
Research Article
Approximate Solution of a Class of Highly Oscillatory Integral
Equations Using an Exponential Fitting Collocation Method

S. Khudhair Abbas, S. Sohrabi , and H. Ranjbar

Department of Mathematics, Faculty of Science, Urmia University, Urmia 57561-51818, Iran

Correspondence should be addressed to S. Sohrabi; s.sohrabi@urmia.ac.ir

Received 20 May 2023; Revised 1 October 2023; Accepted 19 October 2023; Published 6 November 2023

Academic Editor: Xian-Ming Gu

Copyright © 2023 S. Khudhair Abbas et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Tis paper deals with the numerical solution of a class of highly oscillatory Volterra integral equations by collocation methods
based on the exponential ftting technique. By reviewing the oscillatory structures of solutions of these problems, we construct an
exponential ftting collocation method which is best tuned to capture the qualitative behaviour of the solution of these equations.
We also investigate the convergence properties of the proposed collocation solution based on the interpolation remainder. Some
numerical examples are provided which illustrate the efciency and accuracy of the proposed method and confrm its superiority
over the polynomial collocation methods.

1. Introduction

Volterra integral equations (VIEs) usually arise in mathe-
matical modelling of many applied problems in sciences and
engineering [1–3].Te numerical solution of VIEs have been
extensively studied by a variety of numerical methods such
as collocation methods [1, 4], spectral methods [5, 6],
Galerkin methods [7, 8], and Runge–Kutta methods [9, 10].
On the other hand, modelling a variety of wave phenomena
leads to problems which usually contain an oscillatory
character. For example, determining the transmission and
refection coefcients of the direct scattering problem (as an
initial scattering data) for the initial value problem associ-
ated with the Korteweg–de Vries (KdV) equation leads to
problems which have oscillatory operators [11]. Further-
more, it is easy to check that the solution of the following
diferential equation:

−u″(x) + q(x)u(x) � ω2
u(x), x ∈ R,

u(0) � α,

u′(0) � β,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

satisfes the following integral equation:

u(x) − 
x

0

sin(ω(x − s))

ω
q(s)u(s)ds � α cos(ωx) + β

sin(ωx)

ω
,

(2)

which for large values of ω is an integral equation of os-
cillatory type. Preliminary studies indicate that conventional
methods cannot provide an accurate solution for such
problems due to the oscillatory behaviour of the underlying
problem. In order to overcome this difculty, initial studies
by researchers showed that integral operators with high
oscillation can be efciently approximated by Filon-type
method [12, 13], Levin-type method [14–17], steepest de-
scent method [18, 19], exponential ftting (EF) quadrature
rule [20–23], and Gaussian integration rule [18, 24, 25]. For
more information about these methods, we refer the reader
to see the books [22, 26].

In recent years, some authors also introduced numerical
methods for VIEs including highly oscillatory kernels or
rapidly input functions which are usually known as highly
oscillatory Volterra integral equations (HOVIEs). For VIEs
involving Bessel oscillators, Xiang et al. [27, 28] represented
the solution of the frst kind VIEs in terms of Bessel
transforms and then computed the resulting integrals by
a Filon-type method. Furthermore, Li et al. [29] applied an
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improved-Levin quadrature scheme to solve a special
Fredholm integral equation whose solution is much less
oscillatory than the kernel function. Other novel methods
can be found in [15, 30] and the references therein. For VIEs
with trigonometric kernels, the theoretical aspects of these
equations, such as the existence and uniqueness of solutions
and the high-oscillation properties of their solution, have
been studied by Brunner et al. [31, 32]. In addition, several
numerical methods have been proposed to approximate the
solution of mentioned equations such as collocation
method, Filon-type method, generalized multistep method,
EF method, meshless collocation methods, and radial basis
functions method [33–43]. Te accuracy of the proposed
methods depends heavily on the evaluation of the highly
oscillatory integrals in the discretization method and the
approximation of the solution of the underlying problem by
a suitable function.Tese schemes usually share the property
that the higher the oscillation, the better the approximation
i.e., their error behaves asω− α(α> 0) whenω goes to infnity.

