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Kronecker product decomposition is often applied in various felds such as particle physics, signal processing, image processing,
semidefnite programming, quantum computing, and matrix time series analysis. In the paper, a new method of Kronecker
product decomposition is proposed. Teoretical results ensure that the new method is convergent and stable. Te simulation
results show that the new method is far faster than the known method. In fact, the new method is very applicable for exact
decomposition, fast decomposition, big matrix decomposition, and online decomposition of Kronecker products. At last, the
extension direction of the new method is discussed.

1. Introduction

Kronecker product, as a special case of tensor product, is
a concept having its origin in group theory and has been
successfully applied in various felds such as particle physics,
signal processing, image processing, semidefnite pro-
gramming, and quantum computing et al. [1]. Ford and
Tyrtyshnikov [2] combined the discrete wavelet transform
approximation and the approximation with a sum of
Kronecker products to enable the solution of very large
dense linear systems by an iterative technique using a Kro-
necker product approximation represented in a wavelet
basis. Yang et al. [3] researched the generalized Kronecker
product linear system associated with a class of consecutive-
rank-descending matrices arising from bivariate in-
terpolation problems. Muñoz-Matute et al. [4] introduced
an algorithm to speed up the computation of the φ-function
action over vectors for two-dimensional (2D) matrices
expressed as a Kronecker sum using Kronecker products of
one-dimensional matrices. More literature studies can refer
to Rifa and Zinoviev [5], Enŕıquez and Rosas-Ortiz [6], Hao
et al. [7], Marco et al. [8], Chen and Kressner [9], and the
reference cited in.

Defnition 1 (see [10]). Assume matrices A � (aij)m×n and
B � (bij)p×q, then the m × n block matrix (aijB)m×n is called
the Kronecker product of A and B, denoted by A⊗B, that is

A⊗B �

a11B a12B · · · a1nB

a21B a22B · · · a2nB

· · · · · · · · · · · ·

am1B am2B · · · amnB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Te Kronecker product decomposition of a matrix C is
the factorization of C into the Kronecker product of two
matrices C � A⊗B where the dimensions of A and B

are given.
As the theory of matrix time series analysis develops, we

often need to deal with the Kronecker product de-
composition, see Chen et al. [11] and Wu and Hua [12]. For
example, consider the 1− order autoregressive model for
centralized matrix time series in bilinear form

Xt � ΦXt−1Ψ + εt, t � 1, 2, . . . , (2)

where Xt, t ∈ Z􏼈 􏼉 is a matrix time series, εt, t ∈ Z􏼈 􏼉 is
a matrix white noise, andΦ andΨ are two constant matrices.
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According to the moment estimation method, it is easy to
obtain that

ΨT ⊗Φ � 􏽘
N

t�2
vec Xt( 􏼁vecT

Xt−1( 􏼁⎛⎝ ⎞⎠ 􏽘

N

t�2
vec Xt− 1( 􏼁vecT

Xt−1( 􏼁⎛⎝ ⎞⎠

− 1

, (3)

where vec(·) is the vectorization of matrix by columns, and
N is the length of observation sequence. Ten, we need to

solve Φ and Ψ, which is a problem on Kronecker product
decomposition. Denote

C � 􏽘
N

t�2
vec Xt( 􏼁vecT

Xt−1( 􏼁⎛⎝ ⎞⎠ 􏽘

N

t�2
vec Xt− 1( 􏼁vecT

Xt−1( 􏼁⎛⎝ ⎞⎠

− 1

, (4)

that we need to solve Φ and Ψ such that

ΨT ⊗Φ � C. (5)

As far as we know, there is a method to solve (5), which is
the optimization method [11]. Tat is, (5) is transformed
into the following minimum problem on matrices

(Ψ,Φ) � argmin
Ψ,Φ

C − ΨT ⊗Φ
����

����
2
F
, (6)

where ‖ · ‖F is the Frobenius norm of a matrix. However, it is
very slow to solve (6) when C is a big matrix.

In the paper, we will propose a newmethod of Kronecker
product decomposition. Te method is convergent and
stable. Also, the new method is far easier and faster than the
optimization method (6).

2. The New Method of Kronecker
Product Decomposition

In the section, we will propose a new method to solve A �

(aij)m×n and B � (bij)p×q satisfying

A⊗B � C, (7)

where C � (cij)mp×nq is given.
For (7) and any constant l≠ 0, it follows that

(lA)⊗
1
l

B􏼒 􏼓 � C. (8)

Tat is, the Kronecker product decomposition of (7) is
not unique. Tus, we add the constraint condition that

argmax
bij

bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 i � 1, 2, . . . , p; j � 1, 2, . . . , q􏼚 􏼛 � 1. (9)

For the sake of convenience, we denote

long(B) �
Δ argmax

bij

bij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 i � 1, 2, . . . , p; j � 1, 2, . . . , q􏼚 􏼛.

