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Diferential evolution has made great achievements in various felds such as computational sciences, engineering optimization,
and operations management in the past decades. It is well known that the control parameter setting plays a very important role in
terms of the performance improvement of diferential evolution. In this paper, a diferential evolution without the scale factor and
the crossover probability is presented, which eliminates almost all control parameters except for the population size.Te proposed
algorithm looks upon each individual as a charged particle to decide on the shift of the individual in the direction of the diference
based on the attraction-repulsion mechanism in Coulomb’s Law. Moreover, Taguchi’s parameter design method with the two-
level orthogonal array is merged into the crossover operation in order to obtain better individuals in the next generation by means
of better combination of factor levels. What is more, a new ratio of the signal-to-noise is proposed for the purpose of fair
comparison of the numerical experiment for the tested functions which have an optimal value with 0. Numerical experiments
show that the proposed algorithm outperforms the other 5 compared algorithms for the 10 benchmark functions.

1. Introduction

With its efciency and efectiveness, diferential evolution
(for short, DE) proposed by Storn and Price has been
successfully applied in many diferent engineering felds
[1, 2]. In order to keep improving the performance of DE,
various eforts have been devoted over the past decades.

Te researchers proposed three discrete DEs for the
scheduling problems in the permutation fow shop envi-
ronment [3]. Tese approaches focus on converting vectors
of the continuous domain into permutation vectors of the
discrete domain and self-adjusting the control parameters of
these algorithms based on JADE [4] and SADE [5]. Te
results show that these proposed approaches are promising
for scheduling problems.

For the parameter identifcation of solar cells, the
original FSDE in reference [6] was improved, which is the
hybridization between free search and DE with opposition-
based learning by using a simple greedy strategy instead of
a Gaussian noise update in the process of the potential
solution generation for the proposed best solution update

strategy [7]. Reference [8] also employed a DE with
opposition-based learning for estimating optimum hourly
energy generation scheduling of a hydro-thermal system.

Te authors emphasized the population initialization on
increasing the accuracy and convergence speed of DE and
designed a new DE variant with a modifed initialization
scheme by combining the strengths of both chaotic maps
and oppositional-based learning strategy in order to gen-
erate the initial population with a good quality of mean
ftness and diversity of the solutions. Extensive simulation
studies on benchmark functions show that the proposed
algorithm outperforms its peers [9].

A cultural DE algorithm using a measure of population
diversity was proposed as an alternative method for solving
the economic load dispatch problems of thermal generators
[10]. Based on the cultural algorithm technique using
normative and situational knowledge sources, the proposed
algorithm is able to balance well the trade-of between the
exploration and the exploitation of the search space.

Te scale factor F and the crossover probability Cr are
two vital parameters in DE, which usually greatly improve
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the performance. Various strategies for parameter setting
have been researched.

Te values of F � 0.5 and Cr � 0.9 were suggested by
Storn and Price [1]. Te F was set to the normal distribution
rand number with expectation 0 and standard deviation 1 for
multiobjective optimization in reference [11].

Qin and Suganthan considered F and Cr as the random
numbers following normal distribution F ∼ N(0.5, 0.3) and
Cr ∼ N(Crm, 0.1) according to the learning experience,
where the parameter Crm is set at 0.5 and updated once
every 25 generations [5].

Kim et al. proposed that the scale factor F is calculated by
the formula F � a + b · rand(0, 1), where a + b< 1 and
a, b> 0 [12].

Ali and to
..
rn empirically obtained an optimal value

Cr � 0.5 and calculated automatically the scale factor F using
the maximum and the minimum for focusing on the ex-
ploration at early generation and the exploitation at latter
generation [13].

Te parameters F and Cr were given, respectively, fol-
lowing α-stable distribution Sα(0, 0.1,mean(SF)) and
Sα(0, 0.1,mean(SCr)) , where SF and SCr denote the suc-
cessfully evolved individuals’ F and Cr based on some
feedbacks from the optimization process [14].

Te scale factor F was set using the Tsallis distribution in
economic view for the optimization model in shell-and-tube
heat exchangers [15]. F is fst initialized with uniform
random values between 0.8 and 1.1, and then is determined
by F � Fmu + F2

σ · PF at each generation, where PF obeys a q-
Gaussian distribution or Tsallis distribution with the means
Fmu and the variance F2

σ , the parameter q is linked to the type
of distribution that assumes values from 1 to 3.

A self-adaptive scaling factor F � S ·

������������

rand(0, 1)2 · d



− b

was utilized in reference [16] for maximizing the proft of the
distribution company with the several constraints based on
the basic idea of the penalty function approach for solving
optimal planning of energy storage systems in order to
improve the rate of convergence of DE, where S, d, and b are
an acceleration factor, a linear decreasing factor, and a de-
celeration factor, respectively.

Based on the diferent setups created by a simple orthogonal
experimental design method, the paper [17] revealed that
DE/best/1/bin withF � 0.5 andCr � 0.2 + 0.6∗ rand(0, 1) is
promising to optimize the vector Jiles–Atherton vector hys-
teresis model from a workbench containing a rotational single
sheet tester. Similarly, the self-adapting parameter strategy was
used in reference [18].

Some researchers designed the novel selection operator
or employed the classical derivative-free methods in DE or
analyzed the search behavior in theory for improving the
performance of DE [19–22].

Tese versions of DE do improve the algorithm per-
formance. However, each of them only is superior to the
other in some special aspects. Te best setting for the control
parameters can be diferent for diferent problems. Even
though the self-adapting parameter strategies seem to be able
to overcome the problem of parameter setting, some new
control parameters are used. Several references reported that

choosing the proper control parameters for DE is more
difcult than expected. How to set reasonably these pa-
rameters is a nuisance [2, 23, 24].

A diferential evolution without the scale factor and the
crossover probability is presented in the paper. Te algo-
rithm calculates dynamically the scale factor F using the
attraction-repulsion mechanism in Coulomb’s Law and
executes the crossover operation using Taguchi’s parameter
design method based on the orthogonal array. Te proposed
algorithm avoids the parameter settings. Numerical exper-
iments show that the performance of the proposed algorithm
is superior to that of the other compared algorithms.

Te paper is the extended version which has been further
researched based on “almost-parameter-free diferential
evolution” proposed by Zhang and Liu [24]. Tere are four
diferent points between them. Firstly, this paper describes in
detail the idea and particulars of the proposed algorithm.
Secondly, we regard the scale factor F in the mutant
equations (13) and (14) in Section 4 as the two diferent
charges for the purpose of a better interpretation of the
algorithms’ idea and a better numerical experiment results.
Tirdly, the vital shortcoming of the original defnition of
the ratio of the signal to noise (SNR) is analyzed in Section 4
and reveals the fact that it has thought of the optimal value of
the tested problem before being solved as 0, then presents
a modifed defnition of SNR for the sake of fairness. Finally,
a brief convergence analysis is given under two assumptions.

Te main contributions of this paper, which distinguish
from the related literatures, are summarized as follows:

(i) Use the electromagnetism-like mechanism to decide
on the step length in the direction of the diference
for the mutation operation;

(ii) Employ Taguchi’s parameter design with a two-level
orthogonal array based on a new ratio of the signal
to noise that is proposed for the crossover
operation;

(iii) Eliminate almost all the control parameters of DE
except for the population size.

