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Shiu and Kwong (2008) studied the full friendly index set of P2 × Pn, which only addressed the cases where m � 0 or 1. In this
paper, we signifcantly extend their work by determining the full m index set M(P2 × Pn) for all values of m. Our key approach is
to utilize graph embedding and recursion methods to deduce M(P2 × Pn) for general m. In particular, we embed small graphs like
C4 and K2 into P2 × Pn and apply recursive techniques to prove the main results. Tis work expands the scope of previous graph
labeling studies and provides new insights into determining the full m index set of product graphs. Given the broad range of
applications for labeled graphs, this research can potentially impact felds like coding theory, communication network design,
and more.

1. Introduction

A graph labeling is an assignment of integers to the vertices
or edges, or both. Motivated by diferent settings and
conditions, the problems of labeling various types of graphs
were raised and studied. We refer the readers to the survey
paper, A dynamic survey of graph labelings by Gallian [1], in
which the sheer number of research papers regarding dif-
ferent graph labeling methods in graph theory has been
reviewed.

Let G � (V(G), E(G)) be a simple connected graph with
the vertex set V(G) and the edge set E(G). Let f be
a function from V(G) to Z2. For each edge v1v2, we assign
the label f′(v1v2), where f′(v1v2) � f(v1) + f(v2). For
i ∈ Z2, a vertex u ∈ V(G) is called an i vertex if f(u) � i.
And we let vf(i) denote the number of i vertices in G under
labeling f. Te concepts of i edge and ef′(i) can be defned
similarly. Chartrand et al. [2] introduced the concept of
friendly index set. And a vertex labeling f is said to be
friendly if |vf(1) − vf(0)|≤ 1.

Defnition 1. Te friendly index set of G is defned as

FI(G) � ef′(1) − ef′(0)


: f is friendly labeling of G .

(1)

Readers can refer to the literature [3, 4] for the friendly
index set of graphs if interested. Shiu and Ling [5] extended
this concept to the full friendly index set.

Defnition 2. Te set FFI(G) � ef′(1) − ef′(0): f

is friendly labeling of G} is called the full friendly index set
of G.

A friendly labeling of a graph G is also known as a bi-
section of G, which has been studied widely in the theory of
graph partitions [6, 7]. According to the algorithm [8], it is
NP-hard to fnd the maximum or minimum bisection
(namely, friendly labeling with maximum or minimum 1
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edge) of an arbitrary graph. Tere were many interesting
results focusing on some specifc graphs. For example, Sinha
and Kaur [9] studied the full friendly index sets of
Kn, Cn, Fn, F2,m, and P3 × Pn. Shiu and his coauthors de-
termined the full friendly index sets of cylinder graphs [10],
some permutation Petersen graphs [11], slender and fat
cylinder graphs [12], and P2 × Pn [13]. Gao et al. [14]

deduced FFI(G) of a family of cubic graphs, which are full
vertices blow-up of Cm with K1,1,2.

In this paper, we generalize the concept of the full
friendly index set to the following, which we call the full m

index set.

Defnition 3. Te full m index set of G, M(G) is defned as
the set

M(G) � ef′(1) − ef′(0): vf(1) − vf(0)


 � m, 0≤m<|V(G)| . (2)

According to the above defnition, when m � 0 or m � 1,
the full m index set of a graph is its full friendly index set.

Lemma 4. Let am(G) � ef′(1): vf(1) − vf(0) � m, 0≤

m< |V(G)|}. Ten, the full m index set of G is defned as

M(G) � 2i − |E(G)|: i ∈ am(G) . (3)

Proof. Note that the conditions vf(1) − vf(0) � m and
vf(0) − vf(1) � m are symmetric, we fnd that ef′(1) is
equal under both conditions. Ten, ef′(1) − ef′(0) �

2ef′(1) − |E(G)|. Ten, we have M(G) � 2ef′(1) −

|E(G)|: vf(1) − vf(0) � m, 0≤m< |V(G)|}. According to
the defnition of am(G), we know that M(G) � 2i{

− |E(G)|: i ∈ am(G)}. □
Tus, we only need to compute the value of ef′(1).

2. Preliminaries

We now discuss the full m index set of P2 × Pk for some
specifc values of k. We name the vertices on the two paths as
u1, u2, . . . , uk and v1, v2, . . . , vk, and Figure 1 represent the
graph P2 × P2n. We shall call the square uivivi+1ui+1 the i th
square, the edge uivi the i th vertical edge.

We omit the subscripts in vf(i) and ef′(i) for simplicity
without causing confusion. In the remaining of the paper, if
not specifcally stated, only the vertices labeled 1 are listed
and those not listed are labeled 0. For v(1) − v(0) � m, we
denote e(i) as em(i).

Consider the graph P2 × Pk. Let f be any vertex labeling
such that v(1) − v(0) � m, since v(1) + v(0) � 2k. Tus, we
know v(1) � k + m/2. Note that v(1) is a positive integer,
which implies that m is an even integer.

First, we give some examples of P2 × Pk in order to prove
the following theorem.

Example 1. Consider the graph P2 × P2n, where
v(1) − v(0) � 2.

