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ANOVA is one of the most important tools in comparing the treatment means among diferent groups in repeated measurements.
Te classical F test is routinely used to test if the treatment means are the same across diferent groups. However, it is inefcient
when the number of groups or dimension gets large.We propose a smoothing truncation test to deal with this problem. It is shown
theoretically and empirically that the proposed test works regardless of the dimension. Te limiting null and alternative dis-
tributions of our test statistic are established for fxed and diverging number of treatments. Simulations demonstrate superior
performance of the proposed test over the F test in diferent settings.

1. Introduction

In bioscience, given a treatments, a central interesting
problem is to compare the treatment mean diferences. To
deal with this problem, one usually employs the traditional
univariate ANOVA to analyse independent random samples
Yi1, . . . , Yin from the i th treatment, i � 1, 2, . . . , a. A critical
assumption is that the sample Yij 

n

i�1 is from an N(μi, σ2)
population.Ten, Yij, i � 1, . . . , a, j � 1, . . . , n is a sequence
of independent random variables satisfying

Yij � μi + εij, (1)

where εij follows the N(0, σ2) distribution. Let τi � μi − μ,
where μ � a− 1

a
i�1 μi. Ten, 

a
i�1τi � 0, and τi is referred to

as the efect of the i th treatment. Furthermore, model (1) can
be rewritten as

Yij � μ + τi + εij. (2)

Let Yi· � n− 1
n
j�1 Yij and Y·· � N− 1

a
i�1

n
j�1 Yij, where

N � an. Terefore, for model (2), one of the important
problems is to test if the treatment means are diferent,
which is amount to testing

H0: τ � τ1, . . . , τa( ′ � 0
→

versusHa: τ≠ 0
→

. (3)

Te classical F test is routinely employed in practice and
takes the form

Fa �
MStr
MSE

, (4)

where MStr � n/a − 1
a
i�1 (Yi· − Y··)

2 is the mean sum of
squares due to treatments, and
MSE � 1/N − a

a
i�1

n
j�1 (Yij − Yi·)

2 is the mean sum of
squares due to errors. In the current research, we relax the
normality assumption by assuming that εij are independent
and identically distributed noises of mean zero and variance
σ2.

Te properties of the F test have been well studied in the
conventional low-dimensional setting. It enjoys desirable
properties when the dimension a is fxed, see, for example,
Casella and Berger [1]. Te F test is also robust to the
normality assumption, if a is fxed and n⟶∞ [2]. Akritas
and Papadatos [3] (Teorem 2.1) proved that if n⟶∞ as

a⟶∞, then under H0,
��
a

√
(Fa − 1)⟶d N(0, 2). Tis

shows that the F test is asymptotically accurate as a⟶∞
when the normality assumption does not hold.
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For a range of applications including anomaly detection,
medical imaging, and genomics, the means of two levels are
typically identical or are quite similar in the sense that they
possibly difer in only a small number of levels or groups. In
other words, under the alternative H1, the treatment efects
are sparse. Tis is equivalent to the sparse alternative, see,
e.g., Cao and Worsley [4] and Taylor and Worsley [5]. In
these sparse settings, the F test is not powerful, and the
power of the F test in general is fast decreasing as the number
of levels increases. Tis motivates us to propose a smoothing
truncation test which smoothly downweights the contri-
butions of those data with treatment means close to zero.
Tis is desired since those data with small treatment means
are just noise. Our test is diferent from the adaptive Neyman
test for goodness-of-ft in Fan [6] which works for two-
sample means without repeated measurements. Our test is
also diferent from the multisample ANOVA tests for high-
dimensional means by Chen et al. [7] where the number of
samples is fxed, since testing problem (3) for model (1) can
be regarded as a test for n-sample a-dimensional means,
with diverging n and a.

We establish asymptotic distributions of the proposed
test under the null and the alternative. Simulations dem-
onstrate superior performance of the proposed test over the
classical F test. Our test performs well in general and is
particularly much more powerful against sparse alternatives
than the F test in high-dimensional settings.

