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In this paper, pointwise hemislant submanifolds were introduced in a Kahler manifold. Te integrability conditions for the
distributions which are involved in the defnition of a pointwise hemislant submanifold were investigated. In addition, the
necessary and sufcient conditions were given for a pointwise hemislant submanifold to be a pointwise hemislant product.

1. Introduction

Te concept of pointwise slant submanifolds appeared under
the name of quasi-slant submanifolds by Etayo [1] as
a generalization of slant submanifolds introduced by Chen
[2, 3]. Ten, in [4], Chen and Garay studied pointwise slant
submanifolds of almost Hermitian manifolds and proved
many interesting results. Later on, pointwise slant sub-
manifolds were investigated on Riemannian manifolds
equipped with various structures [5–9].

On the other hand, the notation of hemislant sub-
manifolds was frst defned by Carrizo et al. [10, 11], and they
named them pseudoslant submanifolds. After that, in [12],
Sahin studied hemislant submanifolds and their warped
products of Kahler manifolds. Al-Solamy et al. [13] defned
the totally umbilical hemislant submanifolds in Kahler
manifolds and derived several results. Recently, hemislant
submanifolds were studied by diferent authors in many
ambient spaces (see [14–17]). Furthermore, the notation of
a quasi-hemislant submanifold was studied by Prasad et al.
in [18].

In the present paper, the purpose is to study the ge-
ometry of pointwise hemislant submanifolds of a Kahler
manifold. Some basic formulas and defnitions are
recalled in Section 2, which are useful to the next section.
Section 3 defnes the pointwise hemislant submanifold of
a Kahler manifold and gives some basic results on such
submanifolds. Te integrability condition of the distri-
butions on the pointwise hemislant submanifold of

a Kahler manifold is constructed. Following the pro-
cedure, the necessary and sufcient conditions are given
for a pointwise hemislant submanifold to be a pointwise
hemislant product.

2. Preliminaries

Let M be an almost Hermitianmanifold with structure (J, g)

where J is a (1, 1) tensor feld and g is a Riemannian metric
on M satisfying the following properties:

J
2

� −I, (1)

g(JX, JY) � g(X, Y), (2)

for all vector felds X, Y on M. If, in addition to the above
relations,

∇XJ)Y � 0,( (3)

holds, then M is said to be Kahler manifold, where ∇ is the
Levi-Civita connection of g. Te covariant derivative of the
complex structure J is given by

∇XJ)Y � ∇XJY − J ∇XY.( (4)

Let M be an isometrical immersed submanifold of M

with the induced metric g. Let Γ(TM) and Γ(T⊥M) be the
diferential vector felds set tangent and normal to M, re-
spectively. Ten, Gauss and Weingarten formulas are, re-
spectively, given by
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∇XY � ∇XY + σ(X, Y), (5)

and
∇XU � ∇⊥XU − AUX, (6)

for all X, Y ∈ Γ(TM) and U ∈ Γ(T⊥M), where ∇ and ∇⊥ are
the induced connections on Γ(TM) and Γ(T⊥M), re-
spectively, σ is the second fundamental form of M, and AU is
the shape operator of the second fundamental form, which is
related by

g AUX, Y(  � g(σ(X, Y), U). (7)

For any orthonormal frame e1, . . . , en  of M, the mean
curvature vector H

→
(x) is given by

H
→

(x) �
1
n



n

i�1
σ ei, ei( , (8)

where n � dim(M). Te submanifold M is totally geodesic
in M if σ � 0 and minimal if H

→
� 0. If σ(X, Y) � g(X, Y)H

→

for all X, Y ∈ Γ(TM), then M is totally umbilical. For any
X ∈ Γ(TM) and U ∈ Γ(T⊥M),

JX � TX + FX, (9)

and

JU � tU + fU, (10)

where TX and tU are the tangential components and FX and
fU are the normal components of JX and JU, respectively. A
submanifold M of an almost Hermitian manifold M is said
to be holomorphic (resp. totally real) if J(TpM) � TpM

(resp. J(TpM)⊆T⊥pM ∀p ∈M [19]. Te covariant de-
rivatives of the tangential and normal components of JX and
JU are defned by

∇XT( Y � ∇XTY − T∇XY, (11)

∇XF( Y � ∇⊥XFY − F∇XY, (12)

∇Xt( U � ∇XtU − t∇⊥XU, (13)

∇Xf( U � ∇⊥XfU − f∇⊥XU. (14)

For any X, Y ∈ Γ(TM), we have g(X,TY) � −g(TX, Y).
Also, by using (2), (9), and (10), we have
g(U, fV) � −g(fU, V), for any U, V ∈ Γ(T⊥M). Tat is, T

and f are skew-symmetric tensor felds. Furthermore, the
relation between the tensor felds F and t is given by

g(FX, U) � −g(X, tU), (15)

for any X ∈ Γ(TM) and U ∈ Γ(T⊥M).