Te remainder of the paper is organized as follows. In
Section 2, diferential evolution algorithm is briefy in-
troduced. Taguchi’s parameter designmethod is described in
the next section. In Section 4, a DE without the parameters is
proposed and the convergence in probability is analyzed. In
Section 5, the results of numerical experiments are given.
Finally, we conclude this paper and consider the further
research issues.

2. Differential Evolution

Like other evolutionary algorithms (EAs), DE starts with an
initial population individual, followed by the successive
operations of mutation, crossover, and selection. However,
there are two main diferences between them. (i) Mutation is
caused not by the small changes of the genes in EAs, but by
adding the weighted diference of two randomly selected
individuals to a third randomly selected one in DE. Te
direction information from the current population is used to
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guide the search process. (ii) New individual is generated by
adopting a greedy selection scheme in DE, which is only
accepted if it improves on the ftness of the parent individual.

Storn and Price proposed several diferent mutation
strategies [1]:

DE/Rand/1: V � Xr1 + F · (Xr2 − Xr3)

DE/Rand/2: V � Xr1 + F · (Xr2 − Xr3 + Xr4 − Xr5)

DE/Best/2: V � Xbest + F · (Xr2 − Xr3 + Xr4 − Xr5)

In the above, r1≠ r2≠ r3≠ r4≠ r5, and they are the
random numbers distributing uniformly in [1, NP], where
NP is denoted by the population size. For the strategy DE/
x/y, x represents the individual being perturbed and y is
the number of diference vectors used to disturb x. Take
DE/rand/1 as an example, it means that the target indi-
vidual is randomly selected, and only one diference vector
is used.

Although there are several variants of DE, a common
variant, which is known as DE/rand/1, or “classic DE,” is the
most widely used in practice. Hence, this DE is described as
follows:

(i) Initialization: like other EAs, classic DE initializes
an initial population that distributes uniformly in
the feasible domain.

(ii) Mutation: for each parent vector Xi, a mutant vector
Vi is generated according to (1) where the random
indexes r1, r2, and r3 are mutually distinct integers
following uniform distribution in [1, NP] and also
are diferent from the current index i. Te scale
factor F is used to control the amplifcation of the
diferential variation.

Vi � Xr1 + F · Xr2 − Xr3( . (1)

(iii) Crossover: the trial individual Wi is generated using
the parent and mutant individuals as follows:

W
j
i �

V
j
i , if r(j)≤Cr or j � randn(i),

X
j
i , else.

⎧⎨

⎩ (2)

In the above formula, j is denoted by the j-th
component of the individual, r(j) represents
a random number with uniform distribution in [0,
1] for each j, the crossover probability Cr is set to
a given number in (0, 1), and the integer randn(i) is
randomly chosen in [1, n], where n denotes the
dimension of the tested problem. Te trial indi-
vidual is a stochastic combination of the parent and
mutant individuals. When Cr is equal to 0, at least
one of the components of the trial individual will
difer from the parent Xi because of the condition
j � randn(i).

(iv) Selection: DE implements a very simple selection
procedure. Te ofspring is generated only if the
ftness of the ofspring is better than that of the
parent. Due to the greedy selection scheme, all
the individuals of the next generation are as good

as or better than their counterparts in the current
generation.

Xi+1 �
Wi, if f Wi( <f Xi( ,

Xi, otherwise.
 (3)

Te above process ii–iv repeats until the number of
function evaluations or the number of the iterations reaches
a given constant, namely, the termination criteria are sat-
isfed. Further detailed descriptions about DE can be found
in references [1, 23].

3. Taguchi’s Parameter Design

Taguchi method [25] is a parameter design approach in the
production and process conditions optimization. It can
make high-quality products using less development and
manufacturing costs. Two major tools used in the Taguchi
method are the orthogonal array [26] and the signal-noise-
ratio (SNR), which are briefy described as follows.

Te orthogonal array is a fractional factorial matrix,
which assures a balanced comparison among the factors or
its levels. A two-level orthogonal array is a matrix consisting
of 1 or 2 arranged in rows and columns. Each row represents
the combination of factor levels in each experiment, and
each column represents the special level of each factor. Let
the element 2 in the orthogonal array be −1, then all column
vectors are orthogonal to each other, namely, the dot
product is zero. Generally, a two-level orthogonal array is
denoted by Lm(2m− 1), where m, which is equal to 2k, rep-
resents the number of experiments; k is a positive integer; the
number 2 shows that each factor has two levels: 1 and 2;
m − 1 is the number of the factors or columns. Te two-level
orthogonal arrays are commonly used in practice: L4(23),
L8(27), L16(215), and L32(231). For more clearness, the
following table (see Table 1) shows the orthogonal array
L8(27) with the canonical form.

Tere are 8 factors in the array L8(27). For each factors, it
can choose either 1 or 2. In order to obtain the better or best
the combination of factor levels, only 8 experiments are
under considered in the two-level orthogonal array L8(27)
instead of all combinations of the factors which can reach up
to 27 � 128 experiments. Te notation Ei represents the i-th
experiment or row, and Cj the j-th column vector or factor.
For simplicity, the sign Ci,j denotes the level of the j-th
factor in the i-th experiment. For instance, C3,4 � 1, C4,3 � 2,
and C6 � [1 2 2 1 1 2 2 1]T. If each 2 in array L8(27) is
thought of as −1, Ci≠j · Cj � 0 for all i and j from 1 to 7.

Te conception of the SNR is originally introduced in
communication and electronic engineering, which is defned
as the ratio of the signal to noise and is used to evaluate the
quality of communication. In 1957, Taguchi applied the SNR

conception to the design of engineering experiments, hence,
Taguchi parameter design method was proposed. Tis
method utilizes the SNR to evaluate quality and applies the
orthogonal array to arrange experiments. According to the
type of characteristic, the SNR can be classifed into smaller-
the-better, larger-the-better and nominal-the-best. Given
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a set of characteristics y1, y2, . . . , yn, then in the case of
smaller-the-better characteristic the SNR is as follows:

SNR � −10 · log
1
n



n

i�1

1
y
2
i

⎛⎝ ⎞⎠. (4)

4. Differential Evolution without F and Cr

After the brief description about classical DE and Taguchi’s
parameter design, the ideals and the advantage of elimi-
nating the parameters in DE are described, respectively.
Finally, the diferential evolution without the scale factor and
the crossover probability are proposed.

Besides the parameters F and Cr, classic DE has a control
parameter NP which are closely related to the problem
under consideration. Te population size, NP, is typically
larger than a threshold value in order to obtain a global
optimum and improve the success rate of convergence.
However, too large NP may increase the number of function
evaluations. Generally, separable and unimodal functions
require the smallest population sizes, while parameter-
dependent multimodal functions require the largest pop-
ulations. For simplicity, the parameter NP is set as a con-
stant according to the dimension of the problem under
consideration.