(1) For f(ui) � 1, 1≤ i≤ n, f(vj) � 1, 1≤ j≤ n + 1, e2
(1) � 3

(2) For f(ui) � f(vj) � 1, 1≤ i, j≤ n, f(v2n) � 1, e2
(1) � 4

(3) For f(u1) � f(u3) � · · · � f(u2n− 1) � f(u2n) � 1,
f(v2) � f(v4) � · · · � f(v2n) � 1, e2(1) � 6n − 4

(4) For f(u1) � f(u3) � · · · � f(u2n− 3) � f(u2n) � 1,
f(v2) � f(v4) � · · · � f(v2n− 2) � f(v2n− 1) � f(v2n)

� 1

For Example 1, we only give the specifc notation of (4).
Te labeled graph of Example 1 (4) is shown in the

following, where the solid points represent vertices labeled 1,
the hollow points represent vertices labeled 0, the thick line
represents 1 edge, and the thin line represents 0 edge.

Tus, from Figure 1, it is clearly to see that
e2(1) � 6n − 6.

Example 2. Consider the graph P2 × P2n, where
v(1) − v(0) � 4.

(1) For f(ui) � f(vj) � 1, 1≤ i, j≤ n + 1, e4(1) � 2
(2) For f(u1) � f(u3) � · · · � f(u2n− 1) � f(u2n) � 1,

f(v1) � f(v2) � f(v4) � · · · � f(v2n) � 1, e4(1) � 6
n − 6

Example 3. Consider the graph P2 × P2n, where
v(1) − v(0) � 6.

(1) For f(ui) � 1, i ∈ [n − 1, 2n], f(vj) � 1, j ∈ [n − 1, 2
n − 1], e6(1) � 4

Example 4. Consider the graph P2 × P2n, where
v(1) − v(0) � 4n − 2.

(1) For f(ui) � f(vj) � 1, 1≤ i≤ 2n − 1, 1≤ j≤ 2n, e4n− 2
(1) � 2

(2) For f(ui) � f(vj) � 1, 1≤ i≤ 2n, 3≤ j≤ 2n; f(v1) �

1, e4n− 2(1) � 3

Example 5. Consider the graph P2 × P2n, where
v(1) − v(0) � 4n − 4.

(1) For f(ui) � f(vj) � 1, 1≤ i, j≤ 2n − 1, e4n− 4(1) � 2
(2) For f(ui) � f(vj) � 1, 3≤ i≤ 2n, 1≤ j≤ 2n, e4n− 4

(1) � 3
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(3) For f(ui) � f(vj) � 1, 3≤ i, j≤ 2n; f(u1) � f(v1) �

1, e4n− 4(1) � 4
(4) For f(ui) � f(vj) � 1, 4≤ i≤ 2n, 1≤ j≤ 2n; f(u2)

� 1, e4n− 4(1) � 5
(5) For f(ui) � f(vj) � 1, 4≤ i≤ 2n, 3≤ j≤ 2n; f(u1) �

f(u2) � f(v1) � 1, e4n− 4(1) � 6

Example 6. Consider the graph P2 × P2n+1, where
v(1) − v(0) � 4n.

(1) For f(ui) � f(vj) � 1, 1≤ i≤ 2n, 1≤ j≤ 2n + 1, e4n

(1) � 2
(2) For f(ui) � f(vj) � 1, 1≤ i≤ 2n + 1, 1≤ j≤ 2n −

1; f(v2n+1) � 1, e4n(1) � 3

Example 7. Consider the graph P2 × P2n+1, where
v(1) − v(0) � 4n − 2.

(1) For f(ui) � f(vj) � 1, 1≤ i, j≤ 2n, e4n− 2(1) � 2
(2) For f(ui) � f(vj) � 1, 3≤ i≤ 2n + 1, 1≤ j≤ 2n + 1,

e4n− 2(1) � 3
(3) For f(ui) � f(vj) � 1, 3≤ i, j≤ 2n + 1; f(u1) � f

(v1) � 1, e4n− 2(1) � 4
(4) For f(ui) � f(vj) � 1, 4≤ i≤ 2n + 1, 1≤ j≤ 2n + 1;

f(u2) � 1, e4n− 2(1) � 5
(5) For f(ui) � f(vj) � 1, 4≤ i≤ 2n + 1, 3≤ j≤ 2n +

1; f(u1) � f(u2) � f(v1) � 1, e4n− 2(1) � 6

Next, we introduce some relevant defnitions.

Defnition 5. Let a be an integer, if e(1) � a under the vertex
labeling f of the graph G, we denote the labeled graph as

G(a). For convenience, we use f(u)

f(v)
  and

f(ui) f(ui+1)

f(vi) f(vi+1)
  to denote the labeled subgraphs K2 � uv

and C4 � uivivi+1ui+1ui, respectively. Defne uivivi+1ui+1ui as
a C4 square of P2 × Pn, where 1≤ i≤ n − 1.

Defnition 6. [K2 − embedding]. Given the labeled graph
G(a) of P2 × Pn, we can replace the two edges uiui+1 and
vivi+1 with paths uixui+1 and viyvi+1 of length 2 and joint x

and y. Tis process is called a K2-embedding, which results
in a new labeled graph G(b) � G(a)⊕K2.

Defnition 7. [C4 − embedding]. Given the labeled graph
G(a) of P2 × Pn, we can replace the two edges uiui+1 and
vivi+1 with paths uixyui+1 and vix

′y′vi+1 of length 3 and

jointing x, x′ and y, y′. Tis process is called a C4-embed-
ding, which results in a new labeled graph G(b) � G(a)⊕C4.

