear estimation
method and the k-nearest neighbor (k-NN) technique were
used by the authors in [27] for estimating the regression
function when the regressor and response variables are
functional and scalar, respectively. Still, the latter observed
fewer MARs, while the authors in [6] constructed the
nonparametric quantile-regression estimate for the func-
tional data with MAR response. Te authors in [28] suggest
and compare diferent methods for estimating spatial
autoregressive panel models with randomly missing data in
the dependent variable.

As far as we know, no previous studies have been
conducted on nonparametric regression based on functional
spatial data with MAR response. Hence, our goal is to in-
vestigate the kernel method to estimate the regression
function based on spatially dependent data, and the response
is MAR.

We structure this paper by introducing the considered
spatial model in Section 2 (as in (1)) and explicitly generating
the estimate of m(.) utilizing MAR.We outline, in Section 3,
the notations and several assumptions behind the consid-
ered model. Section 4 shows the main theoretical result of
our study. Te strong proof supporting our fndings is
presented in Section 5, where the latter involves the eval-
uation of our method using both simulation and real data
application. It includes a comparison between the typical
spatial nonparametric functional model and its incomplete
counterpart, demonstrating the superiority of our method.
Finally, our conclusion is stated at the end.

2. The Estimates and the Spatial Model

Denote by Zi � (Xi; Yi) ; i ∈ ZN, N≥ 1􏼈 􏼉 a measurable
strictly stationary spatial process defned over a probability
space (Ω,A,P) with identical distribution as Z � (X, Y),
where X is a functional random variable valued in a sepa-
rable semimetric space (E, d(., .)) and Y is a real-valued and
integrable variable. We suppose that the process can be
observed in the rectangular region
In � i � (i1, . . . , iN) ∈ ZN, 1≤ ik ≤ nk, k � 1 . . . , N􏼈 􏼉, with
a sample size of 􏽢n � n1 × · · · × nN where n � (n1, . . . , nN).
Suppose moreover that, for l � 1 . . . , N, nl approaches in-
fnity at the same rate: C1 < |nj/nk|<C2 for some
0<C1 <C2 <∞. Te term “site” will be used to refer to
a point i. If mink�1...,N(nk)⟶∞, we shall write n⟶∞.

Te nonparametric spatial regressionmodel is as follows:

Yi � m Xi( 􏼁 + εi, i ∈ ZN
, (1)

where the function m(.) is an unknown and the random
errors εi are centered independent and identically distrib-
uted with E(εi | Xi) � 0 and unknown fnite variance
σ2 � var(εi).

We know that (see [11]) the spatial kernel regression
estimator of m(.) � E(Yi | Xi) is obtained as

􏽢mn(x) �
􏽐i∈In

YiKi

􏽐i∈In
Ki

, x ∈ E, (2)

where Ki � K(a− 1
n d(x, Xi)) with K as the kernel function

and an as a sequence of decreasing bandwidths as n ap-
proaches infnity.

Our contribution is distinguished by the fact that we
tackle the issue of incomplete data. In particular, we examine
the situation when the response observations (Y values) are
MAR, but the independent variable (X) values are all ob-
served. If Yi does not contain all of the required elements,
then we say that something is missing. For simplicity, we
refer to δ as a real random variable and take into account the
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sample δi where δi � 1 if the value Yi is known; otherwise,
δi � 0. Tus, we receive the following missing information:

Xi, Yi, δi( 􏼁, i ∈ In􏼈 􏼉. (3)

Te conditional probability π(x) of the observable re-
sponse Y given the explanatory X is typically unknown;
hence, it is assumed that the random variable δi follows
Bernoulli distribution where

P δi � 1 Xi
􏼌􏼌􏼌􏼌 � x, Yi � y􏼐 􏼑 � P(δ � 1 | X � x) � π(x).

(4)

Under this assumption, we provide the estimator of m(.)

using the sample (Xi, Yi, δi), i ∈ In􏼈 􏼉, by

􏽥mn(x) �
􏽐i∈In

δiYiKi

􏽐i∈In
δiKi

�
􏽥fn(x)

􏽥gn(x)
, (5)

with

􏽥fn(x) �
1

􏽢nE K h
− 1
n d(x, X)􏼐 􏼑􏼐 􏼑

􏽘
i∈In

δiYiKi, x ∈ E,

􏽥gn(x) �
1

􏽢nE K h
− 1
n d(x, X)􏼐 􏼑􏼐 􏼑

􏽘
i∈In

δiKi, x ∈ E,

(6)

where Ki � K(h− 1
n d(x, Xi)) is the kernel function and the

bandwidths hn are a series that tends to zero as n approaches
infnity.

Recall that our primary objective is to investigate the
asymptotic normality of our estimator when the processZi is
strictly stationary, which satisfes the following α-mixing
condition.

Tere exists φ(t) a real function that tends to 0 as t goes
to ∞, such that for fnite cardinals subsets E, E′ ⊂ ZN:

α B(E),B E
′

􏼒 􏼓􏼒 􏼓 � sup
(A,B)∈B(E)×B E′( ){ }

|P(A∩B) − P(A)P(B)|{ }

≤φ d
′

E, E
′

􏼒 􏼓􏼒 􏼓ψ Card(E),Card E
′

􏼒 􏼓􏼒 􏼓,

(7)

where d′(E, E′) represents the distance in Euclidean terms
between E and E′, Card (E) (resp., Card (E′)) is the car-
dinality of E (resp., E′), B(S) � B(Zi, i ∈ S ⊂ ZN), is the
σ-felds that are generated by the random variables Zi, and
ψ: Z2⟶ R+ is a symmetric nondecreasing function. We
assume that the two functions ψ and ϕ satisfy the following
conditions:

∀(r, s) ∈ Z2
,ψ(r, s)≤Cmin(r, s), for someC> 0, (8)

and

􏽘

∞

i�1
i
c
(φ(i))<∞, for some c> 0. (9)

Note that condition (8) can be replaced by

∀(r, s) ∈ Z2
,ψ(r, s)≤C(r + s + 1)

λ
, for some λ≥ 1.

(10)

Note that many stochastic processes satisfy the mixing
conditions (8) and (9) (see [29] for some examples).

3. Notations and Hypotheses

Foremost, for x ∈ E, we denote B(x, h) � x′ ∈ E/d(x, x′)􏽮

< h} and ϕx(h) � P(X ∈ B(x, h)) called small ball proba-
bility. Te proposed predictor’s consistency outcomes are
established under the following assumptions:

(H1): we suppose that ∀i≠ j ∈ ZN, and the probabilistic
joint distribution ]ij of Xi and Xj fulflls ∀x ∈ E:

for some 1< a< cN
− 1

sup
i≠j

]ij � sup
i≠j

P Xi, Xj􏼐 􏼑 ∈ (B(x, h) × B(x, h))􏽨 􏽩≤C ϕx(h)( 􏼁
a+1/a

.
(11)

(H2): K: R⟶ R+ is assumed to be a diferentiable
function supported on the interval [0, 1]. Its K′ de-
rivative function exists, as well as there are two con-
stants, C3 and C4, such that

− ∞<C3 <K
′
(t)<C4 < 0, for t ∈ [0, 1]. (12)

(H3): there exist constantsC> 0, κ> 0, andC> 0, such that

m x1( 􏼁 − m x2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C d(u, v)
κ
, for allx1, x2 ∈ E.