3. Pointwise Hemislant Submanifolds of
a Kahler Manifold

In this section, a brief introduction of pointwise hemislant
submanifolds of a Kahler manifold is given. We shall obtain
some results.

Chen defned slant and pointwise slant submanifolds as
follows.

For a nonzero vector X ∈ TpM, p ∈M, the angle θ(X)

between JX and TpM is called the Wirtinger angle of X. A
submanifoldM is said to be slant if theWirtinger angle θ(X) is
constant onM; i.e., it is independent of the choice ofX ∈ TpM

and p ∈M [2, 3]. In this case, θ is called the slant angle of M.
A submanifold M is said to be pointwise slant if the

Wirtinger angle θ(X) can be regarded as a function on M,
which is known as the slant function in [4]. A pointwise slant
submanifold with a slant function θ is simply called
a pointwise θ slant submanifold. Clearly, a pointwise slant
submanifoldM is a slant submanifold if its slant function θ is
a constant function on M.

Holomorphic and totally real submanifolds are slant
submanifolds with slant angles 0 and π/2, respectively. A
slant submanifold is called proper slant if it is neither
holomorphic nor totally real.

We recall the following basic result from [4] for
pointwise slant submanifolds of an almost Hermitian
manifold.

Theorem 1. Let M be a submanifold of an almost Hermitian
manifold. Ten, M is pointwise slant if and only if

T
2
X � − cos2 θ X, (16)

for some real-valued function θ defned on M.

Following relations are straightforward consequence of
equation (16):

g(TX,TY) � cos2 θ g(X, Y), (17)

g(FX, FY) � sin2 θ g(X, Y), (18)

for all X, Y ∈ Γ(TM). Clearly, we also have
tFX � − sin2 θX, fFX � −FTX. (19)

In [20], Uddin and Stankovic defned a pointwise
hemislant submanifold as follows.

Defnition 2. A submanifoldM of a Kahler manifold M is said
to be a pointwise hemislant submanifold if there exist two
orthogonal complementary distributionsDθ andD⊥ such that:

(i) Te tangent space TM admits the orthogonal direct
decomposition TM � Dθ ⊕D⊥

(ii) Te distribution Dθ is pointwise slant with a slant
function θ

(iii) Te distribution D⊥ is a totally real, i.e.,
JD⊥ ⊆T⊥M

If the dimensions of the distributions Dθ and D⊥ are
denoted by m1 and m2, respectively, then the following cases
are obtained:

(i) If m1 � 0, then M is totally real submanifold
(ii) If m2 � 0, then M is a pointwise slant submanifold
(iii) If m2 � 0 and θ � 0, then M is a holomorphic

submanifold
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(iv) If θ is constant on M, then M is a hemislant sub-
manifold with a slant angle θ

(v) If m1 ≠ 0 and θ is not constant, then M is a proper
pointwise hemislant submanifold

We mention the following example of pointwise hem-
islant submanifolds in the Euclidean space.

Example 1. Let R6 be the Euclidean 6-space with the car-
tesian coordinates (x1, y1, x2, y2, x3, y3), and the almost
comlex structure J is defned by

J
z

zxi

  � −
z

zyi

, J
z

zyj

  �
z

zxj

, 1≤ i, j≤ 3, (20)

and the standard Euclidean metric g is on R6. Consider
a submanifold M ofR6 given by the immersion ψ as follows:

ψ(u, v, θ) � −u cos θ, u sin θ,
u
2

2
, 0, v, v , (21)

for nonvanishing real valued functions u, v on M. Ten, the
tangent bundle of M is spanned by the following tangent
vectors:

Z1 � −cos θ
z

zx1
+ sin θ

z

zy1
+ u

z

zx2
,

Z2 �
z

zx3
+

z

zy3
,

Z3 � u sin θ
z

zx1
+ u cos θ

z

zy1
.