Te parameter F determines the amplifcation of the
diference. A high (low) value of F makes DE more ex-
ploratory (less exploratory). Te parameter Cr controls the
distribution of coordinate points in the trial individual. A
high (low) value of Cr means that the coordinates of the
mutant individual dominate the trial individual. Between
the two parameters Cr and F, Cr is much more sensitive to
the problem’s properties and complexity such as the
multimodality, while F is more related to the
convergence speed.

Finding the optimal values for these parameters is
a difcult task as these values are problem specifc, espe-
cially when one wants to strike a balance between reliability
and efciency. Tus, the performance of DE depends on
how these control parameters are selected. However, how
to set well these parameters is generally based on trial and
error. An optimal parameter setting can be found via the
boring preliminary numerical experiments for a special
problem, whereas it is not probably optimal for the other
problems.

In order to overcome these contradictions, we eliminate
the scale factor and the crossover probability with exception
of the population size by using the modifed attraction-
repulsion mechanism and Taguchi method. In the following
subsections, how to eliminate these parameters is described
in detail.

4.1. Eliminating the Scale Factor F. According to the
attraction-repulsion mechanism in Coulomb’s Law,
electromagnetism-like (EM) algorithm [27, 28] frst calcu-
lates the charge of each individual in terms of its objective
function value and then determines the resultant force
exerted on each particle by all other particles in the pop-
ulation. Te charge of each particle determines its power of
attraction or repulsion. Te particles with better objective
function values attract others while those with inferior
function values repel.

Like the method of calculating the force, the electro-
magnetic force exerted on the particle by other particles is
obtained by the vector addition following the parallelogram
law. For example, the charge of X1 is less than that of X2
while is greater than that of X3 in Figure 1. Tus EF1,2 is
a repulsive force and EF1,3 is an attractive force acting on X1
by X2 and X3, respectively. Te resultant force EF1 exerted
on X1 is EF1,2 + EF1,3. In a similar way, the resultant forces
exerted on X2, and on X3 can also be calculated.

Te charge Qi of each Xi is determined by the objective
function value of itself relative to that of the current best
particle Xbest:

Qi � exp −n ·
f Xi(  − f Xbest( 


NP
j�1 f Xj  − f Xbest(  

⎛⎝ ⎞⎠, (5)

where n is the dimension of the problem. Te force vector
EFi,j exerted on Xi by Xj is then determined by

EFi,j �

Xj − Xi  ·
QiQj

Xj − Xi

�����

�����
2 , if f Xj ≤f Xi( ,

Xi − Xj  ·
QiQj

Xj − Xi

�����

�����
2 , if f Xj >f Xi( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

From (6), the particles with the relatively good objective
function values will attract the other particles in the pop-
ulation while the particles with the worse objective function
values repel the others. Te resultant force vector EFi

exerted on a particle Xi by other NP − 1 particles in the
population is calculated as follows:

EFi � 

NP

j�1,j≠i
EFi,j. (7)

However, each particle has only one particle exerting
force on it in a version of EM proposed by Debels et al. [29].

Table 1: Te orthogonal array L8(27) with the canonical form.

C1 C2 C3 C4 C5 C6 C7

E1 1 1 1 1 1 1 1
E2 1 1 1 2 2 2 2
E3 1 2 2 1 1 2 2
E4 1 2 2 2 2 1 1
E5 2 1 2 1 2 1 2
E6 2 1 2 2 1 2 1
E7 2 2 1 1 2 2 1
E8 2 2 1 2 1 1 2
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In this approach, the charge Q
j
i of Xi is calculated based on

the relative diference in the objective function values f(Xi)

and f(Xj):

Q
j

i �
f Xi(  − f Xj 

f Xworst(  − f Xbest( 
, (8)

where Xworst and Xbest denote, respectively, the worst and
the best solutions, Xj is chosen randomly from the
population. By the new defnition of Q

j
i , obviously,

a better(worst) particle Xj gives the higher(lower) Q
j

i

value. Moreover, if f(Xj)≤f(Xi), then Q
j

i is positive,
otherwise, Q

j

i is negative. After calculating the charge Q
j

i

of Xi, the particle Xi moves to the new particle Xi + EFi,j,
where

EFi,j � Q
j
i · Xj − Xi . (9)

It is obvious that when Q
j

i is positive (negative), Xj

attracts(repels) Xi. Tis modifed EM remains the basic ideal
of EM, moreover, it is more simple and easier to utilize.
Hence, for DE/Rand/1, the mutant individual V � Xr1 + F ·

(Xr2 − Xr3) can be transformed to

V � Xr1 + F · Xr2 − Xr3( 

� Xr1 + F · Xr2 − Xr1(  + F · Xr1 − Xr3( 

� Xr1 + F · Xr2 − Xr1(  + F
′
· Xr3 − Xr1( ,

(10)

where F � −F′. If we regard the scale factor F and F′ in
equation (10) as the two diferent charges Q

j

i as shown in
equation (8), viz.

F≜Q
r2
r1, F
′ ≜Q

r3
r1, (11)

then the equation (10) can be interpreted as the motion of
the particle Xr1 in the direction of the resultant force
F2,1 + F3,1. Te magnitude of the motion is determined by
the scale factors F and F′. Hence, the mutant individual is
modifed in our algorithm as follows:

V � Xr1 + Q
r2
r1 · Xr2 − Xr1(  + Q

r3
r1 · Xr3 − Xr1( 

� Xr1 +
f Xr1(  − f Xr2( 

f Xworst(  − f Xbest( 
· Xr2 − Xr1( 

+
f Xr1(  − f Xr3( 

f Xworst(  − f Xbest( 
· Xr3 − Xr1( .

(12)

Similarly, we also have

V � Xr1 + Q
r3
r2 · Xr3 − Xr2( 

� Xr1 +
f Xr2(  − f Xr3( 

f Xworst(  − f Xbest( 
· Xr3 − Xr2( ,

(13)

or

V � Xr1 + Q
r2
r3 · Xr2 − Xr3(  + Q

r4
r5 · Xr4 − Xr5( 

� Xr1 +
f Xr3(  − f Xr2( 

f Xworst(  − f Xbest( 
· Xr2 − Xr3( 

+
f Xr5(  − f Xr4( 

f Xworst(  − f Xbest( 
· Xr4 − Xr5( .

(14)

As described , equations (13) and (14) are easy to un-
derstand. Te idea implied in equation (13) comes from
DE/rand/1: the individual Xr1 moves in the direction of
Xr3 − Xr2. Te magnitude of the motion is not controlled
artifcially in DE/Rand/1, but is determined self-adaptively
according to its charge obtained by the particle Xr2. Te
similar interpretation is also done for equation (14).

Besides the self-adaptation of F and the simplicity of
calculation, preliminary numerical experiments show that
the modifed equations (12)–(14) can generally improve the
performance of DE, and equation (12) might avoid DE(DE/
Ra nd/1) searching wrongly in the direction of “up hill.” Te
detailed description is as follows.

For six hump camel back function (see F0 in Appendix),
it is well known that the optimal value is f∗( [−{ 0.08984,

0.71265], [0.08984, −0.71265]}) � −1.031628. Given Xbest �

[−0.07781, −0.73245] and Xworst � [0.97667, −0.0033774],
then two cases are given.