(13)

(H4): there exist diferentiable nonnegative functions τ
and f where
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ϕx(h) � f(h) × τ(x) + o(f(h)). (14)

(H5): the bandwidth hn is defned as follows: hn tend to
0 as n tends to∞, and for all t in the interval [0, 1], we
have

lim
hn⟶0

ϕx t hn( 􏼁

ϕx hn( 􏼁
� βx(t). (15)

(H6): we assume that

(i) E[Yl | X � x]<Ml(x)<∞, for some l≥ 2, withMl

denoting a continuous function
(ii) ∀i≠ j, E[YiYj | (Xi, Xj)]<∞
(iii) ∃ε> 0, such that E|Y1|

2+ε <∞

(H7): let V2(x) � var(Yi | Xi) and
Vs(u) � E[|Yi − m(x)|s | Xi � u], with s> 2. We sup-
pose that the functions V2(.) and Vs(.) are continuous
functions near x, i.e.,

sup
u:d(x,u)≤h{ }

Vk(u) − Vk(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � o(1), k≥ 2 since h tends toward 0. (16)

(H8): we also suppose that π(.) is a continuous function
near x, i.e.,

sup
u:d(x,u)≤h{ }

|π(u) − π(x)| � o(1), when h⟶ 0.

(17)

(H9): there exists 1> θ>N/c, in such a way that
􏽢n(θ− 1)/(2N+1) ≤ϕx(h).

Comments on the assumptions:
(i) In this regard, our conditions are quite standard.

Te conditions (ϕ) are identical to those employed
by the authors in [3]. Te above assumptions are
common analyses in nonparametric statistics for
functional regression models. Te assumption (H1)
specifes the behavior of the joint distribution of the
couple (i, j) with respect to its margin and permits
us to present an explicitly asymptotic variance term
(measure the local dependence of the observations).
Local dependence condition (H6) (respectively,
(H7)) is a classical condition in kernel estimation
based on nonstrictly stationary-dependent data
(see, for example, [30]). Te assumption (H6)
(respectively, (H7)) controls the local dependence
(respectively, the local identical distribution),
whereas the mixing condition regulates the de-
pendence of distant sites.

(ii) It is important to note that the condition (H3) de-
fnes the nonparametric space of our model. Once
more, it is possible to proceed without making the
assumption of Hölder condition. Instead, we can
make a regularity assumption that is less restrictive
on the nonparametric model. Nevertheless, the
convergence rate of the bias term is also impacted by
any limitation imposed on this assumption. In this
context, imposing a more stringent condition on the
model leads to an enhanced rate of convergence,
while conversely relaxing the condition results in
a slower rate of convergence. Specifcally, if we
substitute the Hölder condition with a continuity
assumption, the convergence rate becomes slower,
accompanied by a bias term of order o(1). In
summary, it can be stated that hypothesis (H3) is

formulated in a broad manner, enabling the exam-
ination of the nonparametric aspect of the model’s
convergence rate through the bias term.

(iii) In infnite-dimensional spaces, the assumption
defnition of ϕx(z) and (H4) is known as the
“concentration property.” For numerous in-
stances, the small ball probability ϕx(h) can be
approximated, around zero, as the product of two
independent functions f(x) and τ(h) (see, for
example, reference [31] for the difusion process,
reference [32] for a Gaussian measure, and ref-
erence [33] for a general Gaussian process). Te
most common result found in the research lit-
erature has the form ϕx(h) ∼ f(x)τ(h), where
τ(h) � hc exp(− C/hc) with c≥ 0 and p≥ 0. It
corresponds to the Ornstein–Uhlenbeck and
general difusion processes (p � 2 and c � 0 for
such processes) and the fractal processes (c> 0
and p � 0 for such processes). Tis class of
processes also meets the requirements of condi-
tion (H5). It should be noted that these concepts
are closely related to the proximity measure d that
is taken into consideration, and all the instances
described previously involve d being standard
norms (such as the Hölder norm or supremum
norm, for example). Multiple continuous time
processes (see, for example, reference [32] for
a Gaussian process) are used to test the
hypothesis (H5).

(iv) Te hypotheses (H7)–(H9) display the local con-
tinuous conditions required to establish the main
results and consolidate the results. In fact, con-
ditional expectation requires that if Vs is contin-
uous for some s> 2, then V2 is also continuous.
Te assumption (H8) in FDA MAR models is
typical (see, for example, [27]).

4. Theoretical Results

We can now present our main results. It is important to note
that these results extend the case of full data obtained by [11].
Te following result gives the probability convergence of the
regression kernel estimator with MAR.
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Theorem 1. Under hypotheses (H1)–(H9), (7), (9), and
􏽢n(ϕx(hn)/ log(􏽢n)) tend to ∞ when n⟶∞. If we quote

Bn(x) ≔ −
m(x)E 􏽥gn(x)( 􏼁 − E 􏽥fn(x)􏼐 􏼑􏼐 􏼑

E 􏽥gn(x)( 􏼁( 􏼁
, (18)

then

����������

􏽢n
ϕx hn( 􏼁

log(􏽢n)
􏼠 􏼡

􏽳

􏽥mn(x) − m(x) − Bn(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 converge in probability to 0. (19)

In addition, if 􏽢nhκ
n(ϕx(hn)/ log(􏽢n)) tend to 0, as

n⟶∞, then
����������

􏽢n
ϕx hn( 􏼁

log(􏽢n)
􏼠 􏼡

􏽳

􏽥mn(x) − m(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 converge in probability to 0.

(20)

The following result illustrates the asymptotic normality
convergence of the regression kernel estimator with MAR.

Theorem 2. For the hypotheses (H1) through (H9), if ad-
ditionally 􏽢n(ϕx(hn)) tend to∞, as n go to +∞, consequently,
we have

�������

􏽢nϕx hn( 􏼁

􏽱

􏽥mn(x) − m(x) − Bn(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⟶
D

N 0, σ2(x)􏼐 􏼑,

(21)

with σ2(x) � β2/β
2
1V2(x)/π(x)τ(x) and

βk � − 􏽒
1
0 βx(t)(Kk)′(t)dt, for k � 1, 2.

In addition, if 􏽢nh2κ
n (ϕx(hn)) tend to 0, as n go toward

infnity, we have
�������

􏽢nϕx hn( 􏼁

􏽱

􏽥mn(x) − m(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⟶
D

N 0, σ2(x)􏼐 􏼑. (22)

The proof of Teorems 1 and 2 is established on the
following decomposition:

􏽥mn(x) − m(x) − Bn(x) �
Bn(x) E 􏽥gn(x)( 􏼁 − 􏽥gn(x)( 􏼁 + Qn(x)

􏽥gn(x)
, (23)

where Qn(x): � m(x)(E(􏽥gn(x)) − 􏽥gn(x)) − (E(􏽥fn(x))

− 􏽥fn(x)).
Theorems 1 and 2, thus, are immediate consequence of

the following Lemmas.

Lemma 3. Based on the assumptions (H1), (H2), and (H8),
we can obtain for any x ∈ E that

􏽥gn(x)⟶P π(x), asn⟶∞. (24)

Lemma  . Suppose conditions (H1)–(H5) hold, then

Bn(x) � O h
κ
n( 􏼁, in probability, (25)

and

�������

􏽢nϕx hn( 􏼁

􏽱

Bn(x) E 􏽥gn(x)( 􏼁 − 􏽥gn(x)( 􏼁 converge in probability to 0 asn tends to∞. (26)

Lemma 5. Based on assumptions (H1)–(H9), denote
V(x) � β2/β

2
1π(x)V2(x)/τ(x), then we have

􏽢nϕx hn( 􏼁

V(x)
􏼠 􏼡

1/2

Qn(x)⟶D N(0, 1), asn tends to∞.

(27)

5. Simulation and Application Results

Tis section’s primary purpose is to evaluate the excellent
behavior of our estimator for various missing rates and
sample sizes and to demonstrate the efcacy of this approach
in comparison to the conventional one.

5.1. Simulation Study. We establish here the signifcance of
our proposed predictor by evaluating its performance in
numerical experiments. Te introduced predictor is com-
pared to the conventional kernel technique, which ignores
missing data. In order to determine the fnite sample per-
formance of the introduced estimator 􏽢r, we conducted
a simulation study derived from the observations
(Xi, Yi, δi) ∈ (E × R × 0, 1{ }). Note that i � (i1, i2) is de-
fned using 1≤ i1 ≤ n1, 1≤ i2 ≤ n2, and ∀i ∈ Z2. Te model
was created in the following manner:

∀t ∈ [0, 1], Xi(t) � cos 2πAit( 􏼁 + Bit, (28)

and
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Yi � m Xi( 􏼁 + εi, (29)

with m(Z) � 5/􏽒
1
0 |Z(t)|dt.