In the following discussion, all K2-embeddings or
C4-embeddings on P2 × Pn are embeddings for edges uiui+1
and vivi+1 of P2 × Pn, where i ∈ 1, . . . , n − 1{ }.

For the convenience of description, some substructures
are given below.

Let Ai denote a labeled C4-square, where

A1 �
1 1
1 1 , A2 �

1 1
1 0 , A3 �

1 1
0 0 , A4 �

1 0
0 1 , A5

�
0 1
0 1 . And let e′(1) represent the number of 1 edge

changes after the square is embedded. Write the diferent

labels of C4 as B1 �
0 1
1 1 , B2 �

1 0
1 1 , B3 �

1 1
0 1 ,

and B4 �
1 1
1 0 .

We make a Bj-embedding in Ai, denoted by Ai ⊕Bj,
where i ∈ 1, 2, 3, 4, 5{ }, j ∈ 1, 2, 3, 4{ }. e′(Ai ⊕Bj) represents
the number of 1 edge changes after embedding.

Tus, e′(Ai ⊕Bj) obtained after embedding is shown in
Table 1.

From the results of Table 1, the Lemmas 8 and 9 are
obtained.

Lemma 8. Given i ∈ 1, 2, 3, 4, 5{ }, there must exist some
value j ∈ 1, 2, 3, 4{ } such that e′(Ai ⊕Bj) � 3.

Lemma 9. Given i ∈ 2, 4, 5{ }, there must exist some value
j ∈ 1, 2, 3, 4{ } such that e′(Ai ⊕Bj) � 1.

Lemma 10. Let M be the maximum value in am(P2 × Pk),
then we have

M≤min 3k − 2, 3k −
3m

2
 . (4)

Proof. Let f be any vertex labeling of P2 × Pk such that
v(1) − v(0) � m. From v(1) − v(0) � m, v(1) + v(0) � 2k,
we obtain v(0) � k − m/2. Additionally, the maximum de-
gree of the vertex of P2 × Pk is 3 and e(P2 × Pk) � 3k − 2, so
M≤min 3k − 2, 3k − 3m/2{ }. □

Lemma 11. When i≥ 4 and (k≤m + 2)/2, we have
i ∉ am(P2 × Pk).

Proof. Let f be any vertex labeling of P2 × Pk such that
v(1) − v(0) � m. Ten, v(1) + v(0) � 2k and v(1)≥ 1,

v(0)≥ 1, which implies that v(0) � (2k − m)/2≥ 1. Ten,
(k≥m + 2)/2.Tus, we can know (k<m + 2)/2 does not hold.
When k � (m + 2)/2, v(0) � 1 is the only possibility, note that
a 0 vertex can lead to the number of 1 edge at most 3, and i≥ 4,
so i ∉ am(P2 × Pk). □

Given Lemma 11, we shall always assume in the fol-
lowing discussion that m< 4n − 2 in P2 × P2n, when i≥ 4 is
an integer.

u1 u2 u3 u4 u2n -3 u2n -2 u2n -1 u2n

v2n -3 v2n -2 v2n -1 v2nv1 v2 v3 v4

Figure 1: Te labeled graph P2 × P2n.
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Lemmas 12 and 14 are some of the early results of Shiu
and Kwong [13] on the cartesian product P2 × Pn.

Lemma 12 (see [13]). Let f be a labeling of a graph G that
contains a subgraph cycle C. If C contains at least a 1 edge,
then the number of 1 edges in C must be a positive even
number.

Corollary 13. For k> 1, there exists no labeling f of P2 × Pk

such that 0, 1, 3k − 3 ∈ am(P2 × Pk).

Proof. Let f be any vertex labeling of P2 × Pk such that
v(1) − v(0) � m. Since m< |V(G)|, 0 ∉ am(P2 × Pk). From
Lemma 12, it is easy to get 1, 3k − 3 ∉ am(P2 × Pk). Te
corollary follows immediately. □

Lemma 14 (see [13]). We have

a0 P2 × P2n(  � i: i ∈
[2, 6n − 2]

3, 6n − 3{ }
 ,

a0 P2 × P2n+1(  � i: i ∈
[3, 6n + 1]

6n{ }
 .

(5)

3. The Full m Index Sets of P2 × P2n

In this section, we give the full m index set of P2 × P2n by the
embedding method and recursive method.

Theorem 15. In P2 × P2n, m ≡ 0 (mod 4), m≥ 4, 3 ∈ am

(P2 × P2n) holds only when m � 4n − 4, and in all other cases,
3 ∉ am(P2 × P2n).

Proof. Suppose there exists a labeling of P2 × P2n with
3 ∈ am(P2 × P2n), when m ≡ 0 (mod 4) and m≥ 4. In
accordance with Lemma 12, the three 1 edges must occur in
two adjacent squares, say the ith and the (i + 1)th squares,
and at least one of the three 1 edges is vertical. All possi-
bilities can be divided into the following three cases:

Case 1. Tere is only one vertical 1 edge, which must be
uivi. If ui− 1ui and uiui+1 are the other 1 edges, then
f(ui) � 0 and all other vertices are labeled 1. At this
point, v(1) − v(0) � 4n − 2 contradicts m ≡ 0(mod 4).
If uiui+1 and vi− 1vi are the other 1 edges, then f(ux) � 1
for i + 1≤ x≤ 2n and f(vy) � 1 for i≤y≤ 2n. At this
point, v(1) − v(0) � 4n − 4i + 2 contradicts m ≡ 0

(mod 4). Neither of the subcases can exist. Te other
two cases are similar.
Case 2. Tere are two vertical 1 edges, both of which
belong to the u1v1v2u2 or u2n− 1v2n− 1v2nu2n square. Due
to symmetry, we may assume the vertical 1 edge is u1v1
and u2v2 and the other 1 edge is u2u3, and then u1 and
u2 are labeled 0 and all other vertices are labeled 1. At
this point, m � 4n − 4 holds. Te other two cases are
similar.
Case 3. All three vertical edges are 1 edges. Tis situ-
ation does not exist because m≥ 4.