Among these methods, an EF-type method possesses
a number of important advantages: it can be used to reach
user-requested accuracy to approximate oscillatory opera-
tions, and it is a procedure which can be used to approximate
a large variety of oscillatory operations (such as in-
terpolation, quadrature, and numerical solution of ordinary
diferential) because this method is chosen according to the
problem to be solved. Due to these properties, Zhao and
Huang [41] used an EF collocation method to construct
a scheme for solving a class of VIEs with periodic or os-
cillatory solutions. Tey also obtained the global conver-
gence order of the proposed method and proved that EF
collocation methods always perform much better in com-
parison with polynomial collocation methods with the same
order. Hence, this inspires us to apply EF methods for
approximating the solution of VIEs with highly oscillatory
trigonometric kernels. More precisely, we try to construct an
EF collocation method for the numerical computation of the
following second-kind HOVIE:

u(t) � f(t) + 
t

0
K(t, s)e

iω(t− s)
u(s)ds, t ∈ I ≔ [0, T],

(3)

where ω≫ 1 denotes the oscillation parameter and u(s) is
the function to be determined. Here, the functions K(t, s)

and f(t) are sufciently smooth on
D: � (t, s): 0≤ s≤ t≤T{ } and I, respectively.

Te outline of the paper is as follows. In Section 2, we
briefy review piecewise polynomial collocation method for
VIE (3). In addition, we introduce EF version of that method
to approximate the solution of VIE (3). In Section 3, we

investigate the convergence order of the proposed method.
Some numerical examples are presented to show the su-
periority of the proposed method in comparison with
classical methods in Section 4. Finally, we conclude the
paper in Section 5.

2. The Numerical Schemes for Solving
HOVIE (3)

Te aim of this section is twofold. First, we review piecewise
polynomial collocation method for HOVIE (3) which
provides some insight into various aspects of the con-
struction of efcient collocation methods for solving HOVIE
(3). Second, we introduce a novel collocation method for
solving HOVIE (3) by EF technique.

2.1. Classical Collocation Method. Let
Ih: � tn: � nh, n � 0, 1, . . . , N, Nh: � T  be a uniform
mesh for I � [0, T] and set σn � (tn, tn+1], � 0, 1, . . . , N − 1.
Also, let tn,j: � tn + cjh denote the collocation points with m

fxed collocation parameters 0≤ c1 < c2 < . . . < cm ≤ 1. In
piecewise polynomial collocation method, we approximate
the solution u of the HOVIE (3) by uh ∈ S

(−1)
m−1(Ih), where

S
(−1)
m−1 Ih(  � v: v|σn

∈ πm−1, 0≤ n≤N − 1 , (4)

and πm−1 denotes the space of all polynomials of total degree
≤m − 1. Since uh|σn

∈ πm−1, it can be expressed in the fol-
lowing form:

uh tn + sh(  � 

m

j�1
Lj(s)Un,j, (5)

where Lj(s) is Lagrange functions with respect to the col-
location parameters, which are defned by the following
equations:

Lj(s) � 

m

i�1
i≠ j

s − ci

cj − ci

, j � 1, 2, . . . , m.
(6)

Terefore, the collocation solution uh for equation (3)
can be defned by the following collocation equation:

uh tn,i  � f tn,i  + 
tn,i

0
K tn,i, s e

iω tn,i− s( )uh(s)ds,

n � 0, 1, . . . , N − 1, i � 1, . . . , m.

(7)

Inserting equation (5) into equation (7), we obtain the
following equation:
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Un,i � f tn,i  + e
iωtn,i 

tn,i

0
K tn,i, s e

− iωs
uh(s)ds

� f tn,i  + he
iωtn,i 

n−1

l�0


m

j�1
e

−iωtl

· 
1

0
K tn,i, tl + sh Lj(s)e

−iωshds Ul,j

+ heiωtn,i 

m

j�1
e

− iωtn 
ci

0
K tn,i, tn + sh Lj(s)e

− iωshds Un,j,

n � 0, 1, . . . , N − 1, i � 1, . . . , m,

(8)

where Un,i: � uh(tn,i). In general, highly oscillatory integrals
in system (8) cannot be found analytically. So, we have to
approximate them by suitable existing quadrature rules such
as Filon-type method, Levin-type method, steepest descent
method, and EF method. As we know, for highly oscillatory
equations involving the big oscillation parameter, poly-
nomial collocation methods require a large number of nodes
to achieve an acceptable approximate solution. Terefore, it
seems that polynomial-based collocation methods give
a useless estimation of the solution of highly oscillatory
problems unless the oscillation parameter ω is small. Te
above discussion implies that efcient collocation methods
can only be constructed by taking into account not only
suitable evaluation of the highly oscillatory integrals in
collocation equation but also an accurate approximation of
the solution of the underlying problem. Constructing such
methods is the main purpose of this paper and we do this in
the next subsection.