CASE 1 Let Xr1 � [−0.39, −0.91221], Xr2 � [−

0.15301, 0.28698], and Xr3 � [0.13566, −0.58573].
Tus, V � [−0.12891, −0.54275] can be obtained by
equation (12) (see Figure 2).
CASE 2 Let Xr1 � [0.15961, 0.48913], Xr2 �

[0.28105, 0.86676], and Xr3 � [0.94169, −0.23207].
Ten, V � [−0.4222, 0.97067], see Figure 3.

Figures 2 and 3 show the contour of SHCB on [−1, 1]2

with the corresponding function value marked. Te stars
denote the optimal solutions; the circle denotes the indi-
vidual Xr1; two outer squares 10 represent Xr2 and Xr3,
respectively; Two outer real line denote the shift of Xr1 in
direction of the force EFr1,r2 and EFr1,r3, respectively. Te
mutant individual V obtained by equation (12) is denoted by
the diamond.Te inner real line represents the shift of Xr1 in

X2

X1

X3

EF1,2

EF1,3

EF1

Figure 1: Exertion of forces on X1 by X2 and X3.
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direction of the resultant force EFr1. Two bunches of squares
locating in outer dashed line denote the motions of the
individual Xr1 in directions of F · (Xr2 − Xr1) and F · (Xr3 −

Xr1) with the diferent scale factor F, respectively. Te scale
factor F is chosen orderly from the set 0.1, 0.2, . . . , 0.9, 1{ },
the corresponding results are shown in Figures 2 and 3 by
the squares with the diferent number marked. A bunch of
squares between outer squares gives the diferent mutant
individual V (see equation (15)). All squares can be matched
by the numbers locating in them.

V � Xr1 + F · Xr2 − Xr1(  + Xr3 − Xr1(  

� Xr1 + F · Xr2 − Xr1(  + F · Xr3 − Xr1( .
(15)

It is worth noting that equation (15) is diferent from
V � Xr1 + F · (Xr2 − Xr3 + Xr4 − Xr5). Five diferent mu-
tually random individuals are selected in DE/Rand/2 while
three individuals in equation (15). However, IfXr2 − Xr1 and
Xr1 − Xr3 are thought of as two new individual, then
equation (15) is the same as DE/rand/1 in essence. Tus

a comparison is done between equation (12) and equation
(15). Te two formulas have the similar structure and is
easier to distinguish in the fgures if some dissimilarities
appear in.

From Figure 2, only if F � {0.2, 0.3, 0.4}, the mutant
individual obtained by equation (15) is better, whereas that
obtained by equation (12) is closer to the global optimal
solution. In Figure 3, it is very clear that equation (12) is
superior to equation (15). Tough the function value of the
individual obtained by equation (15) for F � 0.2 is almost
same as that of obtained by equation (12), it moves
uphill wrong.

4.2. Avoiding the Crossover Probability Cr. Taguchi method
can obtain the better combination of the factor level with less
cost. In the paper, a two-level orthogonal array Lm(2m− 1) is
used. Since the number of factors (or variables) is 2k − 1,
where k is an integer greater than 1, the number of ex-
periments m is dependent on the dimension n of the
problem. In our paper, m is given as follows:

m � min 2k
| k> 1, k ∈ Z, 2k

− 1≥ n . (16)

For instance, if n � 4, then m≥ 3; if n � 8, then m≥ 4. In
equation (16), the minimal value m subjecting to m> n is
chosen for avoiding the possible repeating experiments.

In what follows, a simple algorithm generating the two-
level orthogonal array Lm(2m− 1) is described. Te algorithm
forms the array by using 2 × 2 Hadamard matrix H2.

Defnition 1. if any two columns in a matrix Hm consisting
of 1 or −1 are orthogonal, then the matrix is called Hada-
mard matrix [30].

In the above defnition, m denotes the order of the
Hadamard matrix Hm. Tere are several operations on
Hadamard matrices which preserve the Hadamard property:

(i) Permuting rows (columns)
(ii) Changing the sign of some rows (columns)
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(iii) Te Kronecker product

If Hm and Hn are known, then Hm·n can be obtained by
their Kronecker product, namely, by replacing all 1s in Hm

by Hn and all -1s by −Hn.

Example 1. If H2 �
1 1
1 −1 , then

(17)

where ⊗ denotes the Kronecker product. Hadamard matrix
of high order can be similarly generated from that of lower
order: H2 ⊗H4 � H8, H2 ⊗H8 � H16, H2 ⊗H16 � H32,
H2 ⊗H32 � H64, etc.

After a Hadamard matrix Hm is obtained, a two-level
orthogonal array Lm(2m− 1) can be given by discarding the
all-one column and changing −1 s to 2 s in Hm. However,
this obtained array is not generally canonical form.
Terefore, the simple exchange of rows can fx it for con-
sistency (see Table 1 and the gray part in H8).

Recall the notations about the orthogonal array in Section
3: Ei is denoted by the i-th experiment, Cj by the j-th factor
and Ci,j by the level of the j-th factor in the i-th experiment.
Te efects of the factors can be defned as follows:

ECj,level � 

1≤i≤m
Ci,j�level

SNRi.
(18)

For simplicity, the SNR is calculated as follows:

SNR � 
n

i�1

1
f
2
i

, (19)

where level � 1, 2{ }, 1≤ i≤m, and 1≤ j≤m − 1. Tis con-
ception is used here to evaluate the level of the factor. If
ECj,1>ECj,2, the optimal level of the factor Cj is 1, otherwise,
the optimal level is 2. When each ECj,level is determined,
a new individual (an optimal or near-optimal combination)
is generated.

Example 2. An example minf(X) � ‖X‖1 is shown to il-
lustrate this process of Taguchi parameter design method
acting on two individuals, where X ∈ R7. Without loss of
generality, let V � [0, 8, 1, 0, −72, 0, 0] and
X � [0, 0, −28, 35, 0, 32, 0]. Tis problem has 7 variables
(factors), thus according to equation (16):
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m − 1 � 23 − 1 � 7≥ n, the orthogonal array L8(27) is cho-
sen(See Table 1). If Ci,j is equal to 1 in Table 1, then the
corresponding Ci,j in Table 2 is the j-th component Vj of the
mutant individual V, otherwise, the corresponding Ci,j is Xj,
see bold in Table 2.

Next, calculate the function value f(X) and the SNR of
each combination of the factor level in Table 2, respectively.
All results appear in the two most right hand columns. Ten
the efect of each factor is determined in terms of equation
(18) (take C1 and C7 as an example).

EC1 ,1 � 
i�1,2,3,4

SNRi

� 0.00015 + 0.00017 + 0.00006 + 0.00025 ≈ 0.0006,

EC1 ,2 � 
i�5,6,7,8

SNRi

� 0.00077 + 0.00003 + 0.00092 + 0.00009 ≈ 0.0018,

EC7 ,1 � 
i�1,4,6,7

SNRi

� 0.00015 + 0.00025 + 0.00003 + 0.00092 ≈ 0.0014,

EC7 ,2 � 
i�2,3,5,8

SNRi

� 0.00017 + 0.00006 + 0.00077 + 0.00009 ≈ 0.0011.