Tis completes the proof. □

Theorem 16. In P2 × P2n, m ≡ 2 (mod 4), 2 ∈ am(P2 ×

P2n) holds only when m � 4n − 2, and in all other cases,
2 ∉ am(P2 × P2n).

Proof. Suppose there exists a labeling of P2 × P2n with
2 ∈ am(P2 × P2n), when m ≡ 2 (mod 4). In accordance to
Lemma 12, the two 1 edges must occur in a square of
P2 × P2n.

Case 1. Te two 1 edges are in a square uivivi+1ui+1. In
this case, there must be f′(uiui+1) � f′(vivi+1) � 1.
Ten, there must be f(ux) � f(vy) � 1, for
i + 1≤x, y≤ 2n. At this point, m � 4(n − i) contradicts
m ≡ 2 (mod 4).
Case 2. Both 1 edges are either in square u1v1v2u2 or
u2n− 1v2n− 1v2nu2n. We assume that the two 1 edge are in
square u1v1v2u2. Ten, there must be f′(u1u2)

� f′(u1v1) � 1 or f′(u1v1) � f′(v1v2) � 1. In either of
the two cases, we have m � (4n − 1) − 1 � 4n − 2. Te
other case is similar.

Tis completes the proof. □

Theorem 17. For n> 1, a2(P2 × P2n) � i: i ∈ [3, 6n − 4]{ }.

Proof. From Lemma 14, we know a0(P2 × P2(n− 1))

� i: i ∈ [2, 6n − 8]/ 3, 6n − 9{ }{ }. Under any friendly label of
P2 × P2(n− 1), there exists at least one square belonging type
A1, A2, A3, A4 or A5, in which Bj can be embedded, where
j ∈ 1, 2, 3, 4{ }. Tat is, three of the embedded vertices are
labeled 1 and one is labeled 0. Tus, we observe that v(1) −

v(0) � 2 in P2 × P2n after making a C4-embedding in
P2 × P2(n− 1). By Lemma 8, we have 5, 7, 8, . . . , 6n −{

8, 6n − 7, 6n − 5}⊆ a2(P2 × P2n).

Table 1: e′(Ai ⊕Bj) after embedding.

B1 B2 B3 B4

A1 3 3 3 3
A2 3 3 3 1
A3 5 5 3 3
A4 3 1 3 3
A5 1 3 1 3
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Under some friendly label of P2 × P2(n− 1), when the
number of 1 edge is 2 or 5, there exist at least one of the
squares A2, A4, and A5, where Bj can be embedded. 3, 6{ }

⊆ a2(P2 × P2n) is obtained from Lemma 9. It follows from
Corollary 13 that 0, 1, 6n − 3 ∉ a2(P2 × P2n). Since n> 1, we
fnd 2 ∉ a2(P2 × P2n) by Teorem 16. From Lemma 10, we
know the maximum value of a2(P2 × P2n) is 6n − 3. Com-
bined with (2), (3), and (4) in Example 1, we conclude that
a2(P2 × P2n) � i: i ∈ [3, 6n − 4]{ }. □

Theorem 18. For n> 2, a4(P2 × P2n) � i: i ∈ [2, 6n − 6]/{

3{ }}.

Proof. From Teorem 17, we know i: i ∈ [3, 6n − 10]{ }

⊆ a2(P2 × P2(n− 1)). Under any label that satisfes
v(1) − v(0) � 2 in P2 × P2(n− 1), there is at least one of the
squares in which A1, A2, A3, A4, A5, and Bj can be em-
bedded, where j ∈ 1, 2, 3, 4{ }. Tat is, 3 of the embedded 4
vertices are labeled with 1 and 1 with 0. Tus, v(1) − v(0) �

4 in P2 × P2n; by Lemma 8, we have 6, 7, 8, . . . , 6n −{

8, 6n − 7}⊆ a4(P2 × P2n).
Under a label that satisfes v(1) − v(0) � 2 in

P2 × P2(n− 1), when the number of 1 edge is 3 or 4, there must
be a square A2, A4, and A5, where Bj can be embedded.
4, 5{ }⊆ a4(P2 × P2n) is obtained from Lemma 9. Since n> 2,
we fnd 3 ∉ a4(P2 × P2n) by Teorem 15. Corollary 13 im-
plies that 0, 1 ∉ a4(P2 × P2n). According to Lemma 10, we
have M≤min 6n − 2, 6n − 6{ }. Combined with (1) and (2) in
Example 2, we conclude that a4(P2 × P2n) � i: i ∈ [2, 6{

n − 6]/ 3{ }}. □

Theorem 19. For n> 2, a6(P2 × P2n) � i: i ∈ [3, 6n − 9]{ }.