2.2. EF Collocation Method. EF is an efcient approach to
interpolate and integrate periodic or oscillatory functions.
Since this method is constructed by the structure of the
function to be solved, we frst need to study the oscillatory
structure of the solution of HOVIE (3). We commence by
reviewing the concept of oscillatory order from [44].

Defnition 1. Let C[a, b] be the space of all continuous
functions on the interval [a, b] endowed with the usual
maximum norm and n ∈ N0: � 0, 1, 2, . . .{ }. Te oscillatory
function φ ∈ C[a, b] is called ω-oscillatory of order n if there
exists a positive constant C independent of ω such that

ω− n
‖φ‖∞ ≤C, ∀ω> 1. (9)

If φ satisfes the above inequality with n � 0, it is called
a non-ω-oscillatory function.

Now, let us introduce some spaces that are used in the
next theorem.

Defnition 2. For complex-valued functions defned on the
interval X � [a, b], the spaces Cm(X) and Cp,q(X) are de-
fned as follows:

C
m

(X) � v: v
(m) ∈ C(X) , m ∈ N0,

C
p,q

(X) � v:
z

p
v

zx
,
z

q
v

zy
∈ C X

2
  , p, q ∈ N0,

(10)

where

∀v ∈ C
m

(X): ‖v‖Cm(X) ≔ 
j∈ 0,1,...,m{ }

u
(j)

�����

�����C(X)
,

v
(n)

�����

�����C(X)
≔ max

x∈X
v

(n)
(x)



,

∀v ∈ C
p,q

(X): ‖v‖ ≔ 
X2

|v(x, y)|
2dx dy 

1/2
.

(11)

Defnition 3. Te non-ω-oscillatory structured space
Cm
ω,0(X) is defned as follows:

C
m
ω,0(X) ≔ vω(x) ∈ C

m
(X): vω(.)

����
����m
≤ ρ , (12)

where the constant ρ> 0 depends on the function v but is
independent of ω.

Finally, the following theorem (see [45]) gives the
structure of the solution of HOVIE (3).

Theorem 4. Assume that K ∈ Cm,m(I2). Tus, for any
f ∈ Cm(I) with the structure

f(x) � f1(x) + f2(x)e
iωx

+ f3(x)e
− iωx

, fi ∈ C
m
ω,0(I),

i � 1, 2, 3,

(13)

the solution u of HOVIE (3) lies in u ∈ Cm(I) and has the
following form:

u(x) � v1(x) + v2(x)e
iωx

+ v3(x)e
− iωx

, vi ∈ C
m
ω,0(I),

i � 1, 2, 3.

(14)

We now consider introducing the EF collocationmethod
for solving HOVIE (3). To construct EF interpolation for-
mula, which approximate u in each subinterval σn, we use
the following formula:

u tn + sh( ≃ 
m

j�1
bj(s)u tn + cjh , n � 0, 1, . . . , N − 1,

(15)

and try to fnd functions bj(s) such that the operator

L[h, b]u(t) � u tn + sh(  − 
m

j�1
bj(s)u tn + cjh , (16)

vanishes for any elements of a suitable ftting spaceB where
b � [b1(s), b2(s), . . . , bm(s)]T. Te spaceBmust be selected
such that formula (15) captures the oscillatory structure of
the solutions of equation (3). According to Teorem 4, the

Journal of Mathematics 3



ftting spaceB should cover both oscillatory and polynomial
components of the solution of equation (3). Terefore, the
space

B � 1, x, x
2
, . . . , x

p
, e
±iωx

, xe
±iωx

, x
2
e
±iωx

, . . . , x
q
e
±iωx

 ,

p + 2q � m − 3,

(17)

is appropriate for the obtained form of u(x) which is
a hybrid set of polynomial and exponential functions. It is
crucial to note that for equations with a purely trigonometric
or polynomial solution, we have to chose p � −1 or q � −1,

respectively. For simplicity of the explanation, we restrict
our attention to the case of m � 4 and chose the ftting space
as follows:

B � 1, x, e
±iωx

 , (18)

but our analysis of the procedure can be easily extended to all
m> 4.

