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In this paper, we focus on solving the vector scheduling problem with submodular penalties on parallel machines. We are given n jobs
andm parallel machines, where each job is associated with a d-dimensional vector. Each job can either be rejected, incurring a rejection
penalty, or accepted and processed on one of the m parallel machines. Te objective is to minimize the sum of the maximum load
overall dimensions of the total vector for all accepted jobs, along with the total penalty for rejected jobs. Te penalty is determined by
a submodular function. Our main work is to design a (2 − 1/m)(min r, d{ })-approximation algorithm to solve this problem. Here, r

denotes the maximum ratio of the maximum load to the minimum load on the d-dimensional vectors among all jobs.

1. Introduction

Te multiprocessor scheduling problem was frst studied in
1966 by Graham [1]. It is an important problem in the feld
of combinatorial optimization [2, 3]. In this problem, we
have a set of n jobs, denoted as J � J1, J2, . . . , Jn , and a set
of m parallel machines, denoted as M � M1, M2, . . . , Mm .
Each job can be processed on one of the machines. Te
objective is to minimize the makespan, which is the max-
imum completion time among all machines. Te problem is
strongly NP-hard [1, 4], meaning that it is computationally
challenging to fnd an optimal solution.

In 1966, Graham [1] proposed a classical (2-1/m)-
approximation algorithm called LS (list scheduling) based
on a greedy strategy. Later, Graham [5] designed a 4/3-
approximation algorithm called LPT (longest processing
times) by sorting the jobs in nonincreasing order. In 2020,
Jansen et al. [6] introduced an efcient polynomial-time
approximation scheme, which is currently the best-known
result for this problem.

In some scenarios, rejecting certain low-cost performance
jobs can increase profts. Based on the multiprocessor
scheduling problem, Bartal et al. [7] explored the problem of

multiprocessor scheduling with rejection in 2000.Tis variant
allows each job Jj ∈ J to either be rejected with a penalty or
scheduled on one of the machines. Te objective is to min-
imize the makespan of the accepted jobs while also consid-
ering the total penalty incurred by the rejected jobs. Tey
proposed a (2 − 1/m)-approximation algorithm. Later, Ou
et al. [8] developed an improved (3/2 + ε)-approximation
algorithm, where ε> 0 is a given small constant.

Te vector scheduling problem, introduced by Chekuri
and Khanna [9], is a further extension of the multiprocessor
scheduling problem. In this problem, each job is associated
with a d-dimensional vector. Te objective is to schedule
n d-dimensional jobs on m machines to minimize the
maximum load overall dimensions of the machines. Chekuri
and Khanna [9] proved in 2004 that this problem cannot be
approximated within a constant factor unless NP � ZPP,
assuming arbitrary input dimension d. Here, ZPP refers to
a complexity class that deals with probabilistic Turing
machines [10], which take into account the probability of
acceptance. In the same paper, Chekuri and Khanna [9] also
presented an O(ln2 d)-approximation algorithm and an
O(ln dm/ln ln dm)-approximation algorithm with high
probability, where m denotes the number of machines.
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Recently, Harris and Srinivasan [11] developed a random-
ized polynomial-time approximation algorithm for the vector
scheduling problem, achieving a ratio ofO(ln d/ ln ln d). For
the vector scheduling problem with rejection, when m � 1, Dai
and Li [12] demonstrated that the problem is NP-hard and
proposed ad-approximation algorithm for a fxed constantd. Li
and Cui [13] introduced a 2.54-approximation algorithm based
on randomized rounding in the case where m � 2. Additional
related results can be found in reference [14].

In many practical scenarios, the relationship between the
number of rejected objects and the associated rejection
penalties is often submodular rather than linear. As a result,
combinatorial optimization problems with submodular
penalties have gained signifcant attention. Tese problems
involve a rejection penalty determining a submodular func-
tion [15, 16].

Liu and Li [17] addressed the multiprocessor scheduling
problem with submodular penalties. Tey presented a com-
binatorial (2 − 1/m)-approximation algorithm based on the
list scheduling (LS) algorithm and a greedy method. Wang
and Liu [18] focused on parallel-machine scheduling with
release times and submodular penalties, proposing a com-
binatorial 2-approximation algorithm. Zhang et al. [19]
tackled the precedence-constrained scheduling problem with
submodular rejection on parallel machines. Tey introduced
a combinatorial 3-approximation algorithm to solve this
problem. Liu et al. [20] considered the single-machine vector
scheduling problem with submodular penalties. Tey pre-
sented a combinatorial min r, d{ }-approximation algorithm
to solve this problem, where r represents the maximum
ratio of the maximum load to the minimum load on the
d-dimensional vectors among all jobs.