(10)

For example, let B �
−3 1
0 2􏼢 􏼣, then long(B) � −3.

For any mp × nq dimensional matrix C, if C � Omp×nq,
then, we can take A � Om×n and B � ones(p, q), where
ones(p, q) is the p × q dimensional matrix each element of
which is one. Tus, we always assume C≠Omp×nq for
Kronecker product decomposition.

(i) Steps of Kronecker product decomposition with the
constraint condition (9):

(1) Block matrix C into C � (Cij)m×n and denote
C(i−1)n+j � Cij, where Cij has the same dimensions as
B for all i � 1, 2, . . . , m and j � 1, 2, . . . , n.

(2) Denote

S1 � C1,

Sk �
Sk−1 + Ck, Sk−1 + Ck

����
����M
≥ Sk−1 − Ck

����
����M

,

Sk−1 − Ck, Sk−1 + Ck

����
����M
< Sk−1 − Ck

����
����M

,

⎧⎨

⎩ k � 2, 3, . . . ,mn,
(11)
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where ‖ · ‖M means taking the maximum value of the
absolute value of each element of the matrix.

(3) Take

􏽢B �
1

long Smn( 􏼁
Smn. (12)

(4) Denote 􏽢A � (aij)m×n, then

aij � mean
Cij(u, v)

buv

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
buv ≠ 0, u � 1, 2, . . . , p; v � 1, 2, . . . , q􏼨 􏼩, (13)

where mean ·{ } means taking the average value, and Cij(u, v)

and buv are the (u, v) elements of Cij and 􏽢B,respectively, for
each i � 1, 2, . . . , m and j � 1, 2, . . . , n.

For example, consider to decompose C into Kronecker
product of A and B, where

C �

1 2 −1 −2 2 4

2 0 −2 0 4 0

1 2 0 0 3 6

2 0 0 0 6 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

and B is a 2 × 2 dimensional matrix. It yields from the steps
of Kronecker product decomposition with the constraint
condition (9) that

C1 �
1 2

2 0
⎡⎣ ⎤⎦, C2 �

−1 −2

−2 0
⎡⎣ ⎤⎦, C3 �

2 4

4 0
⎡⎣ ⎤⎦,

C4 �
1 2

2 0
⎡⎣ ⎤⎦, C5 �

0 0

0 0
⎡⎣ ⎤⎦, C6 �

3 6

6 0
⎡⎣ ⎤⎦,

S1 �
1 2

2 0
⎡⎣ ⎤⎦, S2 �

2 4

4 0
⎡⎣ ⎤⎦, S3 �

4 8

8 0
⎡⎣ ⎤⎦,

S4 �
5 10

10 0
⎡⎣ ⎤⎦, S5 �

5 10

10 0
⎡⎣ ⎤⎦, S6 �

8 16

16 0
⎡⎣ ⎤⎦.

(15)

Ten,

􏽢B �
1
16

S6 �

0.5 1

1 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

a11 � mean
1
0.5

,
2
1
,
2
1

􏼚 􏼛 � 2, a12 � mean
−1
0.5

,
−2
1

,
−2
1

􏼚 􏼛 � −2,

a13 � mean
2
0.5

,
4
1
,
4
1

􏼚 􏼛 � 4, a21 � mean
1
0.5

,
2
1
,
2
1

􏼚 􏼛 � 2,

a22 � mean
0
0.5

,
0
1
,
0
1

􏼚 􏼛 � 0, a23 � mean
3
0.5

,
6
1
,
6
1

􏼚 􏼛 � 6.

(16)

Tus,

􏽢A �
2 −2 4

2 0 6
􏼢 􏼣. (17)

3. Theoretical Properties of the New Method

As for the new method of Kronecker product de-
composition, we present some of its properties in the sec-
tion. First, we will show the newmethod is always applicable.

Proposition 2. Te new method of Kronecker product de-
composition is well defned. Tat is, long(Smn)≠ 0 in Step (3)
holds, and buv ≠ 0, u � 1, 2, . . . , p; v � 1, 2, . . . , q􏼈 􏼉 is not
empty in Step (4).

Te proof of the proposition is presented in Appendix A.

Theorem 3. If C � A⊗B is not null matrix, where A and B

are m × n and p × q dimensional matrices, respectively, it
yields from the new method of Kronecker product de-
composition that C is decomposed into the Kronecker product
of 􏽢A and 􏽢B, where

􏽢A � long(B)A,

􏽢B �
1

long(B)
B.

(18)

Te proof of the theorem is presented in Appendix B.