In this case,L[h, b]u(t) is required to be identically zero
for any element ofB. Tat is, the unknown coefcients bi(s)

can be obtained by solving the following linear system:

b1(s) + b2(s) + b3(s) + b4(s) � 1,

b1(s)c1 + b2(s)c2 + b3(s)c3 + b4(s)c4 � s,

b1(s) sin c1z(  + b2(s) sin c2z(  + b3(s) sin c3z(  + b4(s) sin c4z(  � sin(sz),

b1(s) cos c1z(  + b2(s) cos c2z(  + b3(s) cos c3z(  + b4(s) cos c4z(  � cos(sz),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

where z � ωh. System (19) can be solved by some well-
known numerical solvers such as Mathematica’s routine
LinearSolve (see the appendix).

In this position, we carry out the error of the proposed
EF interpolation formula using the ideas used by Ixaru and
Vanden Berghe [22] to obtain EF interpolation and its error
formula. Te details are as follows.

Theorem 5. If the function u(t) is diferentiable indefnitely
many times, then the expression of the error for the proposed
EF interpolation formula is given by the following equation:

L[h, b]u(t) � 
∞

j�0
h
4+j

TjD
j+2

D
2

+ ω2
 

2
u(t), (20)

where

T0 �
s
2

− b1(s)c
2
1 + b2(s)c

2
2 + b3(s)c

2
3 + b4(s)c

2
4 

2z
2 . (21)

Proof. It is easy to see that each element of the ftting space
B is also an independent solution of the following ODE:

D
2

D
2

+ ω2
 u(t) � 0, (22)

which usually called the reference diferential equation.
Following the EF theory [22], it follows that the error of the
proposed EF interpolation formula can be expressed in the
form (20) and the leading term of the error is given by the
following equation:

lte � h
4L
⋆
[h, b]

2z
2 D

2
D

2
+ ω2

 u(t), (23)

where

L
⋆
[h, b] �

L[h, b]t
2t�0

h
2

� s
2

− b1(s)c
2
1 + b2(s)c

2
2 + b3(s)c

2
3 + b4(s)c

2
4 .

(24)

Tis completes the proof. □

Remark 6. It is interesting to note that the limit of the
functions bi(s), i � 1, . . . , 4, and T0 as z approaches 0 is
equal to the Lagrange fundamental polynomials (with re-
spect to the collocation parameters ci) and the error of the
Lagrange interpolation, respectively. More precisely, we
have the following equation:

lim
z⟶0

bi(s) � Li(s), i � 1, . . . , 4,

lim
z⟶0

T0 �
s − c1(  s − c2(  s − c3(  s − c4( 

4!
.

(25)

Te above relation shows that the polynomial in-
terpolation is a special case of EF interpolation formula as
z⟶0.

We now turn our attention to HOVIE (3) and try to solve
it by an EF collocation method. To do this, instead of
polynomial interpolation, we approximate u(t) by the EF
interpolation formula (15). Hence, we can rewrite equation
(8) as follows:
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Un,i � f tn,i  + he
iωtn,i 

n−1

l�0


4

j�1
e

−iωtl

· 
1

0
K tn,i, tl + sh bj(s)e

−iωshds Ul,j

+ heiωtn,i 

4

j�1
e

− iωtn 
ci

0
K tn,i, tn + sh bj(s)e

− iωshds Un,j,

n � 0, 1, . . . , N − 1, i � 1, . . . , 4.

(26)

System (26) can be written in the following matrix form:

I4 − hBn Un � Fn + 
n−1

l�0
hB

(l)
n Ul, (27)

where

Bn ≔ e
iω tn,i− tn( ) 

ci

0
K tn,i, tn + sh bj(s)e

− iωshds

i,j�1,...,4

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,Un ≔ Un,1, . . . , Un,4 

T
,

B
(l)
n ≔ e

iω tn,i− tl( ) 
1

0
K tn,i, tl + sh bj(s)e

− iωshds

i,j�1,...,4

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠, Fn ≔ f tn,1 , . . . , f tn,4  

T
,

(28)

and I4 is the identity matrix of dimension 4. To ensure the
existence and uniqueness of the solution to the system (27),
we frst remark that all the elements of the matrices Bn are
bounded due to the continuity of the kernel function K. Tis
together with Neumann Lemma implies that the matrix I4 −

hBn is invertible for sufciently small h [1]. Hence, the
unique EF collocation solution for the HOVIE (3) on the
subinterval σn is given by equation (15).