Proof. From Teorem 18, we know i: i ∈ [2, 6n − 12]/{

3{ }}⊆ a4(P2 × P2(n− 1)). Under any label that satisfes v(1) −

v(0) � 4 in P2 × P2(n− 1), there is at least one of the squares
A1, A2, A3, A4, A5, and Bj can be embedded, where
j ∈ 1, 2, 3, 4{ }. Tat is, 3 out of the embedded 4 vertices are
labeled with 1 and the other vertex is labeled with 0. By
Lemma 8, we have 5, 7, 8, . . . , 6n − 10, 6n − 9{ }⊆ a6(P2
× P2n).

Under a label that satisfes v(1) − v(0) � 4 in P2 × P2(n− 1),
when the number of 1 edge is 2 or 5, there must be a square in
A2, A4, and A5, embedded in Bj. 3, 6{ }⊆ a6(P2 × P2n) is
obtained from Lemma 9. Since n> 2, we fnd 2 ∉ a6(P2 × P2n)

by Teorem 16. Corollary 13 implies that 0, 1 ∉ a6(P2 × P2n).
According to Lemma 10, we have M≤min 6n − 2, 6n − 9{ }.
Combined with (7) in Example 3, we conclude that
a6(P2 × P2n) � i: i ∈ [3, 6n − 9]{ }. □

Theorem 20. For m ≡ 0 (mod 4), 4≤m≤ 4n − 8, we have

am P2 × P2n(  � i: i ∈
[2, 6n − 3m/2]

3{ }
 . (6)

For m ≡ 2 (mod 4), 6≤m≤ 4n − 6, we have

am P2 × P2n(  � i: i ∈ 3, 6n −
3m

2
  . (7)

Proof
Case 1. m ≡ 0 (mod 4), 4≤m≤ 4n − 8.

We will prove by induction. By Teorem 18, we have
i: i ∈ [2, 6n − 6]/ 3{ }{ }⊆ a4(P2 × P2n). Suppose i: i ∈{

[2, 6n − 3k/2]/ 3{ }}⊆ ak(P2 × P2n) for k ≡ 0( mod 4),
4≤ k≤ 4n − 8 in P2 × P2n, then i: i ∈ [2, 6n − 3{

k/2 − 6]/ 3{ }}⊆ ak(P2 × P2(n− 1)). Under any label that
satisfes v(1) − v(0) � k in P2 × P2(n− 1), there is at least
one of the squares A1, A2, A3, A4, A5, and Bj can be
embedded in this square, where j ∈ 1, 2, 3, 4{ }. Tat is, 3
out of the 4 vertices of the embedding are labeled 1 and
the other vertex is labeled 0. Tus, we observe that
v(1) − v(0) � k + 2 in P2 × P2n after the square is
embedded. By Lemma 8, we have 5, 7, 8, 9, 11, . . . , 6n −{

3k/2 − 4, 6n − 3k/2 − 3}⊆ ak+ 2(P2 × P2n). Under a la-
bel that satisfes v(1) − v(0) � k in P2 × P2(n− 1), when
the number of 1 edge is 2 or 5, there must be a square
A2, A4, A5, and Bj can be embedded. 3, 6{ }⊆ ak+2(P2 ×

P2n) is obtained from Lemma 9. For i + 1≤x≤ 2n, let
f(ux) � 1, and for i + 1≤y≤ 2n − 1, let f(vy) � 1.Tis
implies that v(1) − v(0) � 4(n − i − 1) + 2 ≡
2 (mod 4). Tus, we know that 4 ∈ ak+2(P2 × P2n)

holds. Since m< 4n − 2, we fnd 2 ∉ ak+2(P2 × P2n) by
Teorem 16. By Corollary 13, we have 0, 1 ∉
ak+2(P2 × P2n). By Lemma 10, we fnd the maximum
value of ak+2(P2 × P2n) is 6n − 3k/2 − 3. Terefore, we
have i: i ∈ [3, 6n − 3k/2 − 3]{ }⊆ ak+2(P2 × P2n).

In P2 × P2(n− 1), i: i ∈ [3, 6n − 3k/2 − 9]{ }⊆ ak+2(P2 ×

P2(n− 1)). Under any labeling in P2 × P2(n− 1) which sat-
isfes v(1) − v(0) � k + 2, there exists at least one of the
squares A1, A2, A3, A4, and A5 in which Bj can be
embedded, where j ∈ 1, 2, 3, 4{ }. Tat is, 3 out of the 4
vertices of the embedding are labeled 1 and the other
vertex is labeled 0. Tus, by Lemma 8,
6, 7, 8, 9, . . . , 6n − 3k/2 − 6{ }⊆ ak+4(P2 × Pn) holds
when v(1) − v(0) � k + 4 in P2 × P2n. Under any la-
beling in P2 × P2n satisfying v(1) − v(0) � k + 2 and
when the number of its 1 edges is 3 or 4, there must exist
a square similar as A2, A4, A5, and Bj can be embedded.
By Lemma 9, we have 4, 5{ }⊆ ak+4(P2 × P2n). In
P2 × P2n, for 1≤x≤ i, let f(ux) � 1, and for 1≤y≤ i, let
f(vy) � 1. Clearly, v(1) − v(0) � 4(n − i)