Corollary  . If C � A⊗B is not null matrix, where B is
a p × q dimensional matrix satisfying long(B) � 1, it yields
from the new method of Kronecker product decomposition
that C is decomposed into the Kronecker product of 􏽢A and 􏽢B,
then

􏽢A � A,

􏽢B � B.
(19)

Teorem 3 shows the new method of Kronecker product
decomposition can obtain the exact solution if C exactly
equals a Kronecker product of A and B. However, C is
obtained by some estimation method in practice and it will
be afected by some random disturbance. Tat is,
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C � A⊗B + ε, (20)

where ε � (εuv)mp×nq is a matrix-valued white noise. Tat ε is
a matrix-valued white noise means that vec(ε) is a vector-
valued white noise.

Theorem 5. If C � A⊗B + ε is not null matrix, where A and
B are m × n and p × q dimensional matrices, respectively, A is
a nonzero matrix and long(B) � 1, it yields from the new
method of Kronecker product decomposition that C is
decomposed into the Kronecker product of 􏽢A and 􏽢B, then

lim
‖ε‖M↓0

􏽢B �
L2

B,

lim
‖ε‖M↓0

􏽢A �
L2

A.

(21)

Te proof of the theorem is presented in Appendix C.
Teorem 5 shows the new method of Kronecker product

decomposition is efective, that is, the results of de-
composition are close to the original matrices as long as the
disturbance ε is not too large.

4. Simulation

For sake of convenience, we have compiled a MATLAB
program for the new method of Kronecker product de-
composition in the appendix, named by “KronDecompo-
sition.m,” which is based on MATLAB R2020b version.

4.1. Simulation for Convergence. Consider

A �
10 10 −20

20 −30 10
􏼢 􏼣,

B �
−1 0.5

0.4 1
􏼢 􏼣,

C � A⊗B �

−10 5 −10 5 20 −10

4 10 4 10 −8 −20

−20 10 30 −15 −10 5

8 20 −12 −30 4 10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(22)

and C is decomposed into Kronecker product by our
“KronDecomposition.m” that

􏽢A �
10 10 −20

20 −30 10
􏼢 􏼣, 􏽢B �

−1 0.5

0.4 1
􏼢 􏼣, (23)

that is, at this time the Kronecker product decomposition
has no error.

In the following, we consider the Kronecker product
decomposition of C with random disturbance as follows:

C � A⊗B + λε, (24)

where ε follows the uniform distribution on the interval
[−1, 1] or the standard normal distribution, i.e., ε ∼ U(−1, 1)

or ε ∼ N(0, 1). For each λ, we simulate N times ε, and

compute the mean μ, standard deviation σ, maximum value
of the absolute value of maximum error maxError and
running time of the decomposition t in which the Kronecker
product decomposition is by our “KronDecomposition.m,”
see Table 1. Also, the corresponding results in which the
Kronecker product decomposition is by the optimization
method (6) are presented in Table 2.

Table 1 shows that the mean μ, standard deviation σ, and
maximum value maxError of the absolute value of maxi-
mum error by the newmethod decreases as the disturbance ε
decreases whether ε obeys a uniform distribution or a nor-
mal distribution, which is consistent with Teorem 5.

Comparing Tables 1 and 2, it shows that the absolute
value of maximum errors by the new method is a little
greater than those by the optimizationmethod (6). However,
the computing time of the newmethod is far less than that by
the optimization method (6).

4.2. Simulation for Computing Speed. In the subsection, we
will present a comparison of the new method and the op-
timization method (6) in terms of computing speed. We
consider the Kronecker product decomposition of C with
diferent dimensions as follows:

Cmp×nq � Am×n ⊗Bp×q. (25)

For the sake of simplicity, we set n � 4, q � 2, and p � m,
in which it is only to make the optimization method (6)
easier that we take p � m. Also, each row of Am×4 is [1, 2, 3,
4] and that of Bm×2 is [1, 1], where m � 1, 2, 3, · · ·. For
example,

C4×8 � A2×4 ⊗B2×2 �
1 2 3 4

1 2 3 4
􏼢 􏼣⊗

1 1

1 1
􏼢 􏼣

�

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(26)

We decompose Cm2×8 into a Kronecker product of m × 4
and m × 2 matrices by the new method “KronDecomposi-
tion.m” and the optimization method (6) for
m � 2, 4, 6, . . . , 50, and present the maximum error and
running time of the decomposition in Table 3, where Time1
is the running time of the new method “KronDecomposi-
tion.m,” Time2 is the running time of the optimization
method (6), maxError1 is the maximum error of the new
method “KronDecomposition.m,” and maxError2 is the
maximum error of the optimization method (6). Ten draw
the running time of the new method “KronDecomposi-
tion.m” and the optimization method (6) in Figure 1.

Table 3 shows there is no error using the new method
“KronDecomposition.m” to decompose Cm2×8 into Kro-
necker product for all m � 2, 4, 6, . . . , 50, and the error using
the optimization method (6) is also very small. And then,
Table 3 and Figure 1 show the running time by using the new
method “KronDecomposition.m” to decompose Cm2×8 into
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Table 1: Kronecker product decomposition for diferent random disturbances by the new method.