Remark 7. As we have already said, highly oscillatory in-
tegrals arising in the matrices Bn and B(l)

n require to be
approximated by suitable quadrature rules. Te approach
taken in this paper to the accurate computation of such
integrals is the exponentially ftted Gaussian quadrature rule
[22]. In this method, the researchers constructed a ]-point
quadrature formula of the following form:


1

−1
f(x)dx≃ 

]

j�1
wkf xk( , (29)

where the quadrature points and weights can be found by the
fact that this rule is exact on the ftting space.

B � x
k
e
±iωx

, k � 0, 1, . . . , ] − 1 . (30)

For increasing values of ] and ω, the nonlinear system,
including the nodes and weights of the quadrature rule,
becomes increasingly ill-conditioned. Terefore, the authors
constructed an efcient subroutine to compute them, see

[22]. In addition, they showed that their proposed rule is
convergent and has the asymptotic order O(ω]− ]) where
] � [(] − 1)/2].

3. Convergence Analysis

Te aim of this section is to study the convergence property
of the proposed EF collocation method. We carry out this by
using the ideas used in the proof ofTeorem 2.2.3 in [1].Te
details are as follows.

Inserting collocation points tn,i into equation (3) yields
the following equation:

u tn,i  � f tn,i  + 
tn,i

0
K tn,i, s e

iω tn,i− s( )u(s)ds

� f tn,i  + he
iωtn,i 

n−1

l�0
e

−iωtl

· 
1

0
K tn,i, tl + sh u tl + sh( e

−iωshds 

+ heiωtn,i e
− iωtn 

ci

0
K tn,i, tn + sh u tn + sh( e

− iωshds ,

n � 0, 1, . . . , N − 1, i � 1, . . . , 4.

(31)

Subtracting equation (31) from equation (26), we obtain
the following equation:

εn,i � he
iωtn,i 

n−1

l�0
e

− iωtl 
1

0
K tn,i, tl + sh e

− iωsh
u tl + sh(  − uh tl + sh( ( ds 

+ he
iωtn,i e

− iωtn 
ci

0
K tn,i, tn + sh e− iωsh

u tn + sh(  − uh tn + sh( ( ds ,

(32)
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where εn,i: � u(tn,i) − Un,i. Let eh � u − uh denote the EF
collocation error. From Teorem 5, it follows that

eh tn + sh(  � u tn + sh(  − uh tn + sh( 

� 
4

j�1
bj(s) u tn,j  − Un,j  + O h

4
 

� 
4

j�1
bj(s)εn,j + O h

4
 .

(33)

Now, inserting equation (33) into equation (32) and
some manipulations, we get the following equation:

εn,i � he
iωtn,i 

n−1

l�0


4

j�1
e

− iωtl 
1

0
K tn,i, tl + sh bj(s)e

− iωshds εl,j

+ he
iωtn,i 

4

j�1
e

− iωtn 
ci

0
K tn,i, tn + sh bj(s)e

− iωshds 

· εn,j + ηn,i,

(34)

where

ηn,i ≔ he
iωtn,i 

n−1

l�0


4

j�1
e

− iωtl 
1

0
K tn,i, tl + sh e

− iωsh
O h

4
 ds 

+ he
iωtn,i 

4

j�1
e

− iωtn 
ci

0
K tn,i, tn + sh e

− iωsh
O h

4
 ds 

� O h
4

 .