(22)

Ten,

JZ1 � cos θ
z

zy1
+ sin θ

z

zx1
− u

z

zy2
,

JZ2 � −
z

zy3
+

z

zx3
,

JZ3 � −u sin θ
z

zy1
+ u cos θ

z

zx1
.

(23)

Clearly, JZ2 is an orthogonal to TM; hence, D⊥ � Span Z2 

is a totally real distribution, and Dθ � Span Z1, Z3  is
a proper pointwise slant distribution with a slant function
α � cos− 1 1/

�����
1 + u2

√
. Tus, M is proper pointwise hemislant

submanifold of R6.

Lemma 3. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten, J(D⊥)⊥F(Dθ).

Proof. For any X ∈ Γ(Dθ) and Z ∈ Γ(D⊥), by (9), we have

g(JX, JZ) � g(TX + FX, JZ) � g(FX, JZ). (24)

But, from (2), we have

g(JX, JZ) � g(X, Z) � 0. (25)

Tus,

g(FX, JZ) � 0, (26)

which means that J(D⊥)⊥F(Dθ).
From the above lemma, the normal bundle T⊥M can be

decomposed as

T
⊥

M � J D
⊥

( ⊕F D
θ

 ⊕ μ, (27)

where μ is the invariant distribution of T⊥M under J. □

Lemma 4. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten, we have

T D
⊥

(  � 0{ } andT D
θ

  � D
θ
. (28)

Proof. Te proof is direct, and it can be obtained by using
(1), (2), (9), and (16). □

Lemma 5. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten, we have

∇XT( Y � AFYX + tσ(X, Y), (29)

and

∇XF( Y � fσ(X, Y) − σ(X,TY), (30)

for all X, Y ∈ Γ(TM).

Proof. In a Kahler manifold, we have that
∇XJ)Y � 0,( (31)

which gives that
∇XJY − J ∇XY � 0. (32)

From (5) and (9), we obtain
∇XTY + ∇XFY − J∇XY − Jσ(X, Y) � 0. (33)

Again, by (5), (6), (9), and (10), we can write

∇XTY + σ(X,TY) − AFYX + ∇⊥XFY − T∇XY − F∇XY

− tσ(X, Y) − fσ(X, Y) � 0.

(34)

Comparing the tangential and normal parts with using
(11) and (12), we get the required results. Hence, the lemma
is proved completely. □

By a similar argument, we have the following Lemma.

Lemma 6. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten, we have

∇Xt( U � AfUX − TAUX, (35)

and

∇Xf( U � − σ(tU, X) + FAUX( , (36)

Journal of Mathematics 3



for all X ∈ Γ(TM) and U ∈ Γ(T⊥M).

Lemma 7. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten,

AJZW � AJWZ, (37)

for all Z, W ∈ Γ(D⊥).

Proof. For any X ∈ Γ(TM) and Z, W ∈ Γ(D⊥), using (3),
(5), (6), and (7), we have

g AJZW − AJWZ, X  � g(σ(W, X), JZ) − g(σ(Z, X), JW)

� g ∇XW, JZ(  − g ∇XZ, JW( 

� −g J∇XW, Z(  + g J∇XZ, W( 

� −g ∇XJW, Z(  + g ∇XJZ, W( 

� g AJWX, Z  − g AJZX, W 

� g AJWZ − AJZW, X .

(38)

Terefore,

AJZW � AJWZ. (39)
□

It follows from (28) that

AFZW � AFWZ, (40)

for any Z, W ∈ Γ(D⊥).

Theorem 8. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten, the covariant derivation of the
endomorphism T is skew-symmetric, i.e.,

g ∇XT( Y, Z(  � −g ∇XT( Z, Y( , (41)

for any X, Y, Z ∈ Γ(TM).

Proof. For any X, Y, Z ∈ Γ(TM), using (7), (15), and (21),
we get

g ∇XT( Y, Z(  � g AFYX, Z(  + g(tσ(X, Y), Z)

� g(σ(X, Z), FY) − g(σ(X, Y), FZ)

� −g(tσ(X, Z), Y) − g AFZX, Y( 

� −g AFZX + tσ(X, Z), Y( 

� −g ∇XT( Z, Y( .

(42)

Tis proves our assertion. □

Theorem 9. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten, we have

g ∇Xt( U, Y(  � −g ∇XF( Y, U( , (43)

for any X, Y ∈ Γ(TM) and U ∈ Γ(T⊥M).