ε λ N μ σ maxError t

U(−1, 1)

1 1000 1.4972 0.4257 3.3119 0.0985
1 10000 1.4877 0.4485 4.189 0.7142
1 20000 1.4873 0.4432 4.5674 1.3077
0.1 1000 0.146 0.0427 0.3142 0.0723
0.1 10000 0.1479 0.0429 0.3792 0.7277
0.1 20000 0.1484 0.0437 0.3935 1.322
0.01 1000 0.0146 0.0043 0.0374 0.0654
0.01 10000 0.0148 0.0043 0.0373 0.6497
0.01 20000 0.0148 0.0043 0.0394 1.29

N(0, 1)

1 1000 2.6451 0.864 6.908 0.0824
1 10000 2.5984 0.8374 8.3167 0.6626
1 20000 2.5964 0.8378 8.1575 1.4022
0.1 1000 0.2543 0.0776 0.7356 0.0662
0.1 10000 0.2566 0.0791 0.7045 0.6721
0.1 20000 0.2573 0.0796 0.7861 1.3305
0.01 1000 0.0255 0.008 0.0586 0.066
0.01 10000 0.0258 0.008 0.0679 0.6537
0.01 20000 0.0257 0.008 0.0759 1.3183

Table 2: Kronecker product decomposition for diferent random disturbances by (6).

ε λ N μ σ maxError t

U(−1, 1)

1 1000 0.9483 0.1453 1.427 8.3599
1 10000 0.9461 0.1473 1.6125 105.3545
1 20000 0.9452 0.1496 1.6342 214.1129
0.1 1000 0.0948 0.0145 0.1425 9.9417
0.1 10000 0.0945 0.0147 0.1566 99.9426
0.1 20000 0.0946 0.0148 0.1573 203.773
0.01 1000 0.0095 0.0015 0.0146 8.5368
0.01 10000 0.0095 0.0015 0.0161 85.4399
0.01 20000 0.0095 0.0015 0.0157 171.651

N(0, 1)

1 1000 1.7623 0.4189 3.1831 11.1421
1 10000 1.7778 0.4328 3.9279 110.6974
1 20000 1.7827 0.43 4.0511 215.7052
0.1 1000 0.1779 0.0431 0.3359 10.8529
0.1 10000 0.1786 0.0436 0.4126 108.5869
0.1 20000 0.1778 0.0432 0.4523 217.6272
0.01 1000 0.0177 0.0042 0.0382 9.3313
0.01 10000 0.0178 0.0043 0.0415 92.6919
0.01 20000 0.0178 0.0043 0.0455 176.1501

Table 3: Comparison of running time and maximum error for Kronecker product decomposition.

m n p q Time1 Time2 maxError1 maxError2
2 4 2 2 0.0004 0.0063 0 6.98 × 10− 8

4 4 4 2 0.0003 0.0093 0 2.27 × 10− 7

6 4 6 2 0.0003 0.0164 0 1.84 × 10− 6

8 4 8 2 0.0004 0.0330 0 7.20 × 10− 7

10 4 10 2 0.0005 0.0398 0 4.88 × 10− 8

12 4 12 2 0.0007 0.0545 0 1.31 × 10− 7

14 4 14 2 0.0006 0.0804 0 1.94 × 10− 6

16 4 16 2 0.0007 0.1193 0 7.08 × 10− 8

18 4 18 2 0.0007 0.1232 0 7.08 × 10− 7

20 4 20 2 0.0009 0.9106 0 7.65 × 10− 7

22 4 22 2 0.0009 1.1837 0 7.66 × 10− 7

24 4 24 2 0.0013 1.8662 0 6.71 × 10− 7

26 4 26 2 0.0011 2.9251 0 2.00 × 10− 7

28 4 28 2 0.0013 6.0990 0 3.33 × 10− 8
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Kronecker product is far less than that by using the opti-
mization method (6) for all m � 2, 4, 6, . . . , 50. In summary,
as to decompose Cm2×8 into Kronecker product, the new
method “KronDecomposition.m” is much better than the
optimization method (6).

5. Applications of Kronecker
Product Decomposition

In this section, we consider the daily closing prices and the
daily volumes of China Overseas Holdings Group Limited
(Stock code: 000046), Shaanxi International Trust Company
Limited (Stock code: 000563), and CNPC Capital Company
Limited (Stock code: 000617), abbreviated as Stock 000046,
Stock 000563, and Stock 000617, respectively. Te data are
downloaded from the China Stock Market and Accounting
Research Database (CSMAR), and the time window is from
July 6, 2018 to July 5, 2023, which includes 1205 complete
records.

For the sake of clarity, we denote the time series by

P1(t) V1(t)

P2(t) V2(t)

P3(t) V3(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, t � 1, 2, 3, · · ·

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (27)

where P1(t) and V1(t) are the daily closing price and daily
volume of Stock 000046, P2(t) and V2(t) are the daily
closing price and daily volume of Stock 000563, and P3(t)

and V3(t) are the daily closing price and daily volume of
Stock 000617.