(35)

Te obtained equations can be represented in matrix
notation as follows:

I4 − hBn εn � 
n−1

l�0
hB

(l)
n εl + ηn, (36)

where

εn ≔ εn,1, . . . , εn,4 
T
, ηn ≔ ηn,1, . . . , ηn,4 

T
. (37)

From the boundedness of the matrices Bn and Neumann
Lemma, we can deduce that I4 − hBn has a bounded inverse
for sufciently small h. Assuming ‖(I4 − hBn)− 1‖1≤D0 and
using equation (36), we obtain the following equation:

εn

����
����1≤D0D1 

n−1

l�0
h εl

����
����1 + O h

4
 , (38)

where we have assumed that ‖B(l)
n ‖1 ≤D1. Now using the

Gronwall inequality, we get the following equation:

εn

����
����1 � O h

4
 . (39)

Tus, the above equation together with the boundedness
of the functions bj(s), s ∈ (0, 1], implies that

eh tn + sh( 


 � 

4

j�1
bj(s)εn,j + O h

4
 




� O h

4
 ,

n � 0, 1, . . . , N − 1.

(40)

Finally, estimate (39) yields the convergence property of
the presented scheme, as is made precise in the following
theorem.

Theorem 8. Assume that both of functions f(t) and K(t, s)

in HOVIE (3) are sufciently smooth. Let uh be the EF col-
location approximation of u, which is defned by equation
(15). Ten, for any choice of the collocation parameters
ci ⊆ [0, 1], the following estimate hold.

u − uh

����
����∞ ≔ sup

t∈I
u(t) − uh(t)


 � O h

4
 . (41)

Remark 9. It is easy to check that the determinant D of
system (19) may vanish for some values of z. Tis implies
that the coefcients bi(s) display a pole-like behaviour
around these zeros. To illustrate this phenomenon, we plot
in Figure 1 the function D(z) for 0≤ z≤ 50 and four typical
collocation parameters. Terefore, in practice, h must be
chosen such that z � wh is not too close to the zeros of the
function D(z).

4. Numerical Results

In this section, we give some numerical examples to illustrate
the efciency and accuracy of the proposed EF collocation
method. Furthermore, we choose the equidistant points ci �

i − 1/3, i � 1, . . . , 4 as collocation parameters. In this case,
the functionD(z) is equal to 1/3(−32)sin5(z/6)cos(z/6) and
its zeros are given by the following equation:

zk � 12kπ, 6 2kπ −
π
2

 , 6 2kπ +
π
2

 , 12kπ + 6π. (42)

Terefore, to avoid dealing with singular matrices in the
system (27), we select the values of ω and h such that ωh≠ zk.
For numerical comparison, we report the diference between
exact and numerical solutions for both classical and EF
collocation methods in each example. We also obtain the
order of convergence of the proposed method for each
example to confrm the expected convergence orders of
Teorem 8. All numerical computations were performed by
Mathematica software.

Example 1. Consider the following HOVIE [46]:

u(t) � 1 + 
t

0
K(t, s)e

iω(t− s)
u(s)ds, t ∈ [0, 1], (43)

where K(t, s) � λ≠ 0. Te exact solution of this integral
equation is as follows:
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u(t) � 1 −
λ

λ + iω
+

λe
λt

λ + iω
e

iωt
. (44)

Te global errors of both classical and EF collocation
methods for diferent values of N are listed in Table 1. From
this table, we can observe that the errors decay as N in-
creases, i.e., both methods converge as h⟶ 0. However,

the results of this table imply that the EF collocation
methods always perform signifcantly better than the clas-
sical collocation methods. Figure 2 displays the errors ob-
tained in Table 1. Tis fgure again shows the accuracy of the
proposed methods and verifes the theoretical results.

Also, the orders of convergence of the proposed collo-
cation methods have been reported in Table 2. From Table 2,

Table 1: Te global errors for λ � 1 and a range of increasing values of N in Example 1.

ω Method N � 24 N � 25 N � 26 N � 27 N � 28 N � 29 N � 210

50 Classical 3.49e − 04 4.20e − 05 3.00e − 06 1.93e − 07 1.22e − 08 7.63e − 10 4.73e − 11
EF 1.45e − 05 1.71e − 06 1.20e − 07 7.74e − 09 4.87e − 10 3.05e − 11 1.91e − 12

100 Classical 2.32e − 03 1.74e − 04 2.10e − 05 1.50e − 06 9.67e − 08 6.09e − 09 3.81e − 10
EF 1.03e − 04 3.62e − 06 4.27e − 07 3.01e − 08 1.94e − 09 1.22e − 10 7.62e − 12