We are inspired by previous research studies and focus on
the problem of vector scheduling with submodular penalties
on parallel machines. We propose a (2 − 1/m)(min r, d{ })-
approximation algorithm, where r represents the maximum
ratio between the largest and smallest components of the
d-dimensional vectors among all jobs.Tis algorithm extends
the fndings of prior results [17, 20].

Tis paper is organized as follows: In Section 2, we
provide a formal problem statement and a fundamental
lemma to ensure the correctness of our approximation al-
gorithm. In Section 3, we present an approximation algorithm
for the problem. In Section 4, we present our conclusions.

2. Preliminaries

Defnition 1 (see [15]). Let U be a given set and π: 2U⟶ R≥0
be a real-valued function defned on all subsets of U. It is called
a submodular function if

π(A∪B) + π(A∩B)≤ π(A) + π(B),∀A, B⊆U. (1)

Te problem of vector scheduling with submodular
penalties on parallel machines (the VSSP-PM problem, for
short) is defned as follows.

Given a set J � J1, J2, . . . , Jn  of n jobs and a set M �

M1, M2, . . . , Mm  of m parallel machines, each job Jj ∈ J is
associated with a d-dimensional vector pj � (p1

j , p2
j , . . . , pd

j ),

where pk
j ≥ 0 for all dimensions k ∈ [d]: � 1, 2, · · · , d{ }. It is

asked to fnd a scheduling confguration (A1, A2, . . . , Am, R)

that satisfes the following conditions: A1, A2, . . . , Am form
a partition of the accepted job set A (i.e., J∖R), where each Ai

represents the set of jobs processed onmachine Mi and R is the
set of rejected jobs. Te accepted job sets A1, A2, . . . , Am are
mutually exclusive, and their union covers the entire accepted
job set A. Te objective is to minimize the maximum load
overall dimensions and the penalty incurred by the rejected jobs.
Te penalty, denoted as π(R), is determined by a submodular
function π(·). Tat is,

min max
i

max
k


j∈Ai

p
k
j + π(R)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (2)

To further understand our problem, we present the
following integer linear program (ILP) for the VSSP-PM
problem.

minL + 
R:R⊆J

π(R)zR,

s.t.
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i�1
x

i
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j:Jj∈R
zR � 1, ∀Jj ∈ J,



n

j�1
p

k
jx

i
j ≤L, ∀i ∈ [m], k ∈ [d],

x
i
j, zR ∈ 0, 1{ }, ∀R⊆ J, i ∈ [m], j ∈ [n],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where variable zR ∈ 0, 1{ } indicates whether R is picked, that
is, zR � 1 if and only if R is rejected, variable xi

j ∈ 0, 1{ }

implies whether job Jj ∈ J is accepted and scheduled on the
machine Mi, here xi

j � 1 if and only if Jj is accepted and
scheduled on the machine Mi. Clearly, if d � 1, the
VSSP-PM problem is exactly the problem of parallel ma-
chine scheduling with submodular penalties studied in Liu
and Li [17]. If m � 1, the VSSP-PM problem becomes the
problem of single machine vector scheduling with general
penalties studied in Liu et al. [20].

For convenience, we may assume I � (J, M, p(·), π(·))

to be an instance of the VSSP-PM problem and assume r to
be the maximum ratio of the largest component to the
smallest component of the d-dimensional vectors among all
jobs, i.e.,

r � max
Jj∈J

max k p
k
j

min k p
k
j

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (4)

Note that when r≥ 1, in particular, we set r � +∞ if
minJj∈J mink pk

j  � 0.
Now, we construct an auxiliary instance I′ � (J′, M′, p′(·),

π′(·)) for an instance I � (J, M, p(·), π(·)) of VSSP-PM
problem, where J′ � J1′, J2′, . . . , Jn

′  is a set of n jobs, M′ �

M1′, M2′, . . . , Mm
′  is a set ofm parallel machines, and for each

Jj
′ ∈ J′, we defne
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pj �

min
i∈[d]

p
i
j, if r≤ d,



d

i�1
p

i
j, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

and p′(Jj
′) � pj, π′(·) � π(·), i.e., for each subset l⊆[n] ≔

1, 2, . . . , n{ }, π′(∪ k∈l Jk
′ ) � π(∪ k∈l Jk ). We call this

instance I′ � (J′, M′, p′(·), π′(·)) as an auxiliary instance of
I � (J, M, p(·), π(·)). Ten, we have the following result.