Next, we refer to GRF(m, σ2, s) as a stationary Gaussian
random feld with mean m and the functional covariance is
given as

C(l) � σ2 exp −
‖l‖

s
􏼠 􏼡

2
⎛⎝ ⎞⎠, l ∈ R2

. (30)

Ten, put A � D∗ sin(G/2 + .5), B � GRF(2.5, 5, 3),

ε � GRF(0, .1, 5), G � GRF(0, 5, 3), Di � 1/n1 × n2􏽐j exp
(− ‖i − j‖/a), and

D(i,j) �
1

n1 × n2
􏽘

1≤j1 ,j2≤25
exp −

i1, i2( 􏼁 − j1, j2( 􏼁
����

����

a
􏼠 􏼡⎛⎝ ⎞⎠,

(31)

where the latter function is designed to ensure and adjust
spatial mixing conditions. We simulated model (29) and
used the missing method, as described by [8], where

p(z) � P δ �
1
Z

� z􏼒 􏼓 � expit 2κ􏽚
1

0
z
2
(t)dt􏼠 􏼡. (32)

Note that expit(u) � eu/(1 + eu), ∀u ∈ R. Te above
formula contains a parameter denoted by κ, which controls the
level of dependence between the functional curve X and the
variable δ. In order to maintain the value of p(x), we calculate

δ � 1 −
1

n1 × n2
􏽘

n1

i1�1
􏽘

n2

i2�1
δ i1 ,i2( ). (33)

Figure 1 depicts the simulated functional curves.
Regarding the parameters involved in the implementa-

tion of the estimator A, we would like to emphasize that
a quadratic kernel has been taken into consideration, given
by K(t) � 3/2(1 − t2)1[0,1](t). Similar to [3], the bandwidth
parameter is defned by

d Xi, Xj􏼐 􏼑 �

������������������

􏽚
1

0
Xi′(t) − Xj′(t)􏼐 􏼑

2
dt

􏽳

, ∀Xi, Xj ∈ E.

(34)

Te location observations i and j with ‖i − j‖< 15 are
spatially dependent and almost independent when
‖i − j‖≥ 15, since the model (in these conditions) is based on
Gaussian random felds with covariance functionC and scale
s � 5. Our observations are, therefore, a combination of
dependent and independent observations (see Figure 2).
Terefore, decreasing the value of a is all that is required to
abandon independence (our results are based on a � 0.5).

Te primary purpose of this comparison is to examine
our proposed estimator, MAR ( 􏽢mn(x)), with the naive
estimator, denoted by MARV ( 􏽥mn(x)), and the complete
data estimator, denoted by ECD ( 􏽥mn,l(x)) and proposed by
[11]. To assess the efectiveness of the proposed estimator,
(Xi, Yi, δi)i was divided into two subsets at random:

(i) (Xi, Yi, δi)i∈I, the learning sample

(ii) (Xi, Yi)i∈I′, the test sample

We use the training sample to determine the smoothing
parameters hkopt

for the k− NN cross-validation operations.
Te bandwidth corresponding to the optimal number of
neighbors generated by a cross-validation technique is
denoted by hkopt

:

hk � min
h ∈ R+

􏽐i∈IIB(x,h) Zi( 􏼁
� k􏼨 􏼩, (35)

with

kopt � argmin
k

CV(k),

CV(k) � 􏽘
i∈I

Yi − 􏽢m
(− i)
n Xi( 􏼁􏼐 􏼑

2
,

(36)

and also 􏽢m(− i)
n is the leave-one-out version of 􏽢mn, evaluated

by eliminating the i th datum from the initial sample (for
additional information, see [3]).

In one sense, the accuracy of the estimate, 􏽢mn(·) of m(·),
was performed by using the mean square errors (MSEs):

MSE �
1

# I
′

􏼒 􏼓
􏽘

i∈I′
􏽢mn Xi( 􏼁 − m Xi( 􏼁( 􏼁

2
,

(37)

where #(I′) is the sample size used for testing. Te results of
the 3 various models are depicted in Figure 3, which
compares the predicted values to the real values.

Consequently, Tables 1 and 2 exhibit the MSE and Bias
for the MAR, MARV, and complete data models,
respectively.

We evaluate the suggested estimator’s performance in
terms of bias as well. Using M � 100 replicates of the ex-
periment, we can quantify the bias of the estimators of r by

Bias 􏽢mn( 􏼁 �
1

M
􏽘

M

k�1
􏽢m

(k)
n (x) − m(x), (38)

where 􏽢m(k)
n (x) is the estimator of m(x) for the replication k

of the diferent proposed models. We summarize these
results in Table 2.

When the missing data rate is minor, the naı̈ve
version provides a superior MSE, but as the rate rises, the
MAR estimator provides a better estimate. Tis is shown
in Tables 1 and 2. We also take note of the fact that when
n increases, the MSE and bias reduce dramatically. Te
theoretical conclusions of Teorem 1 are consistent with
such a numerical outcome. In addition, the bias is
negligible in all cases and is always negative for all MAR
settings.

5.2. Real Data Application. In this section, it can be stated
that the stationarity hypothesis is fundamental to the
nonparametric analysis of spatio-functional data, and that
the proposed detrending method is an ideal method for
ensuring this hypothesis.
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5.2.1. No Detrending Case. First, we have acquired a large
dataset in 122 stations in the United States, containing the
daily mean of ozone concentration for the day 11/08/2019
(measured in Parts per million). In addition to this, we have
obtained a dataset that consists of the chronological hourly
weather data pertaining to the temperature (measured in
Fahrenheit Degrees) for the same day. Tese observations
can be found at https://aqs.epa.gov/aqsweb/airdata/
download_fles.html#Raw. Figure 4 depicts the position of
the 122 stations in the USA.

Given the daily temperature curve denoted by X, we are
interested in the daily mean ozone concentration forecast Y

(for the day of August 11, 2019). We suppose that the two
variables are linked by

Y � m(X) + ϵ. (39)

Figure 5 provides 122 curves of hourly temperature
measures of each station measured in Degrees
Fahrenheit.

Te functional explanatory Xi represents the daily
temperature curve in the ith station (specifed geo-
graphically by the coordinates i � (Latitude; Longitude)),
whereas Yi is the ozone concentration in the same location.
We implemented the theoretical fndings from the previous
section into actual data. Specifcally, in the context of
spatial functional prediction, we analyze the efectiveness of
our constructed estimator with MAR data, which high-
lights the signifcance of taking spatial locations into
consideration in this kind of data. Note that our data have
some missing values (38 NaNs stations, about (31.15%
missing data), since, in some stations, Yi are not measured
on some of the samples. Terefore, our sample is formed as
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Figure 1: Te functional curves Xi(t), t ∈ [0, 1].
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Figure 2: Random feld simulation.
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follows (Xi, Yi, δi), where δi � 1 if Yi is observed and
0 otherwise. Further, the quadratic function
K(u) � 1.5(1 − u2)1[0,1] is used for defning the kernel of
the model. In functional nonparametric regression, the
choice of the pseudo-metric is a key decision since it
signifcantly infuences the type of model that is taken into
consideration and the efectiveness of the estimation
process adapted to this type of data. We use PCA-type
semimetric, defned by

d
PCA
q Xi, Xj􏼐 􏼑 �

���������������������������

􏽘

q

k�1
􏽚 Xi(z) − Xj(z)􏽨 􏽩vk(z)dz􏼒 􏼓

2

􏽶
􏽴

.