(20)

Finally, we obtain the new individual or the trial vectorW.
Te optimal level of the factor is decided by its efect. Since
EC1 ,1<EC1 ,2, 2 is the optimal level of the factor C1;
EC2 ,1>EC2 ,2, therefore the optimal level of the factor C2 is 2.
Te optimal levels of the other factors can be determined in
a similar way. Te component Wj of the new individual W

consists of either Vj or Xj for all j, which is dependent on the
optimal level of the factor Cj. If the optimal level is 1, then the
corresponding component of the new individual is that of the
individual V, otherwise, it is equal to that of the individual X.

Obviously, Taguchi parameter design method executes
only 8 experiments instead of all 27 combinations of factor
levels for obtaining a new individual W with the lower
function value 1 (see the last row in Table 2). It is necessary to
mention that only the frst n columns is used in orthogonal
array while the other columns are ignored if n<m − 1.

In reference [31], the hybrid Taguchi-genetic algorithm
(HTGA) is proposed for global numerical optimization with
the continuous variables, which uses the systematic rea-
soning ability of Taguchi parameter design to gain the better
genes in the crossover operation. Te comparison results
between HTGA and OGA/Q [32] show that HTGA can fnd
the optimal or the near-optimal solutions with less function
evaluations and better average values. However, this supe-
riority is not very obvious for the tested function with
nonzeros optimal values. Let we recall the original defnition
of SNR in the case of smaller-the-better characteristic, which
is described in equation (4), and change it to

SNR � −10 · log
1
n



n

i�1

1
yi − 0( 

2
⎛⎝ ⎞⎠. (21)

In Taguchi method, the item 1/n
n
i�11/(yi − s)2 rep-

resents the average loss of quality, where s denotes the
ideal signal in the case of smaller-the-better character-
istic. Terefore, equation (21) shows that HTGA has
thought of the optimal value of the tested problem as
0 before this problem is solved. Tis is unfair and un-
reasonable. As described above, we found that the su-
periority of HTGA is not very obvious for those function
with nonzero optimal value from Tables IV and V on
page 273 and 275 in the reference [31], Hence, SNR is
modifed as follows:

SNR � 
n

i�1

1
fi − f

∗
t( 

2, (22)

wheref∗t is defned as the current optimal value after the t-th
iteration.

In what follows, the diferential evolutions without the
scale factor and the crossover probability (for short,
DE∖FCr) are proposed. For the sake of clarity, the fow-
charts of DE and DE∖FCr(take DE∖FCr2 as an example)
are also given in Figure 4, where cross() represents the
crossover operation in equation (2) and Taguchi() denotes
Taguchi parameter design method in equation (13) (see
Algorithm 1).

In Step 2, a termination criterion |f(Xworst) −

f(Xbest)|< ε is given since f(Xworst) − f(Xbest) is the
denominator in Eq.(8). When this diference approxi-
mates to zero, the numerical stability of the algorithm
will lose.

Let X(t) be the population at the t-th generation.
Trough Step 4-5 in DE\FCr, X(t) transforms into the
next population X(t+1). Since the limitation of numerical
calculation accuracy and X(t+1) relies only on the state of
X(t), the population sequence X(t) t≥ 0 generated by
DE\FCr can be described as fnite-state Markov stochastic
process.

Suppose (i) the objection function f(X) has a unique
global optimal solution. Let S be the state space of the
stochastic process X(t), S∗ be the state space of the global
optimal solution, and f∗ be the global optimal value.

Because of the limitation of state space or search space,
the probability that the algorithm can fnd the optimal
solution at the next generation is greater than 0 if it cannot
fnd at the t-th generation, hence, suppose (ii)
P X(t+1) � sj | X(t) � si > ρ> 0 for si∉S∗ and sj ∈ S∗, where
ρ ∈ (0, 1).

Now, we consider the probability sj∉S∗P X(t+1) � sj 

that the proposed algorithm can not fnd the global optimum
at the t + 1 generation.
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sj∉S∗

P X
(t+1)

� sj 

� 
sj∉S∗


si∈S

P X
(t+1)

� sj, X
(t)

� si 

� 
sj∉S∗


si∈S

P X
(t+1)

� sj X
(t)

 � si P X
(t)

� si 

� 
sj∉S∗


si∉S∗

P X
(t+1)

� sj X
(t)

 � si P X
(t)

� si 

+ 
sj∉S∗


si∈S∗

P X
(t+1)

� sj X
(t)

 � si P X
(t)

� si 

� 
sj∉S∗


si∉S∗

P X
(t+1)

� sj X
(t)

 � si P X
(t)

� si 

� 
si∉S∗

P X
(t)

� si 

− 
sj∈S∗


si∉S∗

P X
(t+1)

� sj X
(t)

 � si P X
(t)

� si 

<(1 − ρ) 
si∉S∗

P X
(t)

� si .

(23)

It is very obvious that the current known optimal so-
lution still can be retained in the next generation from Step 5.
Once DE\FCr fnds the optimal solution, the X(t+1) will
hold the current state S∗. Hence, in the equation (23),


sj∉S∗


si∈S∗

P X
(t+1)

� sj X
(t)

 � si P X
(t)

� si  � 0. (24)

Summarizing the result of equation (23), we have

0≤ 
sj∉S∗

P X
(t+1)

� sj <(1 − ρ) 
si∉S∗

P X
(t)

� si .
(25)

Because the sequence si∉S∗P X(t) � si  is strictly
monotonic decreasing as t⟶∞, so

lim
t⟶∞


si∉S∗

P X
(t)

� si  � 0. (26)

Terefore,

lim
t⟶∞

P f
∗
t � f

∗
  � 1 − lim

t⟶∞

si∉S∗

P X
(t)

� si  � 1.

(27)

Equation (26) shows that the population sequence
generated by DE\FCr can convergence in probability to the
global optimum.

5. Numerical Experiments

Te proposed Algorithms are executed in Matlab R2017 for
the known numerical benchmark functions listed in Ap-
pendix with the default parameters NP � 30 and T � 202.
Based on this parameter setting, each DE\FCr needs 30 ×

(m + 1) function evaluations at each iteration for 30 di-
mensional tested functions. DEs with the four strategies
below are compared with our algorithms, respectively.