≡ 0 (mod 4). Tus, we know that 2 ∈ ak+4(P2 × P2n)

holds. Since m< 4n − 4, we fnd 3 ∉ ak+4(P2 × P2n) by
Teorem 15. By Corollary 13, we observe that
0, 1 ∉ ak+4(P2 × P2n). According to Lemma 10, the
maximum value of ak+4(P2 × P2n) is 6n − 3k/2 − 6.
Terefore, we have i: i ∈ [2, 6n − 3k/2 − 6]/{

3{ }}⊆ ak+4(P2 × P2n).
To conclude, when m ≡ 0 (mod 4), 4≤m≤ 4n − 8, we
have

am P2 × P2n(  � i: i ∈
[2, 6n − 3m/2]

3{ }
 . (8)

Case 2. m ≡ 2 (mod 4).
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Similarly, we can obtain am(P2 × P2n) � i: i ∈ [3, 6{ n −

3m/2]} at m ≡ 2(mod 4), 6≤m≤ 4n − 6.

Tis completes the proof. □

Theorem 21. For n> 1, a4n− 4(P2 × P2n) � 2, 3, 4, 5, 6{ }.

Proof. According to Lemma 10, we have M(P2 ×

P2n)≤ 6n − 3(4n − 4)/2 � 6. Corollary 13 implies that
0, 1 ∉ a4n− 4(P2 × P2n). Combined with Example 5, we know
a4n− 4(P2 × P2n) � 2, 3, 4, 5, 6{ }. □

Theorem 22. a4n− 2(P2 × P2n) � 2, 3{ }

Proof. According to Lemma 10, we have
M(P2 × P2n)≤ 6n − 3(4n − 2)/2 � 3. Corollary 13 implies
that 0, 1 ∉ a4n− 2(P2 × P2n). Combined with Example 4, we
know a4n− 2(P2 × P2n) � 2, 3{ }. □

Terefore, according to Lemma 14 and Teorems 15–17
and 20–22, we get the full m index set of P2 × P2n as follows:

(1) a0(P2 × P2n) � i: i ∈ [2, 6n − 2]/ 3, 6n − 3{ }{ }

(2) For n � 1, a2(P2 × P2) � 2{ }

(3) For n> 1, a2(P2 × P2n) � i: i ∈ [3, 6n − 4]{ }

(4) For m ≡ 0 (mod 4), 4≤m≤ 4n − 8, am(P2 × P2n) �

i: i ∈ [2, 6n − 3m/2]/ 3{ }{ }

(5) For m ≡ 2 (mod 4), 6≤m≤ 4n − 6, am(P2 × P2n) �

i: i ∈ [3, 6n − 3m/2]{ }

(6) For n> 1, a4n− 4(P2 × P2n) � 2, 3, 4, 5, 6{ }

(7) a4n− 2(P2 × P2n) � 2, 3{ } □

4. The Full m Index Sets of P2 × P2n+1

In a similar way, we embed the labeled graph K2 in P2 × P2n

to obtain the full m index set of P2 × P2n+1.

Lemma 23. For m ≡ 0 (mod 4), 0≤m≤ 4n − 4, we have
4 ∈ am(P2 × P2n+1).

Proof. Suppose that m � 4k. In P2 × P2n+1, let
f(ui) � f(vi) � 1 for 1≤ i≤ k + n, f(u2n+1) � 1, then
e(1) � 4. Terefore, we have 4 ∈ am(P2 × P2n+1). □

Lemma 24. For m ≡ 2 (mod 4), 2≤m≤ 4n − 6, we have
2 ∈ am(P2 × P2n+1).

Proof. Suppose that m � 4k + 2. In P2 × P2n+1, let f(ui) �

f(vi) � 1 for 1≤ i≤ k + n + 1, then e(1) � 2. Terefore, we
have 2 ∈ am(P2 × P2n+1). □

Lemma 25. For m ≡ 0 (mod 2), 4≤m≤ 4n − 4, we have
6n − 3m/2 + 2, 6n − 3m/2 + 3{ }⊆ am(P2 × P2n+1).

Proof. For m ≡ 0 (mod 4), 4≤m≤ 4n − 4, suppose that
m � 4k. In P2 × P2n+1, letf(ui) � 1 when i � 1, 3, 5, . . . , 2n −

2k + 1, 2n − 2k + 2, 2n − 2k + 3, . . . , 2n + 1; f(vj) � 1 when
j � 2, 4, 6, . . . , 2n − 2k, 2n − 2k + 2, 2n − 2k + 3, . . . , 2n + 1.
Ten, e(1) � 6n − 3m/2 + 2. Similarity, let f(ui) � 1 when

i � 1, 3, 5, . . . , 2n − 2k + 1, 2n − 2k + 3, 2n − 2k + 4, . . . , 2 n +

1; f(vj) � 1 when j � 1, 2, 4, 6, . . . , 2n − 2k, 2n − 2k +

2, 2n − 2k + 3, . . . , 2n + 1. Ten, e(1) � 6n − 3m/2 + 3.
Terefore, we have 6n − 3m/2 + 2, 6n − 3m/2 + 3{ }⊆ am(P2
× P2n+1).