(40)

Here, we utilize q � 4 and choose the eigenfunction vk

from the set of eigenfunctions of the empirical covariance
operator:
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Figure 3: Plots of the predictions for the MAR, MARV, and complete data models.

Table 1: MSE (mean squared error) for complete data, MAR, and MARV models.

n1 n2 κ δ MAR (MSE) MARV (MSE) Complete (MSE)

10

10 0.5 0.1386 0.2234 0.2211 0.2097
2.0 0.0393 0.2439 0.2433 0.2356

20 0.5 0.1353 0.1463 0.1483 0.1285
2.0 0.0280 0.1340 0.1361 0.1318

30 0.5 0.1340 0.1267 0.1257 0.1058
2.0 0.0217 0.1117 0.1128 0.1100

20

10 0.5 0.1431 0.1581 0.1552 0.1334
2.0 0.0251 0.1656 0.1659 0.1608

20 0.5 0.1344 0.1108 0.1106 0.0954
2.0 0.0228 0.0956 0.0975 0.0937

30 0.5 0.1302 0.0920 0.0894 0.0778
2.0 0.0216 0.0794 0.0793 0.0781

30

10 0.5 0.1426 0.1346 0.1336 0.1233
2.0 0.0262 0.1178 0.1187 0.1156

20 0.5 0.1330 0.0824 0.0801 0.0720
2.0 0.0253 0.0764 0.0767 0.0748

30 0.5 0.1303 0.0552 0.0543 0.0467
2.0 0.0215 0.0579 0.0584 0.0567
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ΓnX(s, t) �
1
n

􏽘

n

i�1
Xi(s)Xj(t). (41)

Finally, we examined at the cross-validation method’s
selection of the optimal bandwidth h: � hn,K. Ten, we di-
vided our data (Xi, Yi)i into two subsets at random: test sample
(Ti, Xi, Yi)i∈I′, (30 stations) and learning sample (Xi, Yi)i∈I
(92 stations).Te following defnition outlines themean square
error (MSE), which we use as an accuracy indicator:

MSE �
1
30

􏽘

i∈I′
Yi − 􏽥Yi( 􏼁

2
, (42)

where 􏽥Yi denotes the estimator’s value.
To investigate the efcacy of our models further, we

execute M � 100 independent repeats, which permit us to
generate 100 values for MSE and depict their distribution
using a boxplot. Te boxplots of MSE of the prediction
values are shown in Figure 6.

Now, in Figure 7, we show the 90% prediction ranges for
the ozone concentrations of the 20 last data in the sample
test. Tis result demonstrates that our asymptotic normality
is efective.

USA maps

Figure 4: Observed stations’ locations (the red points are the observed stations and the blue are the missing one).
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5 10 15 20

40

60

80

100

Figure 5: Daily temperature curves of 122 stations.

Table 2: BIAS for a fxed x for complete data, MAR, and MARV models.

n1 n2 κ δ MAR (BIAS)
MARV
(BIAS)

Complete (MSE)

10

10 0.5 0.1386 − 0.0909 − 0.0985 − 0.0159
2.0 0.0393 − 0.0416 − 0.0481 − 0.0204

20 0.5 0.1353 − 0.0354 − 0.0505 0.0063
2.0 0.0280 − 0.0048 − 0.0075 0.0063

30 0.5 0.1340 − 0.0080 − 0.0215 0.0334
2.0 0.0217 − 0.0040 − 0.0086 0.0047

20

10 0.5 0.1431 − 0.0420 − 0.0543 − 0.0042
2.0 0.0251 − 0.0029 − 0.0083 0.0056

20 0.5 0.1344 − 0.0396 − 0.0563 − 0.0105
2.0 0.0228 0.0051 0.0004 0.0121

30 0.5 0.1302 − 0.0155 − 0.0333 0.0127
2.0 0.0216 0.0036 − 0.0016 0.0092

30

10 0.5 0.1426 − 0.0599 − 0.0737 − 0.0203
2.0 0.0262 − 0.0057 − 0.0101 0.0014

20 0.5 0.1330 − 0.0273 − 0.0384 0.0000
2.0 0.0253 0.0044 − 0.0014 0.0093

30 0.5 0.1303 − 0.0265 − 0.0420 − 0.0027
2.0 0.0215 0.0116 0.0068 0.0159
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5.2.2. Detrending Case. As discussed in [34], the use of this
type of spatial modeling requires prior preparation of the
initial data in order to verify the stationarity hypothesis. Te
latter controls the spatial heterogeneity linked to a difer-
entiation of the efects of space on the sampling units. To
control this aspect, we adopt the algorithm proposed by [34]
for the multivariate case in a fnite-dimension for which the
spatial heterogeneity of the two variables (explanatory and
response) is modeled by the following regression:

􏽥Xi � m1(i) + Xi,

􏽥Yi � m2(i) + Yi.
(43)

Tus, instead of the initial observations (Xi, Yi, δi)i, we
compute the SPL and NP estimators from the statistics
( 􏽢Xi,

􏽢Yi, δi)i. Te latter are obtained by
􏽢Xi � 􏽥Xi − 􏽢m1(i),
􏽢Yi � 􏽥Yi − 􏽢m2(i),

(44)

and 􏽢m1(.) and 􏽢m2(.) are the kernel estimators of the re-
gression functions m1(.) and m2(.) which are expressed by

􏽢m1 i0( 􏼁 �
􏽐i∈In

δiXiH1 i0 − i
����

����/λn􏼐 􏼑

􏽐i∈In
δiH1 i0 − i

����
����/λn􏼐 􏼑

,

􏽢m2 i0( 􏼁 �
􏽐i∈In

δiYiH2 i0 − i
����

����/cn􏼐 􏼑

􏽐i∈In
δiH2 i0 − i

����
����/cn􏼐 􏼑

,

(45)

where H1 and H2 are kernel functions and λn and cn are the
bandwidth parameters of the real regression. Such a step is
called “detrending step” and is fundamental in the non-
parametric analysis of spatial data. For our actual data set, we
highlight the impact of this detrending step in practice. To do
this, we compare the efciency of our estimator in the two
situations (with and without detrending). For this, we keep the
same strategies as those used in the simulation example to select
the parameters involved in the estimator. More precisely, we
use the quadratic kernel on (0, 1) and the PCA metric and the
criterion CV to choose the smoothing parameter hn. Con-
cerning the real regressions m1(.) and m2(.), we used the
routine code npreg in the R-package np over K � H1 � H2.
Te feasibility of this is evaluated, by splitting randomly and
several times (exactly 100 times) the data sample. Finally, we
examine the importance of the proposed detrending procedure
through the MSE in Figure 8 used in the simulation example.

6. Proofs of the Main Results

Troughout the rest of this paper, we defne, respectively,
λi(x) and the random variable Li(x) by

λi(x) �

�����
ϕx(h)

􏽰

E K1( 􏼁
δi Yi − m(x)( 􏼁Ki􏼂 􏼃,

Li(x) � λi(x) − E λi(x)( 􏼁.