In the following, we will consider the logarithmic rates
(log rate) of daily closing prices and daily volumes of the
three stocks. Denote

Rt �

R11(t) R12(t)

R21(t) R22(t)

R31(t) R32(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, t � 2, 3, 4, · · ·

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (28)

where

Rk1(t) � ln
Pk(t)

Pk(t − 1)
􏼠 􏼡,

Rk2(t) � ln
Vk(t)

Vk(t − 1)
􏼠 􏼡, k � 1, 2, 3.

(29)

In order to obtain the frst-order matrix autoregressive
model, MAR (1), following as

Table 3: Continued.

m n p q Time1 Time2 maxError1 maxError2
30 4 30 2 0.0014 6.7932 0 1.39 × 10− 6

32 4 32 2 0.0016 12.6489 0 9.85 × 10− 8

34 4 34 2 0.0017 14.4383 0 4.06 × 10− 8

36 4 36 2 0.0018 20.3946 0 9.05 × 10− 8

38 4 38 2 0.0021 29.8060 0 3.74 × 10− 8

40 4 40 2 0.0019 38.2979 0 2.34 × 10− 8

42 4 42 2 0.0020 47.0558 0 8.53 × 10− 8

44 4 44 2 0.0020 55.4895 0 7.35 × 10− 8

46 4 46 2 0.0024 72.7245 0 5.78 × 10− 8

48 4 48 2 0.0029 82.6001 0 2.36 × 10− 8

50 4 50 2 0.0026 87.4809 0 1.49 × 10− 6

100
90
80
70
60
50
40
30
20
10
0
2 6 10 14 18 22 26 30 34 38 42 46 50

Time1
Time2

Figure 1: Time1 of the new method and Time2 of optimization method.
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Rt � C +ΦRt−1Ψ + εt, (30)

using the conditional least square method in Chen et al. [11],
we obtain that

C �

7.4784 × 10− 4 1.1913 × 10− 2

6.2472 × 10− 4 1.2221 × 10− 2

7.2695 × 10− 4 1.1984 × 10− 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (31)

and

Ψ′ ⊗Φ �

34.096 1.8981 46.098 2.1493 36.609 2.1070

543.12 30.236 734.31 34.237 583.16 33.564

28.482 1.5856 38.509 1.7954 30.582 1.7602

557.18 31.018 753.32 35.123 598.25 34.432

33.143 1.8451 44.810 2.0892 35.586 2.0482

546.37 30.417 738.71 34.442 586.64 33.764

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 10− 3
, (32)

where εt, t≥ 2􏼈 􏼉 is a 3 × 2-dimensional matrix white noise
series.

Using the new method of Kronecker product de-
composition, it yields from (32) that

Φ �

0.58080 0.71970 0.63446

0.53838 0.66714 0.58812

0.57405 0.71133 0.62708

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Ψ′ �
5.8130 × 10− 2 3.0629 × 10− 3

1 5.2691 × 10− 2
⎡⎣ ⎤⎦.

(33)

Tus, the MAR (1) model (32) follows as

Rt �

7.4784 119.13

6.2472 122.21

7.2695 119.84

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 10− 4

+

0.58080 0.71970 0.63446

0.53838 0.66714 0.58812

0.57405 0.71133 0.62708

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Rt−1
58.130 1000

3.0629 52.691
􏼢 􏼣 × 10− 3

+ εt,

(34)

where εt, t≥ 2􏼈 􏼉 is a 3 × 2-dimensional matrix white noise
series.

6. Conclusion

A new method of Kronecker product decomposition is
proposed, which is easy, convergent, stable, and fast. Te
new method is very applicable for exact decomposition, fast
decomposition, big matrix decomposition, and online de-
composition of Kronecker products.

Comparing with the known method of Kronecker
product decomposition, i.e., optimization method, the
computing speed of the new method is very faster than that
of the known method. If the matrix to be decomposed into
a Kronecker product just equals a Kronecker product of two
matrices, the new method can fast obtain its exact solution,
but the known method has a little error. If the matrix to be
decomposed into a Kronecker product does not equal
a Kronecker product of two matrices, the error of the new
method is a little bigger than that of the known method, but
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the computing speed of the new method is very faster than
that of the known method.

Tere are many directions to extend the scope of the new
method. It is a possible extension of the new method that
using weighted average instead of arithmetic average in Step
(4). Furthermore, the method can be applied in many felds
such as group theory, particle physics, matrix time series
analysis, and dynamic complex network modeling.