For m ≡ 2 (mod 4), 6≤m≤ 4n − 6.
In P2 × P2n+1, let f(ui) � 1 when i � 1, 3, 5, . . . ,

2n − m/2, 2n − m/2 + 2, 2n − m/2 + 3, . . . , 2n + 1; f(vj) � 1
when j � 2, 4, 6, . . . , 2n − m/2 + 1, 2n − m/2 + 2, 2n − m/2+

3, . . . , 2n + 1. Ten, e(1) � 6n − 3m/2 + 2. Let f(ui) � 1
when i � 1, 3, 5, . . . , 2n − m/2, 2n − m/2 + 2, 2n − m/2 + 3,

. . . , 2n + 1; f(vj) � 1 when j � 1, 2, 4, 6, . . . , 2n − m/
2 + 1, 2n − m/2 + 3, 2n − m/2 + 4, . . . , 2n + 1. Ten, e(1) � 6
n − 3m/2 + 3. Tus, 6n − 3m/2 + 2, 6n − 3m/2 + 3{ }⊆ am(P2
× P2n+1). □

Lemma 26. Given i ∈ 2, 3, 4, 5{ }, there must exist K2 �
1
0 

such that e′(Ai ⊕K2) � 1.

Proof. Let A2 �
1 1
1 0 , A3 �

1 1
0 0 , A4 �

1 0
0 1 , A5 �

0 1
0 1 , we make a K2-embedding in Ai, where

i ∈ 2, 3, 4, 5{ }. Ten, e′(1) � 1. Terefore, we have
e′(Ai ⊕K2) � 1. □

In P2 × P2n+1, there exist a vertex labeling f such that
v(1) − v(0) � m. From v(1) + v(0) � 4n + 2, v(1)≥ 1, v(0)

≥ 1, we get m≤ 4n. Tus, we shall always assume that m≤ 4n

in the following discussion. □

Theorem 27. In P2 × P2n+1, m ≡ 0 (mod 4), m> 0, 2 ∈
am(P2 × P2n+1) holds only when m � 4n, and in all other
cases, 2 ∉ am(P2 × P2n+1).

Proof. Suppose there exists a labeling of P2 × P2n+1 with
2 ∈ am(P2 × P2n+1), when m ≡ 0 (mod 4). In accordance
to Lemma 12, the two 1 edges must occur in a square of
P2 × P2n+1.

Case 1. Both 1 edges are in a square uivivi+1ui+1. In this
case, there must be f′(uiui+1) � f′(vivi+1) � 1. Ten,
there must be f(ux) � f(vy) � 1, for i + 1≤x, y

≤ 2n + 1. At this point, m � 4(n − i) + 2 contradicts
m ≡ 0 (mod 4).
Case 2. Both 1 edges are either in square u1v1v2u2 or
u2nv2nv2n+1u2n+1. We assume that both 1 edges are in
square u1v1v2u2. Ten, there must be f′(u1
u2) � f′(u1v1) � 1 or f′(u1v1) � f′(v1v2) � 1. In ei-
ther of the two cases, we have m � (4n + 1) − 1 � 4n.
Te other case is similar.

Tis completes the proof. □

Theorem 28. In P2 × P2n+1, m ≡ 2 (mod 4), 3 ∈ am (P2 ×

P2n+1) holds only when m � 4n − 2, and in all other cases,
3 ∉ am(P2 × P2n+1).

Proof. Suppose there exists a labeling of P2 × P2n+1 with
3 ∈ am(P2 × P2n+1), when m ≡ 2 (mod 4). In accordance
with Lemma 12, the three 1 edges must occur in two adjacent
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squares, say the ith and the (i + 1)th squares, and at least one
of the three 1 edges is vertical. All possibilities can be divided
into the following three cases.

Case 1.Tere is only one vertical 1 edge, which must be
uivi. If ui− 1ui and uiui+1 are the other 1 edges, then
f(ui) � 0 and all other vertices are labeled 1. At this
point, v(1) − v(0) � (4n + 1) − 1 � 4n contradicts
m ≡ 2 (mod 4). If uiui+1 and vi− 1vi are the other 1
edges, then f(ux) � 1 for i + 1≤x≤ 2n + 1 and
f(vy) � 1 for i≤y≤ 2n + 1. At this point, v(1) − v(0) �

4n − 4i + 4 � 4(n − i + 1) contradicts m ≡ 2 (mod 4).
Neither of the subcases can exist. Te other two cases
are similar.
Case 2. Tere are two vertical 1 edges, both of which
belong to the u1v1v2u2 or u2nv2nv2n+1u2n+1 square. Due
to symmetry, we may assume the vertical 1 edge are
u1v1 and u2v2, and the other 1 edge is u2u3, and then u1
and u2 are labeled 0 and all other vertices labeled 1. At
this point, m � 4n − 2 holds. Te other two cases are
similar.
Case 3. All three vertical edges are 1 edge.Tis situation
does not exist because m≥ 2.