(46)

Lemma 6. Based on the hypotheses of Teorem 2, we have,
for all (i, j):

(i) 􏽐i≠jCov(Li(x), Lj(x)) � o(􏽢n)

(ii) 1/􏽢nVar(􏽐i∈In
Li(x))⟶ V(x) � π(x)V2(x)β2/β

2
1τ

(x) asn⟶∞

Proof. First, we have

Var 􏽘
i∈In

Li(x)⎛⎝ ⎞⎠ � 􏽘
i∈In

Var Li(x)( 􏼁 + 􏽘
i≠j

Cov Li(x), Lj(x)􏼐 􏼑. (47)

Ten, we quote In(x) � 􏽐
i∈In

Var(Li(x)) and

Rn(x) � 􏽐i≠jCov(Li(x), Lj(x)). For the variance term, we
have Var(Li(x)) � E(L2

i (x)) � E(λ2i (x)) − E2(λi(x)). Now,
by conditioning on Xi and using (H3), (H8), and MAR
assumption, we get

E λi(x)( 􏼁 �

�����

ϕx(h)

􏽱

m xi( 􏼁 − m(x)( 􏼁
E Ki( 􏼁

E K1( 􏼁
.≤

�����

ϕx(h)

􏽱

h
κ
(π(x) + o(1)). (48)
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Figure 6: Te boxplots of the predicted values’ MSE.
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Figure 7: Extremes of the predicted values compared to the real
values and confdence intervals. Te true values are connected by
the solid black line. Te dashed blue curves connect the expected
minimum and maximum values.
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Likewise, use MAR assumption and conditioning on Xi
to get

E λ2i (x)􏼐 􏼑 � ϕx(h) E π xi( 􏼁 r xi( 􏼁 − r(x)( 􏼁
2 K

2
i

E
2

K1( 􏼁
􏼠 􏼡􏼢 􏼣 + ϕx(h) E π xi( 􏼁V2 xi( 􏼁

K
2
i

E
2

K1( 􏼁
􏼠 􏼡􏼢 􏼣. (49)

It follows by (H7) and (H8) that

E π xi( 􏼁V2 xi( 􏼁
K

2
i

E
2

K1( 􏼁
􏼠 􏼡􏼢 􏼣 � (π(x) + o(1)) V2(x) + o(1)( 􏼁

E K
2
i􏼐 􏼑

E
2

K1( 􏼁
, (50)

and by (H3) and (H8) that

E π xi( 􏼁 m xi( 􏼁 − m(x)( 􏼁
2 K

2
i

E
2

K1( 􏼁
􏼠 􏼡≤ (π(x) + o(1))h

2κ E K
2
i􏼐 􏼑

E
2

K1( 􏼁
� (π(x) + o(1)) h

2κ E K
2
i􏼐 􏼑

E
2

K1( 􏼁
. (51)

Based on the following inequality:

E λ2i (x)􏼐 􏼑≤ ϕx(h)(π(x) + o(1)) V2(x) + o(1)( 􏼁 + h
2κ

􏽨 􏽩
E K

2
i􏼐 􏼑

E
2

K1( 􏼁
, (52)

we get

E Li(x)
2

􏼐 􏼑≤ϕx(h)(π(x) + o(1)) V2(x) + o(1)( 􏼁
E K

2
i􏼐 􏼑

E
2

K1( 􏼁
+ h

2κϕx(h)(π(x) + o(1))
E K

2
i􏼐 􏼑

E
2

K1( 􏼁

+ h
2κϕx(h)(π(x) + o(1))

E
2

Ki( 􏼁

E
2

K1( 􏼁
,

(53)

and
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Figure 8: Te boxplots of the predicted values’ MSE without and with detrending.
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In(x)≤ 􏽢nϕx(h)(π(x) + o(1)) V2(x) + o(1)( 􏼁
E K

2
i􏼐 􏼑

E
2

K1( 􏼁
+ +􏽢nh

2κ
(π(x) + o(1))

E K
2
i􏼐 􏼑

E
2

K1( 􏼁

+ 􏽢nh
2κϕx(h)(π(x) + o(1))

E
2

Ki( 􏼁

E
2

K1( 􏼁
.

(54)

Furthermore, under (H1)-(H2) and (H4)-(H5), we know
that

1
τ(x) ϕx(h)

E K
j

i􏼐 􏼑⟶ βj, for j � 1, 2, (55)

where βj is given in Teorem 2. Tus, we get

1
􏽢n

In(x) �
1
􏽢n

􏽘
i∈In

E Li(x)(
2

􏼐 􏼑⟶ V(x) �
β2
β21

π(x)V2(x)

τ(x)
, asn⟶∞. (56)

Let us now focus on the covariance term. As

􏽘
i≠j

Cov Li(x), Lj(x)􏼐 􏼑 � 􏽘
i≠j

E Li(x)Lj(x)􏼐 􏼑,
(57)

and by some argument as above, we have

􏽘
i≠j

E Li(x)Lj(x)􏼐 􏼑≤
1

E
2

K1( 􏼁
h
2κϕx(h)(π(x) + o(1))

2
􏽘
i≠j

E KiKj􏼐 􏼑 − E Ki( 􏼁E Ki( 􏼁􏼐 􏼑. (58)

Tis sum is divided into two distinct sums, one on the
site E1 and the other on the site E2, with

E1 � i≠ j ∈ In, such that ‖i − j‖≤ cn􏼈 􏼉,

E2 � i≠ j ∈ In, such that ‖i − j‖> cn􏼈 􏼉,
(59)

where cn tend to +∞ as n⟶∞ which will be given later.
Let

R
1
n � 􏽘

E1

E KiKj􏼐 􏼑 − E Ki( 􏼁E Kj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

R
2
n � 􏽘

E2

E KiKj􏼐 􏼑 − E Ki( 􏼁E Kj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.
(60)

As E(Ki Kj)≤CP[(Xi, Xj) ∈ (B(x, h) × B(x, h))] and
E(Ki)≤CP[Xi ∈ B(x, h)], it follows, by assumption (H1),
that

R
1
n ≤C􏽢nc

N
n

1
E
2

K1( 􏼁
h
2κϕx(h)(π(x) + o(1)) 􏽘

i≠j
ϕx(h)

1+1/a
.

(61)

Now, using the boundedness of the random variable Ki,
we deduce from Lemma (3.3) in [30] that

E Ki Kj􏼐 􏼑 − E Ki( 􏼁E Kj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Cφ(‖i − j‖), (62)

from where we have

R
2
n ≤

1
E
2

K1( 􏼁
Ch

2κϕx(h)(π(x) + o(1)) 􏽘
i,j∈E2

φ(‖i − j‖)

≤
1

E
2

K1( 􏼁
C􏽢nh

2κϕx(h)(π(x) + o(1)) 􏽘
i:‖i‖≥cn

φ(‖i‖)

≤
1

E
2

K1( 􏼁
C􏽢nh

2κϕx(h)(π(x) + o(1))c
− Na
n 􏽘

i≠j
􏽘

i:‖i‖≥cn

‖i‖Naφ(‖i‖).

(63)

Ten, by condition (9) and if cn � (ϕx(h))− 1/Na, we have

12 Journal of Mathematics



Rn � R
1
n + R

2
n ≤C􏽢n

1
E
2

K1( 􏼁
h
2κϕx(h)(π(x) + o(1)). (64)

So, equations (59), (61), and (63) imply that
􏽐i,jCov(Li(x), Lj(x)) � o(􏽢n). □

Proof (Lemma 3). Clearly, E(􏽥gn(x))⟶ π(x) as n⟶∞.
Indeed, by conditioning on Xi and when the MAR as-
sumption holds, the assumptions (H2) and (H8) imply

E 􏽥gn(x)( 􏼁 � (π(x) + o(1))
E Ki( 􏼁

E K1( 􏼁
⟶ π(x), asn⟶∞.