Appendix

A. Proof of Proposition 2

Assume long(Smn) � 0 in Step (3), that is, Smn � Op×q. It
yields from Step (2) that

Smm−1 + Cmm � Op×q,

Smm−1 − Cmm � Op×q,
(A.1)

and then

Smm−1 � Op×q,

Cmm � Op×q.
(A.2)

By the recursive method, we can obtain that

S1 � S2 � · · · � Smn � Op×q,

C2 � C3 � · · · � Cmn � Op×q.
(A.3)

Ten,

C1 � C2 � C3 · · · � Cmn � Op×q, (A.4)

thus C � Omp×nq, which contradicts the assumption
C≠Omp×nq. Tat is, long(Smn)≠ 0 in Step (3) holds.

Furthermore, it yields from long(Smn)≠ 0 that
Smn ≠Op×q, then B≠Op×q, so buv ≠ 0, u � 1, 2, . . . ,􏼈 p; v �

1, 2, . . . , q} is not empty in Step (4).

B. Proof of Theorem 3

It follows from Step (1) that

C(i−1)n+j � Cij � aijB, i � 1, 2, . . . , m; j � 1, 2, . . . , n,

(B.1)

where aij is the (i, j) element of A. Without loss of gen-
erality, we assume a11 ≠ 0, otherwise, S1 � Op×q and we
consider whether a12 equals zero, and so on. Owning to
a11 ≠ 0, it obtains from Step (2) that

S1 � a11B,

Sk � Sk−1 + sign
ak

a11
􏼠 􏼡akB, k � 2, 3, . . . ,mn,

(B.2)

where a(i−1)n+j � aij for all i � 1, 2, . . . , m and j � 1, 2, . . . , n,
and sign(·) is the sign function, i.e.,

sign(x) �

1, x> 0,

0, x � 0,

−1 x< 0.

⎧⎪⎪⎨

⎪⎪⎩
(B.3)

Tus,

Smn � 􏽘

p

i�1
􏽘

q

j�1
sign

aij

a11
􏼠 􏼡aijB � sign a11( 􏼁 􏽘

p

i�1
􏽘

q

j�1
aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌B.

(B.4)

At this time,

long Smn( 􏼁 � sign a11( 􏼁 􏽘

p

i�1
􏽘

q

j�1
aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · long(B), (B.5)

so it yields from Step (3) that

􏽢B �
1

long(B)
B. (B.6)

And then,
􏽢A � long(B)A. (B.7)

C. Proof of Theorem 5

First, we block the matrix-valued white noise ε into ε �

(Eij)m×n and denote E(i−1)n+j � Eij, where Eij is a p × q di-
mensional matrix for all i � 1, 2, . . . , m and j � 1, 2, . . . , n. It
follows from Step (1) that

C(i−1)n+j �
Δ

Cij � a(i−1)n+jB + E(i−1)n+j, i � 1, 2, . . . , m; j � 1, 2, . . . , n, (C.1)

where a(i−1)n+j � aij and aij is the (i, j) element of A.
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Case C.1. Te minimum of all elements of B is greater than
−1.

Noting that A is a nonzero matrix, denote

δ � min aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 aij ≠ 0, i � 1, 2, . . . , m; j � 1, 2, . . . , n􏼚 􏼛,

δ−
B � min buv

􏼌􏼌􏼌􏼌 u � 1, 2, . . . , p; v � 1, 2, . . . , q􏽮 􏽯,

(C.2)

then

δ > 0,

−1< δ−
B ≤ 1.

(C.3)

When ‖ε‖M < (δ(1 + δ−
B))/(2(mn + 1)), for any aij ≠ 0 it

follows that

max
u�1,2,...p,
v�1,2,...q,

buv +
1
aij

Eij(u, v)􏼨 􏼩> 1 −
1
δ

·
δ 1 + δ−

B( 􏼁

2(mn + 1)
� 1 −

1 + δ−
B

2(mn + 1)
> 0,

min
u�1,2,...p,
v�1,2,...q,

buv +
1
aij

Eij(u, v)􏼨 􏼩> δ−
B −

1
δ

·
δ 1 + δ−

B( 􏼁

2(mn + 1)
� δ−

B −
1 + δ−

B

2(mn + 1)
,

(C.4)

where Eij(u, v) is the (u, v) element of Eij. Tus,

max
u�1,2,...p,
v�1,2,...q,

buv +
1
aij

Eij(u, v)􏼨 􏼩> min
u�1,2,...p,
v�1,2,...q,

buv +
1
aij

Eij(u, v)􏼨 􏼩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, (C.5)

and then

Cij

�����

�����M
� aijB + Eij

�����

�����M
� aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · max
u�1,2,...p,
v�1,2,...q,

buv +
1
aij

Eij(u, v)􏼨 􏼩.

(C.6)

In the following, we will show the determining of ad-
dition or subtraction to compute Sk in Step (2).