Lemma 2. Given an instance I � (J, M, p(·), π(·)) of the
VSSP-PM problem and its auxiliary instance I′ � (J′, M′,

p′(·), π′(·)), suppose that σ′ � (A1′, . . . , Am
′ , R′) is a feasible

solution of the instance I′, then there exists a feasible solution
σ � (A1, . . . , Am, R) of instance I satisfying

max
i∈[m]

p Ai( 
����

����∞  + π(R)≤ r max
i∈[m]



Jj
′∈Ai
′

pj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+ π′ R

′
 

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠, if r≤d,

max
i∈[m]

p Ai( 
����

����∞  + π(R)≤ max
i∈[m]



Jj
′∈Ai
′

pj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+ π′ R

′
 , otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where p(Ai)�Jj∈Ai
pj ≔ (Jj∈Ai

p1
j , Jj∈Ai

p2
j , . . . , Jj∈Ai

pd
j ).

Proof. We are given an instance I � (J, M, p(·), π(·)) of the
VSSP-PM problem and its auxiliary instance I′ � (J′, M′,

p′(·), π′(·)). Let σ′ � (A1′, · · · , Am
′ , R′) be a feasible solution

of the instance I′, and let R � Jj ∈ J | Jj
′ ∈ R′  and Ai �

Jj ∈ Jj
′ | ∈ Ai
′  for each i ∈ [m]. It is easy to obtain that σ �

(A1, · · · , Am, R) is a feasible solution of instance I. We defne
p(Ai) � Jj∈Ai

pj ≔ (Jj∈Ai
p1

j , Jj∈Ai
p2

j , · · · ,Jj∈Ai
pd

j ) as the
load vector of machine Mi for each i ∈ [m].

Case 1: r≤ d.
In this case, we have pj � mink∈[d] pk

j for each j ∈ [n]

and we can obtain the following for each i ∈ [m]:

p Ai
′(  � 

Jj
′∈Ai
′

pj

� 
Jj∈Ai

min
k∈[d]

p
k
j ,

p Ai( 
����

����∞ � max
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p
k
j

⎧⎪⎨
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⎫⎪⎬

⎪⎭
≤ 

Jj∈Ai
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k∈[d]

p
k
j

� 
Jj∈Ai
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k∈[d]

p
k
j ·

maxk∈[d] p
k
j

mink∈[d] p
k
j

≤ 
Jj∈Ai

r · min
k∈[d]

p
k
j

� r · 

Jj
′∈Ai
′

pj

� r · p Ai
′( .

(7)

Terefore, we can obtain the following equation:

max
i∈[m]

p Ai( 
����

����∞  + π(R)≤ r · max
i∈[m]



Jj
′∈Ai
′

pj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+ π′ R

′
 ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠.

(8)

Case 2: r>d.
In this case, we can obtain the following for each
i ∈ [m]:

p Ai( 
����

����∞≤ p Ai( 
����

����1

� 
Jj∈Ai

pj

� 

Jj
′∈Ai
′

p′ Jj
′ ,

(9)

implying
arg max

i∈[m]
p Ai( 

����
����∞  � p Ai′( 

����
����∞

≤ p Ai′( 
����

����1

≤ max
i∈[m]

p Ai
′( 

����
����1 

� max
i∈[m]



Jj
′∈Ai
′

pj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(10)

Tus, we have

max
i∈[m]

p Ai( 
����

����∞  + π(R)≤ max
i∈[m]



Jj
′∈Ai
′

pj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+ π′ R

′
 .

(11)

To sum up, we conclude this lemma. □
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3. Approximation Algorithms for the
VSSP-PM Problem

In this section, we will present a combination (2 − 1/m)

(min r, d{ })-approximation algorithm to solve the VSSP-PM
problem. Now, we frst recall some results in reference [17]
for the parallel machine scheduling with submodular
penalties.