Strategy 1(DE): DE/Rand/1. F � 0.5, Cr � 0.9. Tis is
a recommend parameters setting for DE/Rand/1 in
most of the references [1–13];
Strategy 2(DEG): F ∼ N(0, 1), Cr � 0.9 [11];
Strategy 3(DE0.4): F � 0.4 + 0.4 · rand(0, 1),
Cr � 0.9 [12]
Strategy 4(DEM): Cr � 0.5 and F is calculated by the
following formula [13]:

F �

max 0.4, 1 −
f Xworst( 

f Xbest( 




 , if

f Xworst( 

f Xbest( 




< 1,

max 0.4, 1 −
f Xbest( 

f Xworst( 




 , otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(28)

For Strategy 1–4, the population size NP and the
maximal generation T are set as 100 and 2000, respectively.
All algorithms are performed with 10 independent runs for
each tested function with 30 variables. According to these
settings, our algorithm has the almost same function eval-
uations as DEs with Strategy 1–4, that is, 100 + 100 × 2000 �

2000100 for DEs and 30 + 990 × 202 � 200010 for DE\FCr.
Hence, the results listed in Tables 3 and 4 are obtained under
the assumption of the not same but diferent function
evaluations. Obviously, the proposed algorithm evaluates 90
function values less than DEs. Te average values of the

Step 1: Initialization: population P, population size NP, maximal generation T, current generation t � 1, and ε � 10− 100, i � 1.
Step 2: If t>T or |f(Xworst) − f(Xbest)|< ε, then output the current optimal value f∗t .
Step 3: Mutation. For each Xi ∈ Pt in the population, calculate the mutant individual according to equations (12) or (13) or equation
(14). Te corresponding algorithm is denoted by DE\FCr1, DE\FCr2 and DE\FCr3, respectively.
Step 4: Crossover. Execute Taguchi parameter design method with the SNR denoted as equation (22) for the individual Xi and the
mutant individual Vi, so the trail individual Wi is generated.
Step 5: Selection. If f(Wi)<f(Xi), then Xi � Wi and i � i + 1.
Step 6: If i< � NP, goto Step 3; otherwise, t � t + 1, goto Step 2.

ALGORITHM 1: (DE\FCr).
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obtained results are given in Tables 3 and 4. Te number of
f(x) evaluations(#EVALU.), the best function value(BEST),
the worst function value(WORST), the mean of function
values(MEAN) and the standard deviation of the best

function values(STD.) are used for the comparisons among
these algorithms.

Table 3 summarizes the results obtained by the 7 al-
gorithms for F1-F5. For F1, DEG obtains the best mean of

Table 2: Te process of Taguchi parameter design method acting on the individuals V and X.

C1 C2 C3 C4 C5 C6 C7 f(X) SNR

E1 0 8 1 0 −72 0 0 81 0.00015
E2 0 8 1 35 0 32 0 76 0.00017
E3 0 0 −28 0 −72 32 0 132 0.00006
E4 0 0 −28 35 0 0 0 63 0.00025
E5 0 8 −28 0 0 0 0 36 0.00077
E6 0 8 −28 35 −72 32 0 175 0.00003
E7 0 0 1 0 0 32 0 33 0.00092
E8 0 0 1 35 −72 0 0 108 0.00009
EC,1 0.0006 0.0011 0.0013 0.0019 0.0003 0.0013 0.0014
EC,2 0.0018 0.0013 0.0011 0.0005 0.0021 0.0012 0.0011
W 0 0 1 0 0 0 0 1

Table 3: Result comparisons among 7 algorithms for F1–F5.

Fun Alg Best Worst Mean Std #Elav

F1

DE 6.445542E− 023 4.436277E− 022 2.290635E− 022 1.108992E− 022 200100
DEG 1.046763E− 040 4.175516E − 039 1.128546E − 039 1.247818E − 039 200100

DE0.4 1.348390E− 013 1.781579E− 012 6.963543E− 013 5.084985E− 013 200100
DEM 1.212964E− 011 8.731799E− 011 3.082813E− 011 2.407010E− 011 200100

DE\FCr1 3.228810E− 022 2.671220E− 019 3.358173E− 020 8.252692E− 020 200010
DE\FCr2 2.611086E− 024 1.537412E+ 001 1.546806E+ 000 4.858513E+ 000 200010
DE\FCr3 1.808723E− 025 2.760420E− 024 8.956028E− 025 9.805783E− 025 200010

F2

DE 2.342126E− 012 1.023626E− 011 5.329959E− 012 2.673148E− 012 200100
DEG 4.440892E− 015 7.993606E− 015 7.638334E− 015 1.123467E− 015 200100

DE0.4 1.512876E− 007 4.988239E− 007 3.000771E− 007 1.363652E− 007 200100
DEM 4.440892E− 015 7.993606E− 015 7.283063E− 015 1.497956E− 015 200100

DE\FCr1 3.135270E− 013 2.617373E− 011 7.357492E− 012 8.539221E− 012 200010
DE\FCr2 3.996803E− 014 1.434325E− 008 1.434625E− 009 4.535629E− 009 200010
DE\FCr3 1.509903E− 014 1.927347E− 013 6.483702E− 014 5.207955E− 014 200010

F3

DE 4.262079E− 003 1.641628E− 002 8.883045E− 003 3.323616E− 003 200100
DEG 3.490604E− 003 1.002710E− 002 5.873780E− 003 1.893076E− 003 200100

DE0.4 7.746132E− 003 1.612982E− 002 1.284244E− 002 2.895560E− 003 200100
DEM 5.340829E− 002 8.776692E− 002 7.115915E− 002 9.972597E− 003 200100

DE\FCr1 1.040566E− 002 2.893510E− 002 1.649259E− 002 5.547522E− 003 200010
DE\FCr2 1.087789E− 002 3.538599E− 002 2.176316E− 002 7.961170E− 003 200010
DE\FCr3 2.047691E− 002 3.617698E− 002 2.779340E− 002 4.572319E− 003 200010

F4

DE 4.869042E− 024 1.608507E− 022 4.278891E− 023 5.275054E− 023 200100
DEG 1.570545E− 032 4.146719E− 001 4.146719E− 002 1.311308E− 001 200100

DE0.4 2.196374E− 014 1.812240E− 013 7.778539E− 014 5.733436E− 014 200100
DEM 1.962642E+ 004 1.637335E+ 005 8.747525E+ 004 4.588788E+ 004 200100

DE\FCr1 5.576314E− 024 1.036690E− 001 1.036690E− 002 3.278302E− 002 200010
DE\FCr2 1.176714E− E− 025 3.090863E− 001 4.789975E− 002 9.877257E− 002 200010
DE\FCr3 7.336740E− 027 8.506532E− 025 1.761171E− 025 2.553095E− 025 200010

F5

DE 3.538508E− 023 2.902433E− 022 1.590376E− 022 8.749484E− 023 200100
DEG 1.349784E− 032 1.098737E− 002 1.098737E− 003 3.474510E− 003 200100

DE0.4 1.032194E− 013 1.261348E− 012 5.065837E− 013 4.532350E− 013 200100
DEM 2.220360E+ 004 1.152671E+ 005 6.319184E+ 004 3.036898E+ 004 200100

DE\FCr1 1.155559E− 021 1.691974E− 015 1.692275E− 016 5.350387E− 016 200010
DE\FCr2 3.452407E− 023 1.247897E+ 000 2.167329E− 001 4.586437E− 001 200010
DE\FCr3 6.397232E− 026 2.198487E− 024 1.088356E− 024 6.533660E− 025 200010

Te best results in the table are bolded.
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Figure 4: Flowcharts of DE and DE\FCr2. (a) DE. (b) DE\FCr2.

Table 4: Result comparisons among 7 algorithms for F6–F10.