(65)

Ten, it sufces to show that Var(􏽥gn(x)) tends to 0 as
n⟶∞. For this, let Λi � 1/E(K1)[δi Ki − E(δi Ki)] and
Sn � 􏽐

i∈I
Λi. Ten, we have

Var 􏽥gn(x)( 􏼁 � Var
Sn
􏽢n

􏼒 􏼓 �
1
􏽢n2 􏽘

i∈I
Var Λi( 􏼁 + 􏽘

i≠j
Cov Λi,Λj􏼐 􏼑⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

�
1
􏽢n2 􏽘

i∈I
E Λ2i􏼐 􏼑 + 􏽘

i≠j
E Λi Λj􏼐 􏼑⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(66)

Using the same argument as in Lemma 6 with the same
notations, we have on one side that

E δi Ki( 􏼁
2

􏼐 􏼑 � (π(x) + o(1))
2
E Ki( 􏼁

2
􏼐 􏼑≤C (π(x) + o(1)) ϕx(h)( 􏼁

a+1/a
,

E δi Ki( 􏼁 � (π(x) + o(1))
2
E
2

Ki( 􏼁≤C(π(x) + o(1))ϕx(h).
(67)

As E(Λi)≤ 1/(E(K1))2[E((δi Ki)
2) + (E(δi Ki))

2], it
follows that

Var Λi( 􏼁≤
1

E K1( 􏼁( 􏼁
2 C(π(x) + o(1)) ϕx(h)( 􏼁

2
+ ϕx(h)( 􏼁

a+1/a
􏼐 􏼑

≤
1

E K1( 􏼁( 􏼁
2 C(π(x) + o(1)) ϕx(h)( 􏼁

2
+ ϕx(h)􏼐 􏼑

≤
C

E K1( 􏼁( 􏼁
2 (π(x) + o(1))ϕx(h)),

(68)

which implies that

In � 􏽘
i∈I

E Λ2i􏼐 􏼑≤
􏽢n

E K1( 􏼁( 􏼁
2 C(π(x) + o(1)) ϕx(h)( 􏼁.

(69)

On the other hand, for Rn � 􏽐i≠jE(Λi Λj) and using the
same reasoning as in the previous lemma, we get

Rn � 􏽘
i≠j

E Λi,Λj􏼐􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �
1

E K1( 􏼁( 􏼁
2 (π(x) + o(1)) 􏽘

i≠j
E Ki Kj􏼐 􏼑 − E Ki( 􏼁E Kj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (70)

For the frst sum on E1, the defnition of cn and the
assumptions (H1) and (H8) imply that

R
1
n � 􏽘

E1

E Λi,Λj􏼐􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤C􏽢n(π(x) + o(1)) ϕx(h)( 􏼁
1+1/a

. (71)

For the second sum on E2 and by using the bounding of
the random variables Ki, we deduce from Lemma (3.3) in
[30] that
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R
2
n � 􏽘

E2

E Λi,Λj􏼐 􏼑􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
1

E K1( 􏼁( 􏼁
2 C(π(x) + o(1))

2
􏽘
E2

φ(‖i − j‖)

≤
1

E K1( 􏼁( 􏼁
2 C(π(x) + o(1))􏽢n 􏽘

i: ‖i‖≥cn

φ(‖i‖)

≤
1

E K1( 􏼁( 􏼁
2 C􏽢nc

− Na
n (π(x) + o(1)) 􏽘

i: ‖i‖≥cn

‖i‖Naφ(‖i‖).

(72)

Ten, by condition (9) and the defnition of cn we have

Rn � R
1
n + R

2
n ≤C􏽢n(π(x) + o(1))ϕx(h). (73)

Finally, from (66), (69), and (73), we deduce that

Var 􏽥gn(x)( 􏼁 � Var
Sn
􏽢n

􏼒 􏼓 � O
ϕx(h)

􏽢n
􏼠 􏼡, (74)

which implies that Var(􏽥gn(x))⟶ 0 from where we
get (24). □

Proof (Lemma 4). As Bn(x) � − m(x)E(􏽥gn(x)) − E(􏽥fn
(x))/E(􏽥gn(x)) and according to Lemma 3, it sufces to
demonstrate that

m(x)E 􏽥gn(x)( 􏼁 − E 􏽥fn(x)􏼐 􏼑 � oa.s h
κ
n( 􏼁. (75)

With the same steps of the proof of Lemma 4 and
according to (H2) and (H8), it results that

m(x)E 􏽥gn(x)( 􏼁 − E 􏽥fn(x)􏼐 􏼑 �
1

􏽢nE K1( 􏼁
􏽘
i∈I

E m(x) − Yi( 􏼁δiKi

�
1

􏽢nE K1( 􏼁
􏽘
i∈I

E E m(x) − Yi( 􏼁δiKi Xi
􏼌􏼌􏼌􏼌􏽨 􏽩􏽮 􏽯

�
1

􏽢nE K1( 􏼁
􏽘
i∈I

E m(x) − m xi( 􏼁( 􏼁π xi( 􏼁Ki􏼁􏼂 􏼃

≤ sup
u∈B(x,h)

|m(x) − m(u)|π xi( 􏼁

� o h
κ
n( 􏼁.

(76)

Tis completes the proof of (25). Now, for proofng (26)
follows the same reasoning as in [26] to establish that

�������

􏽢nϕx hn( 􏼁

􏽱

􏽥gn(x) − E 􏽥gn(x)( 􏼁( 􏼁⟶
D

N 0, σ20􏼐 􏼑, asn⟶∞where σ20(x) �
β2
β21

π(x)

τ(x)
. (77)

Ten, (25) and the condition 􏽢nϕx(hn)⟶∞ as
n⟶∞ complete the proof of (26) and therefore the proof
of Lemma 4. Te proof of (77) is identical to Lemma 5. □

Proof (Lemma 5). According to the fact that
Qn(x): � m(x)(E(􏽥gn(x)) − 􏽥gn(x)) − (E(􏽥fn(x)) − 􏽥fn(x)),
we have
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������
􏽢nϕx(h)

σ2(x)

􏽳

Qn(x)( 􏼁 �
1

������

􏽢nσ2(x)

􏽱 Sn, where Sn � 􏽘
i∈In

Li.

(78)

Tus, the asymptotic normality of 1/
������
􏽢nσ2(x)

􏽰
Sn implies

the proof of Lemma 5.
As in [35], this normality is demonstrated by the

blocking method. Tis method is defned by putting into
large blocks and small blocks of the random variables Lj by

U(n, j, 1) � 􏽘

jk pn+qn( )+pn

ik�jk pn+qn( )+1k�1,...,N

Li,

U(n, j, 2) � 􏽘

jk pn+qn( )+pn

ik�jk pn+qn( )+1k�1,...,N− 1

􏽘

jN+1( ) pn+qn( )

iN�jN pn+qn( )+pn+1

Li,

U(n, j, 3) � 􏽘

jk pn+qn( )+pn

ik�jk pn+qn( )+1k�1,...,N− 2

􏽘

jN− 1+1( ) pn+qn( )

iN− 1�jN− 1 pn+qn( )+pn+1

􏽘

jN pn+qn( )+pn

iN�jN pn+qn( )+1

Li,

U(n, j, 4) � 􏽘

jk pn+qn( )+pn

ik�jk pn+qn( )+1k�1,...,N− 2

􏽘

jN− 1+1( ) pn+qn( )

iN− 1�jN− 1 pn+qn( )+pn+1

􏽘

jN+1( ) pn+qn( )

iN�jN pn+qn( )+pn+1

Li,

(79)

and so on. Finally, the last two terms are

U n, j, 2N− 1
􏼐 􏼑 � 􏽘

jk+1( ) pn+qn( )

ik�jk pn+qn( )+pn+1k�1,...,N− 1

􏽘

jN pn+qn( )+pn

iN�jN pn+qn( )+1

Li,

U n, j, 2N
􏼐 􏼑 � 􏽘

jk+1( ) pn+qn( )

ik�jk pn+qn( )+pn+1k�1,...,N

Li,

(80)

where

pn �
􏽢nϕx(h)( 􏼁

1/(2N)

sn

⎡⎣ ⎤⎦,

qn � o 􏽢n ϕx(h)( 􏼁
(1+2N)

􏽨 􏽩
1/(2N)

􏼒 􏼓,

(81)

with

sn � o 􏽢n ϕx(h)( 􏼁
(1+2N)

􏽨 􏽩
1/(2N)

q
− 1
n􏼒 􏼓. (82)

By (H9), it is simple to show that all sequences qn, pn,
and sn go to infnity.