Proof. For any X, Y ∈ Γ(TM) and U ∈ Γ(T⊥M), using (7),
(22), and (23), we obtain

g ∇Xt( U, Y(  � g AfUX, Y(  − g TAUX, Y( 

� g(σ(X, Y), fU) + g AUX,TY( 

� −g(fσ(X, Y), U) + g(σ(X,TY), U)

� −g ∇XF( Y, U( ,

(44)

which verifes our assertion. □

Theorem 10. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten, the tensor T is parallel if and only
if

AFYX � AFXY, (45)

for any X, Y ∈ Γ(TM).

Proof. For any X, Y ∈ Γ(TM), using (7), (15), and (21), we
have

g ∇XT( Y, Z(  � g AFYX, Z(  + g(tσ(X, Y), Z)

� g(σ(X, Z), FY) − g(σ(X, Y), FZ)

� g AFYZ, X(  − g AFZY, X( .

(46)

Hence, the result is obtained. □

Theorem 11. Let M be a pointwise hemislant submanifold in
a Kahler manifold M. Ten, the tensor F is parallel if and only
if

AUTY � −AfUY, (47)

for any Y ∈ Γ(TM) and U ∈ Γ(T⊥M).

Proof. For any X, Y ∈ Γ(TM) and U ∈ Γ(T⊥M), using (7)
and (22), we have

g ∇XF( Y, U(  � g(fσ(X, Y), U) − g(σ(X,TY), U)

� −g(σ(X, Y), fU) − g AUTY, X( 

� −g AfUY, X  − g AUTY, X( .

(48)

Te proof is completed. □

Theorem 12. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten, the covariant derivation of the
endomorphism f is skew-symmetric, that is,

g ∇Xf( U, V(  � −g ∇Xf( V, U( , (49)

for any X ∈ Γ(TM) and U, V ∈ Γ(T⊥M).

Proof. For any X ∈ Γ(TM) and U, V ∈ Γ(T⊥M), using (7),
(15), and (24), we get
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g ∇Xf( U, V(  � −g(σ(tU, X), V) − g FAUX, V( 

� −g AVX, tU(  + g AUX, tV( 

� g FAVX, U(  + g(σ(X, tV), U)

� −g −FAVX − σ(X, tV), U( 

� −g ∇Xf( V, U( ,

(50)

which is the required result. □

Theorem 13. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten, the tensor f is parallel if and only
if

AUtV � AVtU, (51)

for all U, V ∈ Γ(T⊥M).

Proof. Let X ∈ Γ(TM) and U, V ∈ Γ(T⊥M), using (7), (15),
and (24), we get

g ∇Xf( U, V(  � −g(σ(tU, X), V) − g FAUX, V( 

� −g AVtU, X(  + g AUX, tV( 

� g AUtV − AVtU, X( .

(52)

Tis proves our assertion. □

Theorem 14. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten,

∇⊥ZFW − ∇⊥WFZ ∈ F D
⊥

( , (53)

for any Z, W ∈ Γ(D⊥).

Proof. For any Z, W ∈ Γ(D⊥) and V ∈ μ, using (3), (5), (6),
(9), and (20), we have

g ∇⊥ZFW − ∇⊥WFZ, V(  � g ∇ZJW + AJWZ − ∇WJZ − AJZW, V 

� g J∇ZW, V(  − g J∇WZ, V( 

� g ∇WZ, JV(  − g ∇ZW, JV( 

� g ∇WZ, JV(  + g(σ(W, Z), JV)

− g ∇ZW, JV(  − g(σ(Z, W), JV) � 0.

(54)

Tus, the result is concluded. □

Theorem 15. Let M be a proper pointwise hemislant sub-
manifold of a Kahler manifold M. If the tensor f is parallel,
then, M is a totally geodesic submanifold of M.