Fun Alg Best Worst Mean Std #Elav

F6

DE 0.000000E+ 000 0.000000E+ 000 0.000000E+ 000 0.000000E+ 000 200100
DEG 0.000000E+ 000 1.969000E− 002 5.666035E− 003 6.872102E− 003 200100

DE0.4 7.412959E− 013 3.983369E− 012 1.929468E− 012 9.211849E− 013 200100
DEM 8.237855E− 014 2.578935E− 010 2.624131E− 011 8.139491E− 011 200100

DE\FCr1 0.000000E+ 000 7.396040E− 003 7.396040E− 004 2.338833E− 003 167650
DE\FCr2 0.000000E+ 000 1.477241E− 002 2.216845E− 003 4.986442E− 003 170175
DE\FCr3 0.000000E+ 000 0.000000E+ 000 0.000000E+ 000 0.000000E+ 000 148553

F7

DE 1.346933E+ 002 1.815693E+ 002 1.604947E+ 002 1.647296E+ 001 200100
DEG 5.969754E+ 000 2.089413E+ 001 1.492438E+ 001 4.115703E+ 000 200100

DE0.4 1.447778E+ 002 1.987496E+ 002 1.736384E+ 002 1.838650E+ 001 200100
DEM 8.895676E+ 001 1.067928E+ 002 1.005014E+ 002 6.041157E+ 000 200100

DE\FCr1 3.979836E+ 000 8.954632E+ 000 5.870258E+ 000 1.654945E+ 000 200010
DE\FCr2 0.000000E+ 000 2.984877E+ 000 6.964713E− 001 1.153657E+ 000 152929
DE\FCr3 0.000000E+ 000 0.000000E+ 000 0.000000E+ 000 0.000000E+ 000 173891

F8

DE 4.734026E+ 000 9.125210E + 000 7.317988E + 000 1.118800E+ 000 200100
DEG 3.129173E + 000 7.336176E+ 001 2.244019E+ 001 2.658720E+ 001 200100

DE0.4 9.489415E+ 000 1.273116E+ 001 1.136916E+ 001 9.699009E− 001 200100
DEM 2.646006E+ 001 4.035420E+ 002 9.863638E+ 001 1.151125E+ 002 200100

DE\FCr1 2.198234E+ 001 1.319067E+ 002 6.198206E+ 001 3.617924E+ 001 200010
DE\FCr2 1.491798E+ 001 1.011474E+ 002 3.406901E+ 001 2.894100E+ 001 200010
DE\FCr3 1.130096E+ 001 7.634987E+ 001 2.707867E+ 001 1.774072E+ 001 200010

F9

DE 6.212269E− 011 2.410512E− 010 1.249117E− 010 5.339068E− 011 200100
DEG 5.493251E− 023 3.940883E− 022 1.728275E− 022 1.114004E− 022 200100

DE0.4 1.482390E− 006 6.510805E− 006 3.673915E− 006 1.530019E− 006 200100
DEM 6.282339E+ 000 7.764649E+ 001 6.079609E+ 001 2.075941E+ 001 200100

DE\FCr1 8.632854E− 016 4.274906E− 014 9.826062E− 015 1.315808E− 014 200010
DE\FCr2 1.792127E− 016 2.172822E− 001 2.702991E− 002 6.889298E− 002 200010
DE\FCr3 1.435442E− 017 4.834137E− 016 9.552152E− 017 1.422569E− 016 200010

F10

DE 6.521876E− 005 4.212407E− 003 8.509549E− 004 1.555632E− 003 200100
DEG 7.185030E+ 000 2.254554E+ 001 1.543480E+ 001 5.184946E+ 000 200100

DE0.4 8.266525E− 003 5.784312E− 001 8.974530E− 002 1.759532E− 001 200100
DEM 1.028353E− 004 2.981224E− 004 2.063294E− 004 5.460973E− 005 200100

DE\FCr1 9.550667E+ 000 2.092655E+ 001 1.313933E+ 001 3.863092E+ 000 200010
DE\FCr2 9.407884E+ 000 2.291669E+ 001 1.598827E+ 001 4.119512E+ 000 200010
DE\FCr3 2.517749E− 002 3.977652E− 001 1.628583E− 001 1.193423E− 001 200010

Te best results in the table are bolded.
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Figure 5: Continued.

Table 5: Result comparisons between DE\FCr3 and DENSO for F1–F10.

Fun Alg Best Worst Mean Std #Elav

F1 DE\FCr3 1.808723E− 25 2.760420E− 24 8.956028E− 25 9.805783E− 25 200010
DENSO 8.585195E− 06 1.446810E− 05 1.210160E− 05 1.972164E− 06 200100

F2 DE\FCr3 1.509903E− 14 1.927347E− 13 6.483702E− 14 5.207955E− 14 200010
DENSO 7.522790E− 04 1.429218E− 03 9.793750E− 04 2.043630E− 04 200100

F3 DE\FCr3 2.047691E− 02 3.617698E− 02 2.779340E− 02 4.572319E− 03 200010
DENSO 8.027579E− 03 2.113126E− 02 1.426177E− 02 3.372486E− 03 200100

F4 DE\FCr3 7.336740E-27 8.506532E-25 1.761171E-25 2.553095E-25 200010
DENSO 9.835739E− 07 5.804517E− 06 2.661288E− 06 1.493261E− 06 200100

F5 DE\FCr3 6.397232E− 26 2.198487E− 24 1.088356E− 24 6.533660E− 25 200010
DENSO 1.551095E− 05 8.342158E− 05 3.712426E− 05 2.019380E− 05 200100

F6 DE\FCr3 0.000000E+ 00 0.000000E+ 00 0.000000E+ 00 0.000000E+ 00 148553
DENSO 2.194028E− 05 7.591791E− 03 8.146725E− 04 2.381668E− 03 200100

F7 DE\FCr3 0.000000E+ 00 0.000000E+ 00 0.000000E+ 00 0.000000E+ 00 173891
DENSO 1.245423E+ 01 1.903578E+ 01 1.599377E+ 01 2.169709E+ 00 200100

F8 DE\FCr3 1.130096E+ 01 7.634987E+ 01 2.707867E+ 01 1.774072E+ 01 200010
DENSO 2.430580E+ 01 2.530343E+ 01 2.468209E+ 01 3.004402E− 01 200100

F9 DE\FCr3 1.435442E+ 17 4.834137E− 16 9.552152E− 17 1.422569E− 16 200010
DENSO 2.975740E+ 04 7.035782E+ 04 5.295819E+ 04 1.148206E+ 04 200100

F10 DE\FCr3 2.517749E− 02 3.977652E− 01 1.628583E− 01 1.193423E− 01 200010
DENSO 2.013176E− 01 9.015901E− 01 4.872225E− 01 2.103323E− 01 200100

Te best results in the table are bolded.
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function values and the smallest standard deviation;
DE\ FCr1, DE\FCr3 and DE fnd the better results; Te
means and standard deviations given by both DE0.4 and
DEM are worst among all algorithms; After 20 independent
runs DE\FCr2 fnds a better function value, however, it
obtains the worst standard deviation because it encounters
twice the worst function value 15.37. For F2, DEG and DEM

fnd the best function values with the almost same precision
E− 15; Te precision given by DE\FCr3 is E− 14; DE and
DE\FCr1 give the precision of E− 12; However, the lower

precisions provided by DE\FCr2 and DE0.4 are E− 9 and
E− 7 respectively. All of algorithms obtain the best function
values with the almost same precision for tested function F3.
For F4, the results given by DE\FCr3 are best, and those
provided by DE are a little bit less promising; DE0.4 fnd the
less promising optimum with the precision E− 14, while the
precisions provided by DEG and DE\FCr2 reach only E− 2;
DEM fails in fnding the optima of F4 among 20 in-
dependent runs, and traps into the local optima. Both
DE\FCr1, DE\FCr3, DE and DE0.4 solve efciently F5
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Figure 5:Temean of the current optimal values obtained by 7 algorithms with the number of function evaluations for F1–F6. (a) F1. (b) F2.
(c) F3. (d) F4. (e) F5. (f ) F6.
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with the precision E− 24, E− 22, E− 16 and E− 13 re-
spectively; Te results given by DEG and DE\FCr2 are
worse; Similarly, DEM fails to solve F5.