3.1. Overview of the Algorithm in Reference [17]. Liu and Li
[17] proposed an algorithm to solve the parallel machine
scheduling problem with submodular penalties, utilizing
a combination of strategies from the greedy method and the
List Scheduling (LS) algorithm. Tis algorithm consists of
three phases.

In the frst phase, we construct a set of jobs, denoted as
R(j′), for each pj′ in the sequences p0, p1, p2, · · · , pn. Tis
set contains jobs Jj for which pj >pj′ , with p0 � 0.

In the second phase, we construct the set Rj′ by using the
method from [16]. Rj′ is a solution of the optimization
problem min_{S: R(j′)⊆ S⊆ J} {1/mJj∈J∖Spj + π(S)}. Te
LS algorithm is then applied to assign the remaining jobs in
Aj′(� A\Rj′) to the m parallel machines.

In the last phase, we select the best one among all the
feasible solutions obtained in the previous steps.

Formally, the algorithm can be described as follows.
For the Algorithm 1, they have the following result.

Lemma 3 (see [17]). Algorithm 1 is a combinatorial
(2 − 1/m)-approximation algorithm for the parallel machine
scheduling with submodular penalties.

3.2.VSSP-PMProblem. Taking inspiration from the algorithm
presented in [17] and Lemma 2, we propose our GLS algorithm
to solve the VSSP-PM problem. Our algorithm involves the
following strategies: (1) Constructing an auxiliary instance I′ �

(J′, M′, p′(·), π′(·)) for a given instance I � (J, M, p(·), π(·))

of the VSSP-PM problem. (2) Utilizing Algorithm 1 to de-
termine a feasible solution (A1′, . . . , Am

′ , R′) for the instance I′.
(3) Constructing a feasible solution σ � (A1, . . . , Am, R) for the
instance I based on (A1′, . . . , Am

′ , R′).Te formal description of
the algorithm is as follows.

Note that Algorithm 2 is a generalization of Algorithm 1.
Our algorithm can handle the d-dimensional vector
scheduling with submodular penalties on parallel machines,
where d≥ 1. Using Algorithm 2, we can obtain the following
result.

Theorem 4. Algorithm 2 is (2 − 1/m)(min r, d{ })-approxi-
mation algorithm to solve the VSSP-PM problem.

Proof. Given an instance I � (J, M, p(·), π(·)) of the
VSSP-PM problem, we may assume that σ∗ � (A∗1 , . . . ,

A∗m, R∗) and σ⋆ � (A⋆1 , . . . , A⋆m, R⋆) are optimal solutions for
the instance I � (J, M, p(·), π(·)) and I′ � (J′, M′, p′(·),

π′(·)), respectively.

Let pj⋆ � max pj | Jj
′ ∈ A⋆  and Jj⋆

′ ∈ A⋆(� J′∖R⋆).
Ten, we have

R j
⋆

(  � Jj
′
 j> j
⋆

 ⊆R
j⋆

. (12)

Let (A
j⋆

1 , . . . , Aj⋆

m , Rj⋆) be the partition generated at Step
2 of the Algorithm 1 in the j⋆-th loop. Because Rj⋆ �

argminS: R(j⋆)⊆S⊆J′ w(S){ }, we have w(Rj⋆)≤w(R⋆), where
w(S) � 1/mJj∈J′∖Spj + π(S). For each S⊆ J′, we defne
p(S) � Jj

′∈Spj. Ten, we can obtain the following equation:

1
m

p A
j⋆

  + π R
j⋆

 ≤
1
m

p A
⋆

(  + π R
⋆

( ,

π R
j⋆

 ≤
p A
⋆

(  − p A
j⋆

 

m
+ π R

⋆
( ,

(13)

where Aj⋆ � J′∖Rj⋆ .
For convenience, we may assume that p(A

j⋆

i
) � arg

mini∈[m] p(A
j⋆

i )  and Jj
′ ∈ J′ is the last job added to A

j⋆

i
by

the LS algorithm [1]. Terefore, we have

p A
j⋆

i
 ≤

p J
′
\R

j⋆
  − p j

m
+ p j

�
p A

j⋆
 

m
+ 1 −

1
m

 p j

≤
p A

j⋆
 

m
+ 1 −

1
m

 pj⋆ ,

(14)