Proof. Suppose that f is parallel, then making use of (9) and
(24), we have

σ(tU, X) + JAUX � 0, (55)

for all X ∈ Γ(TM) and U ∈ Γ(T⊥M). Applying J to the
above relation with using (1) and (10), we fnd

tσ(tU, X) + fσ(tU, X) − AUX � 0. (56)

Taking the inner product with Y ∈ Γ(TM) and then
using (7), (15), (19), and (92), we obtain

g AUX, Y(  � g(tσ(tU, X), Y) � −g(σ(tU, X), FY)

� −g AFYtU, X(  � −g AUtFY, X( 

� sin2 θ g AUY, X(  � sin2 θ g AUX, Y( ,

(57)

which implies that

cos2 θ g(σ(X, Y), U) � 0. (58)

As M is a proper pointwise hemislant submanifold, we
obtain σ(X, Y) � 0, which means that M is a totally geodesic
submanifold of M. □

Defnition 16. A pointwise hemislant submanifold M of
a Kahler manifold M is said to be Dθ-geodesic (resp.
D⊥-geodesic) if σ(X, Y) � 0, for any X, Y ∈ Γ(Dθ) (resp.
σ(Z, W) � 0, for any Z, W ∈ Γ(D⊥)), and M is called
a mixed geodesic submanifold if σ(X, Z) � 0, for any
X ∈ Γ(Dθ) and Z ∈ Γ(D⊥).

Theorem 17. Let M be a proper pointwise hemislant sub-
manifold of a Kahler manifold M. If the tensor t is parallel,
then, M is a mixed geodesic submanifold of M.

Proof. If t is parallel, then from Teorem 9 and (28) with
(22), we obtain

fσ(X, Z) � 0, (59)

for any X ∈ Γ(Dθ) and Z ∈ Γ(D⊥). Also, we can write

fσ(Z, X) − σ(Z, TX) � 0. (60)

Putting X � TX with using (16), we fnd

fσ(Z,TX) + cos2 θ σ(Z, X) � cos2 θ σ(X, Z) � 0. (61)

Since M is a proper pointwise hemislant submanifold,
we conclude σ(X, Z) � 0. Tat is, M is a mixed geodesic
submanifold of M. □

Theorem 18. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. If the tensor t is parallel, then M is
either D⊥-geodesic or a totally real submanifold of M.
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Proof. Suppose that t is parallel, then if we put U � FZ in
(23), we obtain

TAFZW � 0, (62)

for any Z, W ∈ Γ(D⊥). Tis tells us that M is either totally
real or AFZW � 0. Again by (35), we derive

g AfUW, Z(  − g TAUW, Z(  � g(σ(W, Z),

fU) + g AUW,TZ(  � 0,
(63)

which implies that

g(σ(W, Z), fU) � 0, (64)

for any U ∈ Γ(T⊥M). Tat is, M is a D⊥-geodesic or a totally
real submanifold of M. □

Theorem 19. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten, the totally real distribution D⊥ is
always integrable, and its maximal integral submanifold is
totally real submanifold of M.

Proof. For any X ∈ Γ(Dθ) and Z, W ∈ Γ(D⊥), by (2), (3),
(5), (6), and (9), we have

g([Z, W], X) � g ∇ZW − ∇WZ, X(  � g ∇WX, Z(  − g ∇ZX, W( 

� g J∇WX, JZ(  − g J∇ZX, JW( 

� g ∇WJX, JZ(  − g ∇ZJX, JW( 

� g ∇WTX + ∇WFX, FZ( 

− g ∇ZTX + ∇ZFX, FW( 

� g(σ(W,TX), FZ) + g ∇⊥WFX, FZ( 

− g(σ(Z,TX), FW) − g ∇⊥ZFX, FW( .

(65)

Now, from (7), (12), (19), (28), (30), and (40), we derive

g([Z, W], X) � g AFZW − AFWZ,TX(  + g ∇⊥WFX, FZ( 

− g ∇⊥ZFX, FW( 

� g ∇WF( X + F∇WX, FZ( 

− g ∇ZF( X + F∇ZX, FW( 

� g(fσ(W, X) − σ(W,TX), FZ)

− g(fσ(Z, X) − σ(Z,TX), FW)

+ g F∇WX, FZ(  − g F∇ZX, FW( 

� −g(σ(W,TX), FZ) + g(σ(Z,TX), FW)

+ g F∇WX, FZ(  − g F∇ZX, FW( .