Tis completes the proof. □

Theorem 29. Te followings hold true:

(1) For n> 1, we have a2(P2 × P2n+1) � i: i ∈ [2, 6{

n − 1]/ 3{ }}

(2) For m ≡ 0 (mod 4), 4≤m≤ 4n − 4, am(P2 × P2n+1)

� i: i ∈ [3, 6n − 3m/2 + 3]{ }

(3) For m ≡ 2 (mod 4), 6≤m≤ 4n − 6, am(P2 × P2n+1)

� i: i ∈ [2, 6n − 3m/2 + 3]/ 3{ }{ }

(4) a4n− 2(P2 × P2n+1) � [2, 6]

(5) a4n(P2 × P2n+1) � [2, 3]

Proof
For (1), according to Teorem 17, we know
i: i ∈ [3, 6n − 4]{ }⊆ a2(P2 × P2n). Under any friendly
label of P2 × P2n, there exist at least one square be-
longing type A2, A3, A4, or A5, in which K2 can be
embedded. Tat is, one of the embedded vertices is
labeled 1 and other one is labeled 0. Tus, we note that
v(1) − v(0) � 2 does not change after K2 is embedded.
From Lemma 26, we know [4, 6n − 3]⊆ a2(P2 × P2n+1).
By Lemma 24, we fnd 2 ∈ a2(P2 × P2n+1). Suppose that
f(u1) � f(u3) � · · · � f(u2n− 1) � f(u2n) � f(u2n+1)

� 1, f(v2) � f(v4) � · · · � f(v2n) � 1, then we have
e2(1) � 6n − 2. Let f(u1) � f(u3) � · · · � f(u2n− 1)

� f(u2n+1) � 1, f(v2) � f(v4) � · · · � f(v2n) � f

(v2n+1) � 1, then we have e2(1) � 6n − 1. From Cor-
ollary 13, we fnd 0, 1, 6n ∉ am(P2 × P2n+1). Since
m< 4n − 2, we fnd 3 ∉ a2(P2 × P2n+1) by Teorem 28.
Using Lemma 10, we know M≤min 6n + 1, 6n{ }. Tus,
we conclude that a2(P2 × P2n+1) � i: i ∈ [2, 6n − 3]/{

3{ }}.

For (2), from Teorem 20, we have i: i ∈ [2, 6{

n − 3m/2]/ 3{ }}⊆ a2(P2 × P2n). Under any friendly label
of P2 × P2n, there exist at least one square belonging
type A2, A3, A4, or A5, in which K2 can be embedded.
Tat is, one of the embedded vertices is labeled 1 and
other one is labeled 0. Tus, by Lemma 26, we get
i: i ∈ [3, 6n − 3m/2 + 1]/ 4{ }{ }⊆ a2(P2 × P2n+1). It fol-
lows from Lemmas 23 and 25 that 4, 6n −{

3m/2 + 2, 6n − 3m/2 + 3}⊆ am(P2 × P2n+1). Since m< 4
n, we fnd 2 ∉ am(P2 × P2n+1) by Teorem 27. In ac-
cordance with Lemma 10, we fnd M≤min
6n + 1, 6n − 3m/2 + 3{ }. Tus, we conclude that

am(P2 × P2n+1) � i: i ∈ [3, 6n − 3m/2 + 3]{ }.
For (3), from Teorem 20, we have i: i ∈ [3, 6{

n − 3m/2]}⊆ a2(P2 × P2n). Under any friendly label of
P2 × P2n, there exists at least one square belonging type
A2, A3, A4, or A5, in which K2 can be embedded. Tat
is, one of the embedded vertices is labeled 1 and other
one is labeled 0. From Lemma 26, we get
i: i ∈ [4, 6n − 3m/2 + 1{ }⊆ a2(P2 × P2n+1). It follows
from Lemmas 23 and 25 that 2, 6n − 3m/2+{

2, 6n − 3m/2 + 3}⊆ am(P2 × P2n+1). Since m< 4n − 2,
we fnd 3 ∉ am(P2 × P2n+1) by Teorem 28. Tus,
combined with Lemma 10, we conclude that
i: i ∈ [2, 6n − 3m/2 + 3]/ 3{ }{ }⊆ am(P2 × P2n+1).
For (4), according to Lemma 10, we have
M(P2 × P2n+1)≤min 6n + 1, 6n − 3m/2 + 3{ }

≤ 6n − 3(4n − 2)/2 + 3 � 6. Corollary 13 implies that
0, 1 ∉ a4n− 2(P2 × P2n+1). Combined with Example 7, we
know a4n− 2(P2 × P2n+1) � [2, 6].
For (5), according to Lemma 10, we have
M(P2 × P2n+1)≤min 6n + 1, 6n − 3m/2 + 3{ }≤ 6n − 3
(4n)/2 + 3 � 3. Corollary 13 implies that 0, 1 ∉ a4n(P2
×P2n+1). Combined with Example 6, we know
a4n(P2 × P2n+1) � [2, 3]. □

Tis completes the proof.

5. Conclusions

In this paper, we obtained the full m index set of P2 × Pn by
embedding and recursion methods. We can also use this
method to consider the full m index set of other graphs.

Te characterization of full m index sets for various
graph families lays the mathematical groundwork for a wide
range of applications involving labeled graphs. Labeled
graphs have been applied across diverse felds including
coding theory, circuit layout, network design, and more. By
expanding theoretical knowledge on balanced labelings and
index sets of key graph classes like P2 × Pn, this work
provides fundamental insights that can inform labeled graph
models in any application domain. Tough the specifc
results focus on index sets, the techniques like embedding
and recursion have broad implications for constructing
balanced graph partitions. Overall, this research on graph
labelings and index sets furthers a mathematical foundation
that enables diverse real-world applications. Te methods
and labeled graph constructions can be extended to other
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graph families, complementing existing literature and
providing a springboard for future studies. By elucidating
balanced labelings of modular graph units, the work broadly
enhances our ability to design and analyze application-
oriented labeled graph models.
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