where the frst inequality comes from the fact p(J′∖Rj⋆) −

pj
/m is the average load on the m parallel machines, and the

second inequality follows from the fact Jj
′ ∈ A

j⋆

i
and pj
≤pj⋆

for each j(≤ j⋆).
Additionally, we have

max
i∈[m]

p A
⋆
i(  ≥

p A
⋆

( 

m
andmax

i∈[m]
p A
⋆
i(  ≥pj⋆ � p′ Jj⋆

′ ,

(15)

where (A⋆1 , . . . , A⋆m, R⋆) is the optimal partition of the in-
stance I′ � (J′, M′, p′(·), π′(·)) and Aj⋆ � J′∖Rj⋆ , Jj⋆

′ ∈ Aj⋆ .
Suppose that (A1′, . . . , Am

′ , R′) is the minimum partition

among (A
j′

1 , . . . , Aj′

m, Rj′) | j′ ∈ [n]∪ 0{ }  and (A1, . . . ,

Am, R) is a feasible solution of instance I � (J, M, p(·), π(·)),
where R � Jj ∈ J | Jj

′ ∈ R′  and for each i ∈ [m], Ai �

Jj ∈ J | Jj
′ ∈ Ai
′ .

By Lemma 2, we consider the following two cases.

Case 1: r≤d. We can obtain the following for each
i ∈ [m]

4 Journal of Mathematics



max
i∈[m]

p Ai( 
����

����∞  + π(R)≤ r · max
i∈[m]



Jj
′∈Ai
′

pj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+ π′ R

′
 ⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

� r · max
i∈[m]

p Ai
′(   + π′ R

′
  

≤ r · p A
j⋆

i  + π R
j⋆

  

≤ r ·
p A

j⋆
 

m
+ 1 −

1
m

 pj⋆ + π R
j⋆

 ⎛⎝ ⎞⎠

≤ r ·
p A

j⋆
 

m
+ 1 −

1
m

 pj⋆ +
p A
⋆

(  − p A
j⋆

 

m
+ π R

⋆
( ⎛⎝ ⎞⎠

≤ r ·
p A
⋆

( 

m
+ π R

⋆
(  + 1 −

1
m

 pj⋆ 

≤ 2 −
1
m

 r · max
i∈[m]

p A
⋆
i(   + π R

⋆
(  .

(16)

Input: An instance I � (J, M, p(·), π(·)) of the parallel machine scheduling with submodular penalties.
Output: A feasible solution σ � (A1, · · · ,Am, R) of the instance I.

(1) Let p0 :� 0 and sort all jobs in J in nondecreasing order, for convenience, we may assume that p0 ≤p1 ≤p2 ≤ · · · ≤pn.
(2) For j′ � 0, 1, . . . , n do

Constructing R(j′) � Jj | j> j′  and fnding the set Rj′ � argminS: R(j′)⊆S⊆J 1/mJj∈J∖Spj + π(S)  by the method in [16]. We
assign the jobs in Aj′(� A∖Rj′ ) toA

j′

1 , A
j′

2 , . . . , Aj′

m using the LS algorithm.

(3) Let j � arg minj′ maxi 
pj∈A

j′
i

pj  + π(Rj′ ) , R ≔ Rj, Ai ≔ A
j

i for each i � 1, 2, . . . , m.

(4) Output the feasible solution σ � (A1, . . . , Am, R) of instance I.

ALGORITHM 1: Algorithm based on the greedy and LS algorithms.

Input: An instance I � (J, M, p(·), π(·)) of the VSSP-PM problem.
Output: A feasible solution σ � (A1, . . . , Am, R) of the instance I � (J, M, p(·), π(·)).

(1) Constructing the auxiliary instance I′ � (J′, M′, p′(·), π′(·)) of I � (J, M, p(·), π(·)).
(2) Using the algorithm 1 to fnd a feasible solution (A1′, . . . , Am

′, R′) of the instance I′, and construct a feasible solution σ �

(A1, . . . , Am, R) of instance I, where R � Jj ∈ J|Jj
′ ∈ R′  and for each i ∈ [m], Ai � Jj ∈ J | Jj

′ ∈ Ai
′ .