200 Classical 8.50e − 03 1.16e − 03 8.72e − 05 1.05e − 05 7.49e − 07 4.83e − 08 3.04e − 09
EF 1.41e − 04 2.58e − 05 9.05e − 07 1.07e − 07 7.53e − 09 4.83e − 10 3.05e − 11

400 Classical 2.11e − 02 4.25e − 03 5.80e − 04 4.36e − 05 5.25e − 06 3.75e − 07 2.42e − 08
EF 1.59e − 04 3.52e − 05 6.45e − 06 2.62e − 07 2.67e − 08 1.88e − 09 1.21e − 10

–3

–2

–1

0

1

2

3

0 10 20 30 40 50

(a)

–2

–1

0

1

2

0 10 20 30 40 50

(b)

–3

–2

–1

0

1

2

3

0 10 20 30 40 50

(c)

–2

–1

0

1

0 10 20 30 40 50

(d)

Figure 1: Te graph of D(z) for 0≤ z≤ 50 and four typical collocation parameters. (a) Equidistant points. (b) Radau points. (c) Lobatto
points. (d) Gauss points.
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Figure 2: Graph of the global errors versus N for Example 1. (a) ω � 50. (b) ω � 100. (c) ω � 200. (d) ω � 400.

Table 2: Orders of convergence for Example 1.

ω Method N � 24 N � 25 N � 26 N � 27 N � 28 N � 29 N � 210

50 Classical — 3.05 3.81 3.96 3.98 4.00 4.01
EF — 3.08 3.83 3.95 3.99 4.00 4.00

100 Classical — 3.74 3.05 3.81 3.96 3.99 4.00
EF — 4.83 3.08 3.83 3.96 3.99 4.00

200 Classical — 2.31 2.87 3.73 3.81 3.95 3.99
EF — 2.87 3.73 3.05 3.83 3.96 3.99

400 Classical — 2.31 2.87 3.73 3.05 3.81 3.95
EF — 2.18 2.45 4.62 3.29 3.82 3.96
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Figure 3: Graph of the global errors versus N for Example 2. (a) ω � 50. (b) ω � 100. (c) ω � 200. (d) ω � 400.

Table 3: Te global errors for a range of increasing values of N in Example 2.

ω Method N � 24 N � 25 N � 26 N � 27 N � 28 N � 29 N � 210

50 Classical 4.86e − 05 5.75e − 06 4.08e − 07 2.62e − 08 1.65e − 09 1.03e − 10 6.46e − 12
EF 2.73e − 06 2.53e − 07 1.76e − 08 1.13e − 09 7.08e − 11 4.40e − 12 2.66e − 13

100 Classical 3.47e − 04 2.39e − 05 2.86e − 06 2.03e − 07 1.31e − 08 8.25e − 10 5.16e − 11
EF 6.1e − 05 5.87e − 07 6.09e − 08 4.25e − 09 2.72e − 10 1.71e − 11 1.06e − 12

200 Classical 8.50e − 03 1.16e − 03 8.72e − 05 1.05e − 05 1.02e − 07 6.54e − 09 4.12e − 10
EF 1.41e − 04 2.58e − 05 9.05e − 07 1.07e − 07 1.04e − 09 6.68e − 11 4.20e − 12

400 Classical 2.11e − 02 4.25e − 03 5.80e − 04 4.36e − 05 7.11e − 07 5.07e − 08 3.27e − 09
EF 1.59e − 04 3.52e − 05 6.45e − 06 2.62e − 07 3.66e − 09 2.57e − 10 1.65e − 11
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we can see that both methods have the same convergence
order, which confrms the classical and the EF expected
order of Teorem 8.

Example 2. As a fnal example, consider the following
HOVIE:

u(t) � e
t

− 
t

0
e

iω(t− s)
u(s)ds, t ∈ [0, 1]. (45)

Te exact solution is as follows:

u(t) � 
t

0
F(s)e

− csds + f(0) e
ct

,

c � iω − 1, F(s) � f′(s) − iωf(s).

(46)

We employ the proposed collocation methods for
solving HOVIE (45) and report the errors for several values
of N in Table 3. We also plot (in logarithmic scale) the errors
embedded in Table 3 for both methods in Figure 3. Te
results are the same as the previous example: both collo-
cation methods converge as h⟶ 0, while the errors of the
new EF methods are much better than the classical poly-
nomial collocation methods.