In the following, we put mk � nk/(pn + qn)N and, for
each integer i � 1, . . . , 2N, we defne the random variable
W(i, n) by W(i, n) � 􏽐j∈JU(n, j, i) with J � 0, . . . , m1−􏼈

1} × · · · × 0, . . . , mN − 1􏼈 􏼉. Ten, by verifying that

Sn � 􏽘
2N

i�1

W(i, n), (83)

the proof of Lemma 5 requires only

W(1,n)
������

􏽢nσ(x)
2

􏽱 ⟶D N(0, 1), (84)

and

1
��
􏽢n

√ 􏽘

2N

i�2
W(i, n)⎛⎝ ⎞⎠⟶P 0. (85)

Clearly, to prove (85), we only need to show that

1
􏽢n
E 􏽘

2N

i�2
W(i, n)⎡⎢⎣ ⎤⎥⎦

2

⟶ 0. (86)

For this, it sufces to notice that

1
􏽢n
E 􏽘

2N

i�2
W(i, n)⎡⎢⎣ ⎤⎥⎦

2

�
1
􏽢n

􏽘

2N

i�2
E[W(i, n)]

2
+ 􏽘

i,j�2,...,2N,i≠ j

E[W(i, n)W(n, j)]⎛⎝ ⎞⎠. (87)
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Ten, for all 2≤ i, j≤ 2N, by the Cauchy–Schwartz in-
equality, we get

1
􏽢n
E[W(i, n)W(j, n)]≤

1
􏽢n
E[W(i, n)]

2
􏼒 􏼓

1/2 1
􏽢n
E[W(j, n)]

2
􏼒 􏼓

1/2
.

(88)

So, to obtain (86), it sufces to prove that

1
􏽢n
E[W(i, n)]

2⟶ 0, ∀2≤ i≤ 2N
. (89)

Wewill only demonstrate (89) when i � 2 since the other
cases are similar. Start with enumerate U(n, j, 2) in the
arbitrary way 􏽢U1, . . . , 􏽢UM and write

E[W(2, n)]
2

� E 􏽘
M

i�1

􏽢Ui
⎡⎣ ⎤⎦

2

� 􏽘
M

i�1
Var 􏽢Ui􏽨 􏽩 + 􏽘

M

i�1
􏽘

M

j�1i≠j
Cov 􏽢Ui,

􏽢Uj􏼐 􏼑

� A1 + A2.

(90)

First, as (Xi, Yi) is stationary, then we have

Var 􏽢Ui􏽨 􏽩 � Var 􏽘

pn

ik�1

k�1,...,N− 1

􏽘

qn

iN�1
Li

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� p
N− 1
n qn Var Li􏼂 􏼃

+ 􏽘

pn

ik�1,

k�1,...,N− 1

􏽘

qn

iN�1
􏽘

pn

jk�1

k�1,...,N− 1

i≠j

􏽘

qn

jN�1
E LiLj􏽨 􏽩.

(91)

According to Lemma 6 and equation (53), we have
Var[L1]⟶ V(x). Moreover, we employ Lemma (3.3) in
[30] to get

E LiLj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Cϕx(h)
− 1φ(‖i − j‖). (92)

So, we deduce that

Var 􏽢Ui􏽨 􏽩≤Cp
N− 1
n qn V(x) + ϕx(h)

− 1
􏽘

pn

ik�1,k�1,...,N− 1
􏽘

qn

iN�1
(φ(‖i‖))⎛⎝ ⎞⎠

≤Cp
N− 1
n qnϕx(h)

− 1
􏽘

pn

ik�1,k�1,...,N− 1
􏽘

qn

iN�1
(φ(‖i‖)).

(93)

Consequently, we have

1
􏽢n

A1 ≤
1
􏽢n

CMp
N− 1
n qnϕx(h)

− 1
􏽘

∞

i�qn

i
N− 1φ(i). (94)

From the defnition of M and pn and the fact that

pn + qn( 􏼁
N

p
N− 1
n qn � pn + qn( 􏼁

N− 1
p

N
n

qn

pn
􏼠 􏼡≤

qn

pn
, (95)

we have

1
􏽢n

CMp
N− 1
n qnϕx(h)

− 1
�
1
􏽢n

􏽢n pn + qn( 􏼁
− N

p
N− 1
n qnϕx(h)

≤
qn

pn
􏼠 􏼡ϕx(h)

− 1

� qn 􏽢nϕx(h)( 􏼁
− 1/2Nϕx(h)

− 1
sn

� qn 􏽢nϕx(h)
(1+2N)

􏼐 􏼑
− 1/2N

sn.

(96)
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Ten, by the fact that sn � o([􏽢nϕx(h)(1+2N)]1/(2N)q− 1
n ),

this last term converges to 0. Moreover, by (9) with c>N, we
have

􏽘

∞

i�1
i
N− 1φ(i)<∞. (97)

Ten, we deduce that
1
􏽢n

A1⟶ 0. (98)

For the evaluation of A2, it sufces to notice by a simple
calculation that the sites of r.v.’s Li which intervenes in the
two variables 􏽢Ui and 􏽢Uj with i≠ j are spaced by distance of
qn at least. So, (92) and the stationarity of the process imply
that

A2 ≤ 􏽘

nk

jk�1k�1,...,N

􏽘

nk

ik�1k�1,...,N‖i− j‖>qn

E LiLj􏼐 􏼑

≤Cϕx(h)
− 1

􏽢n 􏽘

nk

ik�1,k�1,...,N,‖i‖>qn

φ(‖i‖),

(99)

and then we can obtain

1
􏽢n

A2 ≤Cϕx(h)
− 1

􏽘

∞

i�qn

i
N− 1φ(i). (100)

However, by assumption (H9) and the defnition of qn,
we observe that

ϕx(h)
− 1

􏽘

∞

i�qn

i
N− 1φ(i)≤ϕx(h)

− 1
􏽘

∞

i�qn

i
N− 1− c ≤ϕx(h)

− 1
􏽚
∞

qn

t
N− 1− cdt � Cϕx(h)

− 1
q

N− c
n ⟶ 0, (101)

which implies that
1
􏽢n

A2⟶ 0. (102)

Te proof of (85) is, therefore, completed.
It is sufcient to demonstrate the three claims as follows

in order to prove (84):

Q1 ≡ E[exp[iuW(1, n)]] − 􏽙

rk− 1

jk�0,k�1,...,N

E[exp[iuU(n, j, 1)]]

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
tend to 0,

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(103)

Q2 ≡
1
􏽢n

􏽘
j∈J

E[U(n, j, 1)]
2⟶ V(x), (104)

and

Q3 ≡ 􏽢n− 1
􏽘
j∈J

E (U(n, j, 1))
21

|U(n,j,1)|>ϵ(V(x)􏽢n)1/2􏼈 􏼉􏼔 􏼕⟶ 0, for all ϵ> 0. (105)
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Proof of (103). Let us enumerate the r.v. U(n, j, 1), j ∈ J, in
arbitrary manner 􏽥U1, . . . , 􏽥UT where T � 􏽑

N
k�1rk. Ten, to

prove (103), we will use Lemma 3 in [36] applied to the

variables (exp(iu 􏽥U1), . . . , exp(iu 􏽥UT)). As
|􏽑

T
s�j+1exp[iu 􏽥Us]|≤ 1, then

Q1 � E[exp[iuW(n, 1)]] − 􏽙

rk − 1

jk�0,k�1,...,N

E[exp[iuU(n, j, 1)]]

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� E 􏽙

rk − 1

jk�0,k�1,...,N

exp[iuU(n, j, 1)]⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ − 􏽙

rk − 1

jk�0,k�1,...,N

E[exp[iuU(n, j, 1)]]