In Table 4, Both DE\FCr3 and DE fnd the optima of
F6, however the fewer number of function evaluations
148533 is used by DE\ FCr3; Te results obtained by DE0.4
and DEM are sightly worse than those obtained by
DE\FCr3 and DE; However, DE\FCr1, DE\FCr2 and
DEG have the lower precisions of about E − 3. DE\FCr3

fnds the optimum of tested function F7 with highest
precision and smallest STD and the fewer number of
function evaluations than the other algorithms; DE\FCr1
and DE\FCr2 reach the a little bit worse precision, and the
anther algorithms fail to fnd the optimum of F7 with
200100 function evaluations. For 30 dimensional Rose-
nbrock tested function F8, none of all algorithms is ob-
viously superior to the other one, namely, all algorithms
can not fnd a satisfactory optima. For F9, DEG produces
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Figure 6: Te mean of the current optimal values obtained by 7 algorithms with the number of function evaluations for F7–F10. (a) F7. (b)
F8. (c) F9. (d) F10.
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a best results, while DE\FCr1 and DE\ FCr3 provides the
sightly worse results; Te precisions of the mean function
values given by DE and DE0.4 reach E − 10 and E − 6,
respectively; DEM can not fnd the reasonable result, and
only the mean value 60.796 is presented. DE and DEM fnd
the best means of function values of F10 with the precision
of E − 4; Te precisions given by DE0.4 and DE\FCr3 are
E − 2 and E − 1 respectively; DEG, DE\FCr1 and DE\FCr2
give the almost same results and fail to fnd a satisfactory
optima of F10.

In order to show further the efciency of DE\FCr, the
means of the current optimal values obtained by 7 algo-
rithms with the almost same number of function evaluations
for each tested functions are respectively given in Figures 5
and 6. As mentioned in previous section,
|f(Xworst) − f(Xbest)|< ε is used for the numerical stability,
hence each DE\FCr stops probably before the maximal
generation is reached. For convenience to draw the following
fgures, the current optimal value is recorded repeatedly in
succeeding generations if the algorithm stops in advance
since we think that the algorithm cannot be improved greatly
in succeeding running.

Since the proposed algorithm is not same as the com-
pared algorithms in the number of function evaluations at
each iteration, it is inconvenient to draw the evolution
curves describing the variations of MEAN with the number
of function evaluations in a fgure window for the reasonable
comparison among all algorithms. Terefore, the current
optimal values with the number of function evaluations
which is denoted by t · lcm 990, 100{ } for t � 1, 2, . . . , 20
respectively are drawn in Figures 5 and 6 without consid-
ering the number of function evaluations costed by ini-
tialization. In fact, the sequence t · lcm 990, 100{ }, t �

1, . . . , 20 is an arithmetic sequence with the initial term 9900
and the common diference 9900, where lcm denotes the
least commonmultiple. 990 and 100 represent the number of
function evaluations of DE\FCr and those of DEs at each
iteration, respectively. It needs to be emphasized that each
proposed algorithm evaluates 70(�100−30) less than the
compared algorithm at each given iteration as above.
Consequently, the current optimal value obtained by each
compared algorithm under the given number of function
evaluations is just recorded at certain generation which is
10 + (t − 1) · 10 for each DE\FCr and 99 + (t − 1) · 99 for
DEs. Hence, only according to the recorded current optimal
value at each generation can the fgures below be given
easily.

From each fgure(see Figures 5 and 6), DEG outperforms
the other algorithms for F1, F2, and F9, whereas DE\FCr3
surpasses the other ones for F4–F7 and F10. For F1, F2, and
F9, DE\FCr3 is on the top three of 7 algorithms in terms of
the performance. However, For F4–F7 and F10, DEG drops

out of the top three almost into the last three. It is worth
noting that both F3 and F8 don’t be considered because all
algorithms, especially DEG and DE\FCr3, obtain the almost
same results. We also fnd that DEG can obtain the optimum
with the higher precision at earlier generation than the other
algorithms and enters easily into the local optimum at latter
generation for F2, F4–F6, and F10. DE\FCr3 fnds the
satisfactory results of most of tested functions except F8 and
also has not the tendency toward the local optimum with the
default parameters.

In a summary, DE\FCr3 does rather well in terms of the
performance, DEG and DE are a little bit less promising,
DE\FCr1 and DE0.4 are even less promising, and DE\FCr2
and DEM are worst.

Furthermore, the numerical comparison experiments
are done between DE\FCr3 and DENSO (see Table 5).
DENSO is proposed in reference [19], which employs three
other candidate individuals to design a new selection op-
erator for improving the ability to escape the local optimum.
In Table 5, DE\FCr3 fnd the optima of the tested functions
F1, F2, F4, F5, F9 with higher precision. For F3, F8, F10,
Both algorithms have the almost same precision, however,
DE\FCr3 reduces 90 function evaluations. Obviously,
DE\FCr3 give the global minimal value 0 with the fewer
#ELAV for F6, F7.

6. Conclusion

For avoiding the settings of the parameters, the diferential
evolutions without F and Cr are presented. Te proposed
algorithms use the attraction-repulsion mechanism in Cou-
lomb’s Law and Taguchi parameter design method for the
purpose of eliminating the scale factor and the crossover
probability, respectively. Numerical experiments show that the
proposed algorithm DE\FCr3, which can balance well be-
tween exploration and exploitation, is superior to the compared
algorithms with other strategies and can fnd quickly the
optima or the near-optima of the problems. Although a smaller
population size 30 is given in the proposed algorithms for all 30
dimensional tested functions, this small population maybe lead
to the prematurity of algorithm such as F8. However a larger
population will expend too many function evaluations because
of using the two-level orthogonal arraywhich is relatedwith the
dimension of the problems. Obviously, In our algorithms the
number of function evaluations of each proposed algorithm at
each generation is (m + 1) · NP. Terefore, as for future work,
the following problems are going to be investigated: (i) decrease
the function evaluations at each generation and increase the
population size without the loss of the algorithmic perfor-
mance; (ii) analyze the accelerated convergence behavior of the
current optimal value f∗t after the t-th iteration in
equation (22).
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