Similar to the previous example, we list the orders of
convergence of both proposed methods in Table 4. Te
reported results of this table confrm the expected orders of
the presented methods.

5. Conclusions

We studied the construction of an EF collocationmethod for
VIEs with highly oscillatory trigonometric kernels. We also

carried out the global error of the presented method and
illustrated the efciency and accuracy of our scheme with
some numerical examples. Furthermore, we showed the
superiority of the proposed method in comparison with
classical collocation methods.

As we have seen, the design of efcient numerical
methods for solving HOVIE (3) requires the approximation
of its solution and the discretization of the highly oscillatory
integrals arising in the numerical scheme.With this in mind,
we will introduce higher-order numerical methods for
solving HOVIE (3) in our future work.

Appendix

In this section, we derive the explicit solution of the linear
system (19). Assume that M denotes the coefcient matrix
associated with system (19) and Mi(s) be a matrix which
formed by replacing the i-th column of M by the column
vector k where

k � [1, s, sin(sz), cos(sz)]
T
. (A.1)

Ten, the solution of system (19) using Cramer’s rule is
given by the following equation:

b1(s) �
M1(s)

D
, b2(s) �

M2(s)

D
,

b3(s) �
M3(s)

D
, b4(s) �

M4(s)

D
,

(A.2)

where

M1(s) �
1
D

−s sin z c2 − c3( (  − sin z c2 − c4( (  + sin z c3 − c4( ( ( (

+ sin z s − c3( (  − sin z s − c4( (  + sin z c3 − c4( ( ( c2

+ sin z s − c4( (  − sin z c2 − c4( ( ( c3

+ sin z c2 − c3( (  − sin z s − c3( ( ( c4 + sin z s − c2( (  c4 − c3( ,

M2(s) �
1
D

−s sin z c1 − c3( (  − sin z c1 − c4( (  + sin z c3 − c4( ( ( (

+ sin z s − c3( (  − sin z s − c4( (  + sin z c3 − c4( ( ( c1

Table 4: Orders of convergence for Example 2.

ω Method N � 24 N � 25 N � 26 N � 27 N � 28 N � 29 N � 210

50 Classical — 3.07 3.82 3.96 3.99 4.00 3.99
EF — 3.43 3.84 3.96 4.00 4.01 4.05

100 Classical — 3.97 3.06 3.82 3.95 3.99 4.00
EF — 6.79 3.63 3.84 3.97 3.99 4.01

200 Classical — 2.31 2.87 3.73 6.69 3.96 3.99
EF — 2.87 3.73 3.05 6.68 3.96 3.99

400 Classical — 2.31 2.87 3.73 5.94 3.81 3.95
EF — 2.18 2.45 4.62 6.17 3.83 3.96
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+ sin z s − c4( (  − sin z c1 − c4( ( ( c3

+ sin z c1 − c3( (  − sin z s − c3( ( ( c4 + sin z s − c1( (  c4 − c3( ,

M3(s) �
1
D

−s sin z c1 − c2( (  − sin z c1 − c4( (  + sin z c2 − c4( ( ( (

+ sin z s − c2( (  − sin z s − c4( (  + sin z c2 − c4( ( ( c1

+ sin z s − c4( (  − sin z c1 − c4( ( ( c2

+ sin z c1 − c2( (  − sin z s − c2( ( ( c4 + sin z s − c1( (  c4 − c2( ,

M4(s) �
1
D

−s sin z c1 − c2( (  − sin z c1 − c3( (  + sin z c2 − c3( ( ( (

+ sin z s − c2( (  − sin z s − c3( (  + sin z c2 − c3( ( ( c1

+ sin z s − c3( (  − sin z c1 − c3( ( ( c2

+ sin z c1 − c2( (  − sin z s − c2( ( ( c3 + sin z s − c1( (  c3 − c2( ,

D � c1 − sin c2 − c3( z(  − sin c2 − c4( z(  + sin c3 − c4( z( ( ( 

+ c2 sin c1 − c3( z(  − sin c1 − c4( z(  + sin c3 − c4( z( ( 

− c3 sin c1 − c2( z(  + c3 sin c1 − c4( z(  − c3 sin c2 − c4( z( 

+ c4 sin c1 − c2( z(  − c4 sin c1 − c3( z(  + c4 sin c2 − c3( z( .
(A.3)
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