(3) Output the feasible schedule σ � (A1, . . . , Am, R) of instance I.

ALGORITHM 2: GLS algorithm.
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For convenience, let (A1″, . . . , Am
″, R″) be another feasible

solution of instance I′ � (J′, M′, p′(·), π′(·)), where
R″ � Jj

′ ∈ J′ | Jj ∈ R∗  and for each i ∈ [m], Ai
″ �

Jj
′ ∈ J′ | Jj ∈ A∗i }. We may note that pj � mink∈[d] pk

j

for each j ∈ [n]. Ten, we have

max
i∈[m]

p A
⋆
i(   + π R

⋆
( ≤ max

i∈[m]
p Ai
″(   + π R

″
 

� arg max
i∈[m]



Jj
′∈Ai
″

pj

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+ π R

∗
( 

� 

Jj
′∈Ait

pj + π R
∗

( 

� 

Jj
′∈Ait
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(17)

where OPT � maxi∈[m] p(A∗i )  + π(R∗) is the objec-
tive value of the optimal solution (A∗1 , . . . , A∗m, R∗) of
the instance I � (J, M, p(·), π(·)).
Tus, we have

max
i∈[m]

p Ai( 
����

����∞  + π(R)≤ 2 −
1
m

 r · OPT
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1
m

 min r, d{ } · OPT.

(18)

Case 2: r> d. Using similar arguments as Case 1, we can
obtain the following for each i ∈ [m]
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Similarly, let (A1″, . . . , Am
″, R″) be the solution of instance

I′ � (J′, M′, p′(·), π′(·)), where R″ � Jj
′ ∈ J′ | Jj ∈ R∗

and for each i ∈ [m], Ai
″ � Jj
′ ∈ J′ | Jj ∈ A∗i . Ten, we
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(20)

where OPT � maxi∈[m] p(A∗i )  + π(R∗) is the objec-
tive value of the optimal solution (A∗1 , . . . , A∗m, R∗) of
the instance I � (J, M, p(·), π(·)).
Terefore, we have

max
i∈[m]

p Ai( 
����

����∞  + π(R)≤ 2 −
1
m

 d · OPT

≤ 2 −
1
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 min r, d{ } · OPT.

(21)

2 3 4 5
m

Cplex
GLS

0
20
40
60
80

100
120

ob
je

ct
 v

al
ue

(a)

2 3 4 5
m

Cplex
GLS

0
20
40
60
80

100
120

ob
je

ct
 v

al
ue

(b)

Figure 1: Te comparison of two methods for the VSSP-PM problem. (a) n� 10, d� 3 and (b) n� 10, d� 5.
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To sum up, we reach the conclusion.
Considering the function π(S) � Jj∈Sπ(Jj) − θ|S|2,

where S(≠∅)⊆J and π(∅)� 0. Here, π(Jj)> 0 for each
Jj ∈ J, and θ≥ 0 is a given constant. As θ approaches zero, the
π(·) becomes increasingly approximated as a linear function. It
can be easily verifed that π(·) is a submodular function.

Te numerical experiments of our algorithm are de-
scribed as follows.Te experimental data are generated in an
average distribution over a given range (Dataset link: https://
github.com/wencheng2018/GLSalgorithm-based-data), so
each experiment is repeated 10 times. Te fnal results are
averaged to reduce the impact of randomness.

We compared the GLS algorithm and the optimal so-
lution for the VSSP-PM problem. We use IBM’s open-
source tool, CPLEX, to obtain the optimal solution. In
cases where the optimal solution was not obtained within
1minute, we terminated the CPLEX process. As illustrated
in Figure 1, the results obtained from the GLS algorithm
closely approximate the optimal solution. Te numerical
experiment results indicate that the approximation ratio of
our algorithm is less than 2.5 for the given instances. Tis
fnding indicates the superiority of our method.

4. Conclusions

In this paper, we proposed the problem of vector scheduling
with submodular penalties on parallel machines (VSSP-PM),
which generalizes both the vector scheduling with submodular
rejection on a single machine [13] and the parallel machine
scheduling with submodular penalties [17]. We present a (2−

1/m)(min r, d{ })-approximation algorithm, where m is the
number of parallel machines and r is the maximum ratio of the
largest component to the smallest component of the d-di-
mension vectors among all jobs. Tis result generalizes the
conclusions in [17, 20]. Numerical experiment results show
that our algorithm is efcient and reliable.