Denote

l0 � argmin
l

l al

􏼌􏼌􏼌􏼌 ≠ 0,l � 1, 2, . . . ,mn􏽮 􏽯, (C.7)

then

al � 0, l � 1, 2, . . . ,l0 − 1. (C.8)

It yields from Step (2) that

Smn � 􏽘
mn

l�1
(−1)

IlCl � Sl0−1 + 􏽘
mn

l�l0

(− 1)
IlCl, (C.9)

where Sl0−1 � 􏽐
l0−1
l�1 (−1)IlEl, and we stipulate I1 � 0, and

Il �
0, Sl−1 + Cl

����
����M
≥ Sl−1 − Cl

����
����M

,

1, Sl−1 + Cl

����
����M
< Sl−1 − Cl

����
����M

,

⎧⎨

⎩ l � 2, 3, . . . ,mn. (C.10)

Denote the sign of the frst element whose absolute value
equals ‖Sl0−1‖M by “κ,” then
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κ �
+1, long Sl0−1􏼐 􏼑≥ 0,

−1, long Sl0−1􏼐 􏼑< 0,

⎧⎪⎨

⎪⎩
(C.11)

then it follows from (C.6) that

Sl0
� Sl0−1 + κ al0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 B +
1

al0

El0
􏼠 􏼡

� Sl0−1 + κ · sign al0
􏼐 􏼑Cl0

,

(C.12)

and the sign of the frst element with the largest absolute
value in Sl0

is also κ. Furthermore, using a series of complex
calculations, we can obtain that

Smn � Sl0−1 + κ 􏽘
mn

l�l0
al≠0

sign al( 􏼁Cl + 􏽘
mn

l�l0+1
al�0

(− 1)
IlEl

� 􏽘
mn

l�1
al�0

(−1)
IlEl + κ 􏽘

mn

l�l0
al≠0

sign al( 􏼁Cl

� 􏽘
mn

l�1
al�0

(−1)
IlEl + κ 􏽘

mn

l�1
sign al( 􏼁Cl

� 􏽘
mn

l�1
(−1)

IlEl + κ 􏽘
mn

l�1
al

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌B,

(C.13)

where the penultimate equation comes from sign(al) � 0 as
al � 0. Tus, it yields from (C.13) and Step (3) that

􏽢B �
Smn

long Smn( 􏼁
�
κ􏽐

m
i�1􏽐

n
j�1 aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌B + 􏽐
m
i�1􏽐

n
j�1(− 1)

I(i,j) Eij

long Smn( 􏼁
.

(C.14)

When ‖ε‖M < (δ(1 + δ−
B))/(2(mn + 1)) and ‖ε‖M↓0, it is

easy to show that

􏽘

m

i�1
􏽘

n

j�1
(−1)

I(i,j) Eij⟶
(·)M

Op×q,

argmax
suv

suv
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 u � 1, . . . , p; v � 1, . . . , q􏽮 􏽯⟶ κ􏽘

m

i�1
􏽘

n

j�1
aij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (C.15)

thus

􏽢B→
(·)M

‖ · ‖MB. (C.16)

And then,

lim
‖ε‖M↓0

􏽢B �
L2

B,

lim
‖ε‖M↓0

􏽢A �
L2

A.

(C.17)

Case C.2. Te minimum of all elements of B equals −1.
Similar to Case C.1, we can obtain from Step (2) that

Smn � Sl0−1 + 􏽘
mn

l�l0

(−1)
IlCl

� 􏽘
mn

l�1
(−1)

IlEl + 􏽘
mn

l�l0

(− 1)
IlalB.

(C.18)

In the following, we will investigate the more explicit
form of Il in (C.18).
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First, it follows from Step (2) that

Sl0
� Sl0−1 +(−1)

Il0Cl0
, (C.19)

then

Sl0
�

Sl0−1 + κCl0
, long Cl0

􏼐 􏼑≥ 0,

Sl0−1 − κCl0
, long Cl0

􏼐 􏼑< 0.

⎧⎪⎨

⎪⎩
(C.20)

Tat is,

Sl0
� Sl0−1 + κ · sign long Cl0

􏼐 􏼐 􏼑􏼑Cl0
. (C.21)

Denote

l1 � argmax
l

l | al ≠ 0,l>l0,l � 1, 2, . . . ,mn􏼈 􏼉, (C.22)

when ‖ε‖M < (δ(1 + δ−
B))/(2(mn + 1)), we have

Sl1
� 􏽘

l1

l�1

(−1)
IlEl + κ · sign long Cl0

􏼐 􏼐 􏼑􏼑al0
B + κ · sign long Cl0

􏼐 􏼐 􏼑􏼑
sign al1

􏼐 􏼑

sign al0
􏼐 􏼑

al1
B. (C.23)

In fact, it is obvious that

Sl1−1 � Sl0
+ 􏽘

l1−1

l�l0+1
(−1)

IlEl

� 􏽘

l1−1

l�1
l≠l0

(−1)
IlEl + κ · sign long Cl0

􏼐 􏼐 􏼑􏼑Cl0

� 􏽘

l1−1

l�1
(−1)

IlEl + κ · sign long Cl0
􏼐 􏼐 􏼑􏼑al0

B

Sl1
�

Sl1−1 + Cl1
, Sl1−1 + Cl1

�����

�����M
≥ Sl1−1 − Cl1

�����

�����M
,

Sl1−1 − Cl1
, Sl1−1 + Cl1

�����

�����M
< Sl1−1 − Cl1

�����

�����M
.