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽘

T− 1

k�1
􏽘

M

j�k+1
E exp iu 􏽥Uk􏼂 􏼃 − 1( 􏼁 exp iu 􏽥Uj􏽨 􏽩 − 1􏼐 􏼑 􏽙

T

s�j+1
exp iu 􏽥Us􏼂 􏼃 − E exp iu 􏽥Uk􏼂 􏼃 − 1( 􏼁E exp iu 􏽥Uj􏽨 􏽩 − 1􏼐 􏼑 􏽙

M

s�j+1
exp iu 􏽥Us􏼂 􏼃

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 􏽘
T− 1

k�1
􏽘

M

j�k+1
E exp iu 􏽥Uk􏼂 􏼃 − 1( 􏼁 exp iu 􏽥Uj􏽨 􏽩 − 1􏼐 􏼑 − E exp iu 􏽥Uk􏼂 􏼃 − 1( 􏼁E exp iu 􏽥Uj􏽨 􏽩 − 1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 × 􏽙
T

s�j+1
exp iu 􏽥Us􏼂 􏼃

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽘

T− 1

k�1
􏽘

T

j�k+1
E exp iu 􏽥Uk􏼂 􏼃 − 1( 􏼁 exp iu 􏽥Uj􏽨 􏽩 − 1􏼐 􏼑 − E exp iu 􏽥Uk􏼂 􏼃 − 1( 􏼁E exp iu 􏽥Uj􏽨 􏽩 − 1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(106)

For j ∈ J, we denote 􏽥Ij the set involved with
􏽥Uj � 􏽐i∈􏽥I(1,n,j)Li: 􏽥Ij � i: jk(pn + qn) + 1≤ ik􏼈 ≤ jk(pn+

qn) + pn; k � 1, . . . , N}. Ten, each these of sites 􏽥I1≤j≤T

contains pN
n sites and they are at least a distance apart qn.

Applying Lemma (3.3) in [30], we get

E exp iu 􏽥Uk􏼂 􏼃 − 1􏼂 􏼃 exp iu 􏽥Uj􏽨 􏽩 − 1􏼐 􏼑 − E exp iu 􏽥Uk􏼂 􏼃 − 1􏼂 􏼃E exp iu 􏽥Uj􏽨 􏽩 − 1􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Cφ d 􏽥Ij,
􏽥Ik􏼐 􏼑􏼐 􏼑p

N
n . (107)

Hence, it follows from (9), assumption (H9), and the
defnition of qn that

Q1 ≤Cp
N
n 􏽘

T− 1

k�1
􏽘

T

j�k+1
φ d 􏽥Ij,

􏽥Ik􏼐 􏼑􏼐 􏼑

≤Cp
N
n T 􏽘

T

k�2
φ d 􏽥I1,

􏽥Ik( 􏼁( 􏼁

≤Cp
N
n T 􏽘
∞

i�1
􏽘

k:iqn≤d 􏽥I1 ,􏽥Ik( 􏼁<(i+1)qn

φ d 􏽥I1,
􏽥Ik( 􏼁( 􏼁

≤Cp
N
n T 􏽘
∞

i�1
i
N− 1φ iqn( 􏼁

≤C􏽢nq
− δ
n 􏽘

∞

i�1
i
N− 1− δ⟶ 0.

(108)

□

Proof of (104). Recall that

1
􏽢n
E[W(n, 1)]

2
�
1
􏽢n

􏽘

rk− 1

jk�0,k�1,...,N

E[U(n, j, 1)]
2

+
1
􏽢n

􏽘

rk− 1

jk�0,k�1,...,N

􏽘

rk− 1

ik�0,k�1,...,N
ik≠jk for some k

Cov[U(n, j, 1), U(n, i, 1)].

(109)

By using the same arguments previously for A2, we show
that the covariance tends to zero. Terefore, the limit in
(104) is the same as the limit of 1/􏽢nE(W(n, 1))2.

For this, let Sn′ � W(n, 1) and Sn″ � 􏽐
2N

i�2W(n, i), thus

1
􏽢n
E S
′2
n􏼔 􏼕

2
�
1
􏽢n
E S

2
n􏽨 􏽩 +

1
􏽢n
E Sn″􏼂 􏼃

2
− 2

1
􏽢n
E SnSn″􏼂 􏼃, (110)

where

Sn � Sn′ + Sn″. (111)

Equations (56) and (86) imply, respectively, that
􏽢n− 1E[S2n] � 􏽢n− 1Var(Sn)⟶ V(x) and 􏽢n− 1E[S″2n ]⟶ 0. In
addition, by Cauchy–Schwartz’s inequality, we have

1
􏽢n
E SnSn″􏼂 􏼃

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
1
􏽢n
E SnSn″

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

1
􏽢n
E Sn􏼂 􏼃

2
􏼒 􏼓

1/2 1
􏽢n
E Sn″􏼂 􏼃

2
􏼒 􏼓

1/2
.

(112)

It follows that 1/􏽢nE[S′2n ]2⟶ V(x) which concludes the
proof of (104).

Hence, we get
1
􏽢n

􏽘
j∈J

E[U(n, j, 1)]
2⟶ V(x), asn⟶∞. (113)

□

Proof of (105). It is clear that |U(n, j, 1)|≤CpN
n 1/

�����
ϕx(h)

􏽰

from the fact that we have |Li|≤C1/
�����
ϕx(h)

􏽰
. Tus, we de-

duce that
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Q3 ≤Cp
2N
n

1
􏽢n

�����
ϕx(h)

􏽰 􏽘

rk− 1

jk�0,k�1,...,N

P[|U(n, j, 1)|> ϵ(
�������
􏽢nV(x))

􏽰
)].

(114)

On the other hand, as pn � [(􏽢nϕx(h))1/(2N)/sn] and
sn⟶∞, then

|U(n, j, 1)|

(
�������
􏽢nV(x))

􏽰
)
≤Cp

N
n

������
􏽢nϕx(h)

􏽱

􏼒 􏼓

� C sn( 􏼁
− N⟶ 0.

(115)

So, for n large enough, it comes that, for all j ∈ J,
P[U(n, j, 1)> ϵ(

�������
􏽢nV(x))

􏽰
)] � 0, where ϵ> 0. Ten, setting

Q4 � 0 gives the proof. □

Proof (Teorem 1). To prove (19), it sufces to use the fact
that

􏽥mn(x) − m(x) − Bn(x) �
Bn(x) E 􏽥gn(x)( 􏼁 − 􏽥gn(x)( 􏼁 + Qn(x)

􏽥gn(x)
.

(116)

Ten, according to Lemma 5 and the equations (24) and
(26), we have

�������

􏽢nϕx hn( 􏼁

􏽱
Bn(x) E 􏽥gn(x)( 􏼁 − 􏽥gn(x)( 􏼁 + Qn(x)

􏽥gn(x)
􏼢 􏼣 � Op(1),

(117)

which implies that
�������
􏽢nϕx hn( 􏼁

log(􏽢n)

􏽳

􏽥mn(x) − m(x) − Bn(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 converge in probability to 0.

(118)

For the proof of (20), it sufces to use the fact that

􏽥mn(x) − m(x) � 􏽥mn(x) − m(x) − Bn(x) + Bn(x),

(119)

and then, according to (19) and (25) and the condition
􏽢nh2κ

n (ϕx(hn)/log(􏽢n))⟶ 0, (20) is obtained. □

Proof (Teorem 2). Based on the decomposition (116), by
Lemmas 3–5 and Slutsky’s theorem, we obtain (21). Using
again Slutsky’s theorem and decomposition (119) and
Lemmas 3–5 gives (27) and thus Teorem 2 follows. □

7. Conclusion

Tis study examines a functional regression model when
responses are missing at random and spatial dependence is
present. We construct a Nadaraya–Watson kernel estimator
for the nonparametric component based on insufcient data
and derive the estimator’s asymptotic properties, such as
probability convergence (with rates) and asymptotic nor-
mality under certain weak conditions. Simulation analysis
and real data application are performed to illustrate the fnite
sample behaviors of the suggested estimator. We also
consider the missing mechanism to be missing at random

based on our small investigation. Tis issue of nonignorable
missing data, which has been extensively researched in
traditional statistical analysis, has received little attention in
functional data setup.
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