A challenging task for further research is to present some
better approximation algorithms with lower performance or
lower running times to solve the VSSP-PM problem. Ad-
ditionally, vector scheduling with submodular penalties on
unrelated machines is an interesting problem to be explored.
It is possible to design a O(d)-approximation algorithm, but
it is a challenge.
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“Fully polynomial time approximation scheme to maximize
early work on parallel machines with common due date,”
European Journal of Operational Research, vol. 284, no. 1,
pp. 67–74, 2020.

[4] M. R. Garey and D. S. Johnson, “Computers and intractability:
a guide to the theory of NP-completeness,”A Series of Books in
the Mathematical Sciences, Freeman, New York, NY, USA,
1979.

[5] R. L. Graham, “Bounds on multiprocessing timing anoma-
lies,” SIAM Journal on Applied Mathematics, vol. 17, no. 2,
pp. 416–429, 1969.

[6] K. Jansen, K. M. Klein, and J. Verschae, “Closing the gap for
makespan scheduling via sparsifcation techniques,” Mathe-
matics of Operations Research, vol. 45, no. 4, pp. 1371–1392,
2020.

[7] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, and
L. Stougie, “Multiprocessor scheduling with rejection,” SIAM
Journal on Discrete Mathematics, vol. 13, no. 1, pp. 64–78,
2000.

[8] J. Ou, X. Zhong, and G. Wang, “An improved heuristic for
parallel machine scheduling with rejection,” European Journal
of Operational Research, vol. 241, no. 3, pp. 653–661, 2015.

[9] C. Chekuri and S. Khanna, “On multidimensional packing
problems,” SIAM Journal on Computing, vol. 33, no. 4,
pp. 837–851, 2004.

[10] R. Motwani and P. Raghavan, Randomized Algorithms,
Cambridge University Press, Cambridge, UK, 1995.

[11] D. G. Harris and A. Srinivasan, “Te Moser-Tardos frame-
work with partial resampling,” Journal of the ACM, vol. 66,
no. 5, pp. 1–45, 2019.

[12] B. Dai and W. Li, “Vector scheduling with rejection on two
machines,” International Journal of Computer Mathematics,
vol. 97, no. 12, pp. 2507–2515, 2020.

[13] W. Li and Q. Cui, “Vector scheduling with rejection on
a single machine,” 4OR-Q Journal of Operational Research,
vol. 16, no. 1, pp. 95–104, 2018.

[14] N. Bansal, T. Oosterwijk, T. Vredeveld, and R. van der Zwaan,
“Approximating vector scheduling: almost matching upper and
lower bounds,” Algorithmica, vol. 76, no. 4, pp. 1077–1096,
2016.

[15] L. Lovász, Submodular Functions and Convexity, Mathe-
matical Programming the State of the Art, Bonn, Germany,
1982.

[16] L. Fleischer and S. Iwata, “A push-relabel framework for
submodular function minimization and applications to
parametric optimization,” Discrete Applied Mathematics,
vol. 131, no. 2, pp. 311–322, 2003.

[17] X. Liu and W. Li, “Approximation algorithms for the mul-
tiprocessor scheduling with submodular penalties,” Optics
Letters, vol. 15, no. 6, pp. 2165–2180, 2021.

Journal of Mathematics 7

https://github.com/wencheng2018/GLSalgorithm-based-data
https://github.com/wencheng2018/GLSalgorithm-based-data


[18] W. Wang and X. Liu, “A combinatorial 2-approximation
algorithm for the parallel-machine scheduling with release
times and submodular penalties,” Mathematics, vol. 10, no. 1,
p. 61, 2021.

[19] X. Zhang, D. Xu, D. Du, and C. Wu, “Approximation al-
gorithms for precedence-constrained identical machine
scheduling with rejection,” Journal of Combinatorial Opti-
mization, vol. 35, no. 1, pp. 318–330, 2018.

[20] X. Liu, W. Li, and Y. Zhu, “Single machine vector scheduling
with general penalties,” Mathematics, vol. 9, no. 16, p. 1965,
2021.

8 Journal of Mathematics