(66)

Tus, by (7), (18), and (20), we can write

g([Z, W], X) � g −AFZW + AFWZ,TX(  + sin2 θ g ∇WX, Z(  − sin2 θ g ∇ZX, W( 

� sin2 θ g ∇ZW, X(  − sin2 θ g ∇WZ, X( 

� sin2 θ g([Z, W], X),

(67)

which implies that
cos2 θ g([Z, W], X) � 0. (68)
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Terefore, [Z, W] ∈ Γ(D⊥) for any Z, W ∈ Γ(D⊥),
which means that the totally real distribution D⊥ is always
integrable, and its maximal integral submanifold is a totally
real submanifold of M. Hence, the proof is completed. □

Corollary 20. Let M be a pointwise hemislant submanifold
of a Kahler manifold M. Ten, we have

∇ZT( W � ∇WT( Z, (69)

for any Z, W ∈ Γ(D⊥).

Proof. Since the ambient manifold M is Kahler, for any
Z, W ∈ Γ(D⊥), we have

∇ ZJ)W � 0,( (70)

which can be written as
∇ ZJW − J ∇ ZW � 0. (71)

Now, using (5) and (9), we fnd
∇ ZFW − J∇ZW − Jσ(Z, W) � 0. (72)

Hence, by (6), (9), and (10), we deduce

∇⊥ZFW − AFWZ − T∇ZW − F∇ZW − tσ(Z, W) − fσ(Z, W) � 0.

(73)

If we take the tangential components of the above
equation, we obtain

AFWZ + T∇ZW + tσ(Z, W) � 0. (74)

Similarly, we get

AFZW + T∇ZW + tσ(Z, W) � 0. (75)

Tus, by (26), (35), and (36), we derive

∇ZT( W � ∇WT( Z. (76)
□

Theorem 21. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten, the slant distribution Dθ is
integrable if and only if

σ(X,TY) − σ(Y,TX) + ∇⊥XFY − ∇⊥YFX ∈ F D
θ

 ⊕ μ,

(77)

for any X, Y ∈ Γ(Dθ).

Proof. Let X, Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥), by using (2) and
(3), we have

g([X, Y], Z) � g ∇XY − ∇YX, Z( 

� g J∇XY − J∇YX, JZ( 

� g ∇XJY − ∇YJX, FZ( .

(78)

Ten, by (5), (6), and (9), we obtain

g([X, Y], Z) � g ∇XTY + ∇XFY − ∇YTX − ∇YFX, FZ( 

� g σ(X, TY) + ∇⊥XFY − σ(Y,TX) − ∇⊥YFX, FZ( .

(79)

Since FZ ∈ J(D⊥)⊆T⊥M, we deduce the result. □

Theorem 22. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten, the pointwise slant distribution
Dθ is integrable if and only if

TAFZX + AFZTX � 0, (80)

for any X ∈ Γ(Dθ) and Z ∈ Γ(D⊥).

Proof. For any X, Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥), by using (2),
(3), and (9), we have

g([X, Y], Z) � g ∇XY − ∇YX, Z(  � g J∇XY, JZ(  − g J∇YX, JZ( 

� g ∇XJY, FZ(  − g ∇YJX, FZ(  � g ∇YFZ, JX(  − g ∇XFZ, JY( 

� g ∇YFZ,TX(  + g ∇YFZ, FX(  − g ∇XFZ,TY(  − g ∇XFZ, FY( .

(81)

Tus, by (6), (12), and (22), we fnd
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g([X, Y], Z) � g AFZX,TY(  − g AFZY,TX(  + g ∇⊥YFZ, FX(  − g ∇⊥XFZ, FY( 

� g AFZTY, X(  + g TAFZY, X(  + g ∇YF( Z + F∇YZ, FX( 

− g ∇XF( Z + F∇XZ, FY( 

� g AFZTY, X(  + g TAFZY, X(  + g(fσ(Y, Z), FX) + g F∇YZ, FX( 

− g(fσ(X, Z), FY) − g F∇XZ, FY( 

� g AFZTY + TAFZY, X(  + sin2 θ g ∇YZ, X(  − g ∇XZ, Y(  

� g AFZTY + TAFZY, X(  + sin2 θ g ∇XY − ∇YX, Z(  

� g AFZTY + TAFZY, X(  + sin2 θ g([X, Y], Z).

(82)

Hence,

cos2 θ g([X, Y], Z) � g AFZTY + TAFZY, X( , (83)

which is the required result. □

Theorem 23. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten, the slant distribution Dθ is
minimal if and only if the normal bundle is parallel and

g AFZX + sec2 θAFZX + sec2 θ tan θX(θ)AFZX,TX  � 0,

(84)

for any X ∈ Γ(Dθ) and Z ∈ Γ(D⊥).