⎧⎪⎨

⎪⎩

(C.24)

Tus,

Sl1
� 􏽘

l1

l�1

(−1)
IlEl + κ · sign long Cl0

􏼐 􏼐 􏼑􏼑al0
B +(−1)

Il1al1
B.

(C.25)

Noting that ‖El‖M< (δ(1 + δ−
B))/(2(mn + 1)) for all l �

1, 2, . . . ,mn and

ali
B

�����

�����M
� ali

�����

�����M
≥ δ ≥l1

δ 1 + δ−
B( 􏼁

2(mn + 1)
≥ 􏽘

l1

l�1
(−1)

IlEl

���������

���������
M

, i � 0, 1, (C.26)

we know the sign of (−1)Il1al1
must be the same as that of

κ · sign(long(Cl0
))al0

, so

(−1)
Il1 sign al1

􏼐 􏼑 � κ · sign long Cl0
􏼐 􏼐 􏼑􏼑sign al0

􏼐 􏼑. (C.27)

Tat is,

(−1)
Il1 � κ · sign long Cl0

􏼐 􏼐 􏼑􏼑
sign al0

􏼐 􏼑

sign al1
􏼐 􏼑

� κ · sign long Cl0
􏼐 􏼐 􏼑􏼑

sign al1
􏼐 􏼑

sign al0
􏼐 􏼑

.

(C.28)
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It yields from (C.25) and (C.28) that (C.23) holds.
Analogically, we obtain that

Smn � 􏽘
mn

l�1
(−1)

IlEl + κ ·
sign long Cl0

􏼐 􏼐 􏼑􏼑

sign al0
􏼐 􏼑

􏽘

mn

l�l0
al ≠ 0

sign al( 􏼁alB

� 􏽘
mn

l�1
(−1)

IlEl + κ ·
sign long Cl0

􏼐 􏼐 􏼑􏼑

sign al0
􏼐 􏼑

􏽘

mn

l�1
al

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌B. (C.29)

Tus, it yields from (C.29) and Step (3) that

􏽢B �
Smn

long Smn( 􏼁
�

􏽐
mn
l�1(−1)

IlEl + κ · sign long Cl0
􏼐 􏼐 􏼑􏼑/sign al0

􏼐 􏼑􏼐 􏼑􏽐
mn
l�1 al

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌B

long Smn( 􏼁
. (C.30)

When ‖ε‖M < (δ(1 + δ−
B))/(2(mn + 1)) and ‖ε‖M↓0, it is

easy to show that

􏽘

m

i�1
􏽘

n

j�1
(−1)

I(i,j) Eij →
(·)M

‖ · ‖MOp×q,

long Smn( 􏼁→ κ ·
sign long Cl0

􏼐 􏼐 􏼑􏼑

sign al0
􏼐 􏼑

􏽘

mn

l�1
al

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(C.31)

thus

􏽢B⟶
(·)M

B. (C.32)

And then,

lim
‖ε‖M↓0

􏽢B �
L2

B,

lim
‖ε‖M↓0

􏽢A �
L2

A.

(C.33)

Data Availability

All data, models, and code generated or used during the
study appear in the submitted article.

Conflicts of Interest

Te author declares that there are no conficts of interest.

References

[1] C. F. Van Loan, “Te ubiquitous Kronecker product,” Journal
of Computational and Applied Mathematics, vol. 123, no. 1,
pp. 85–100, 2000.

[2] J. M. Ford and E. E. Tyrtyshnikov, “Solving linear systems
using wavelet compression combined with Kronecker product
approximation,” Numerical Algorithms, vol. 40, no. 2,
pp. 125–135, 2005.

[3] Z. Yang, R. Huang, W. Zhu, and J. Liu, “Accurate solutions of
structured generalized Kronecker product linear systems,”
Numerical Algorithms, vol. 87, pp. 797–818, 2021.

[4] J. Muñoz-Matute, D. Pardo, and V. M. Cal, “Exploiting the
Kronecker product structure of φ-functions in exponential
integrators,” International Journal for Numerical Methods in
Engineering, vol. 123, no. 9, pp. 2142–2161, 2022.

[5] J. Rifa and V. A. Zinoviev, “New completely regular q-ary
codes based on Kronecker products,” IEEE Transactions on
Information Teory, vol. 56, no. 1, pp. 266–272, 2010.
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