Proof. For any X ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have

g ∇XX + ∇sec θTXsec θTX, Z(  � g ∇XX, Z( 

+ g ∇sec θTXsec θTX, Z( .

(85)

Using (2), (6), and (20), we derive

g ∇XX + ∇sec θTXsec θTX, Z(  � g ∇XJX, JZ(  + sec2 θ g ∇XJX, JZ( 

+ sec2 θ tan θX(θ)g ∇XJX, JZ( 

� g ∇XTX, FZ(  + g ∇XFX, FZ( 

+ sec2 θ g ∇XTX, FZ(  + sec2 θ g ∇XFX, FZ( 

+ sec2 θ tan θX(θ)g ∇XTX, FZ( 

+ sec2 θ tan θX(θ)g ∇XFX, FZ( 

� −g ∇XFZ,TX(  + g ∇XFX, FZ( 

− sec2 θ g ∇XFZ,TX(  + sec2 θ g ∇XFX, FZ( 

− sec2 θ tan θX(θ)g ∇XFZ,TX( 

+ sec2 θ tan θX(θ)g ∇XFX, FZ( 

� g AFZX,TX(  + g ∇⊥XFX, FZ( 

+ sec2 θ g AFZX,TX(  + sec2 θ g ∇⊥XFX, FZ( 

+ sec2 θ tan θX(θ)g AFZX,TX( 

+ sec2 θ tan θX(θ)g ∇⊥XFX, FZ( .

(86)

Hence, we conclude that Dθ is minimal if and only if the
normal bundle is parallel and

g AFZX + sec2 θAFZX + sec2 θ tan θX(θ)AFZX,TX  � 0.

(87)
□

Defnition 24. A pointwise hemislant submanifold M of
a Kahler manifold M is said to be pointwise hemislant product
if the distributions Dθ and D⊥ are totally geodesic in M.

Theorem 25. Let M be a pointwise hemislant submanifold of
a Kahler manifold M. Ten, M is a pointwise hemislant

8 Journal of Mathematics



product if and only if the second fundamental form of M

satisfes the following condition:

tσ(X, N) � 0, (88)

for any X ∈ Γ(Dθ) and N ∈ Γ(TM).

Proof. For all X, Y ∈ Γ(Dθ) and Z, W ∈ Γ(D⊥), we have

g ∇XY, Z(  � −g ∇XZ, Y(  � −g ∇XZ, Y) � −g ∇XJZ, JY).((

(89)

Now, by (6), (9), (12), and (28), we have

g ∇XY, Z(  � −g ∇XFZ,TY(  − g ∇XFZ, FY( 

� g AFZX,TY(  − g ∇⊥XFZ, FY( 

� g AFZX,TY(  − g ∇XF( Z, FY(  − g F∇XZ, FY( .

(90)

Tus, using (7), (18), and (22), we fnd

g ∇XY, Z(  � g(σ(X,TY), FZ) − g(fσ(X, Z), FY) − sin2 θ g ∇XZ, Y( 

� g(σ(X,TY), FZ) + sin2 θ g ∇XY, Z( ,
(91)

which gives that

cos2 θ g ∇XY, Z(  � g(σ(X,TY), FZ) � −g(tσ(X,TY), Z).

(92)

By similar argument, we obtain

g ∇WZ, X(  � −g ∇WZ, X(  � −g ∇WX, Z(  � −g ∇WJX, JZ( 

� −g ∇WTX, FZ(  − g ∇WFX, FZ( 

� −g ∇WTX + σ(W,TX), FZ(  − g ∇⊥WFX − AFXW, FZ( 

� −g(σ(W,TX), FZ) − g ∇⊥WFX, FZ( 

� −g(σ(W,TX), FZ) − g ∇WF( X, FZ(  − g F∇WX, FZ( 

� −g(σ(W,TX), FZ) + g(σ(W,TX), FZ)

− g(fσ(W, X), FZ) − sin2 θ g ∇WX, FZ( 

� −g(fσ(W, X), FZ) + sin2 θ g ∇WZ, X( .

(93)

Hence,

cos2 θ g ∇WZ, X(  � −g(fσ(W, X), FZ) � g(tσ(W, X), Z).

(94)

So, from (92) and (94), we conclude that Dθ and D⊥ are
totally geodesic if and only if (74) is satisfed. □
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