Our approach can be extended to heteroscedastic and
unbalance cases considered in Akritas and Papadatos [3]. It
is also obviously applicable to general multifactor models in
Wang (2004) [8]. Since the one-way F statistic coincides with
the lack-of-ft statistic for testing if a regression function is
constant against a general alternative at the repeated mea-
surement settings, thus our methodology can be applied to
this problem, with the current repeated measurements
replaced by the residuals under the general alternative.
Interested readers are recommended to refer to Härdle and
Mammen [9] and Hart [10], among others.

Te remainder of the paper is organized as follows. In
Section 2, we introduce the smoothing truncation test. In
Section 3, we establish the asymptotic distributions of the
test under the null and the alternatives. In Section 4, we
conduct simulations to compare fnite sample performances
of diferent tests.

2. Smoothing Truncation Test

Let zin �

���������

n(Yi· − Y··)



/
����
MSE

√
, which normalizes the esti-

mator, Yi· − Y··, of the i th treatment efect. Ten, the F
statistic in (3) can be rewritten as

Fn �
1

a − 1


a

i�1
z
2
in, (5)

where each treatment receives the same weight in the av-
erage. For fxed a, Fn is asymptotically χ2-distributed with
degrees of freedom a, and only those treatments of nonzero
means contribute to the power of the test. Hence, the F test
can be improved if diferent weights are used in its

defnition. To this end, we downweigh the contributions of
those data with small treatment efect by smoothly trun-
cating the contribution of each zin:

Tn � 
a

i�1
wiz

2
in, (6)

where wi � K(0) − K(z2
in/hn) with K being a kernel function

which can be taken as the standard normal density function.
Te smoothing parameter hn controls the size of weight.
Intuitively, z2

in is large if the i th treatment efect is nonzero;
otherwise, it is small noise. Terefore, weight wi gets smaller
as the treatment efect gets closer to zero, and the truncation
test should be more powerful than the F test. Like the F test,
large values of Tn suggest rejection of the null, so it is a right-
tailed test. Other ways can also be developed to downweigh
the contributions of small z2

in and will be explored in the
future.

3. Asymptotic Distributions

To study the distributions of Tn under the null and alter-
native hypotheses, we frst introduce some notations. For
a vector τ � (τ1, . . . , τa)′ ∈ Ra, defne the L2-norm by
‖τ‖2 � (

a
i�1|τi|

2)1/2. Let Ia be the a × a identity matrix, and
let zin �

���������

n(Yi· − Y··)



/σ, then zin � ηzin, where
η � σ/

����
MSE

√
.

3.1. Smoothing Truncation Test with Fixed Number of
Treatments. Te following condition on the kernel function
is needed for establishing the limiting distributions of Tn.

Condition 1. Assume K(·) is uniformly continuous and
satisfes supx∈R|xK(x)| � M<∞ for some M> 0.

Condition 1 is satisfed for a wide range of kernel
functions, for example, the standard normal density func-
tion. Te boundness of the frst moment of the kernel was
used in Jiang [11], and the uniformly continuous assumption
is satisfed by common choice of kernel functions, such as
the standard normal density kernel and the Epanechnikov
kernel.

Theorem 1. Let T∗n � 
a
i�1 z2

in(K(0) − K(z2
in/hn)). Assume

that hn⟶ 0 as n⟶∞. Ten,
Tn − T∗n⟶ 0 inprobability, as n⟶∞.

Proof. Let g(x) � x2(K(0) − K(x2/hn)). Ten, g(x) is
a uniformly continuous function. When a is fnite, it is
obvious that η � 1 + op(1). Note that for each given i,
zin � Op(1). Ten, supi|zin − zin| � op(1). It follows from
the continuous mapping theorem that
Tn − T∗n⟶ 0 in probability.

For studying the power, we consider a sequence of local
Pitman alternatives H(1)

an : τ � n− 1/2τn, where τn is a sequence
of vectors in Ra such that τn⟶ τ∗ with 0< ‖τ∗‖2 <∞. □

Theorem 2. Assume that Condition 1 holds and
σ2 � var(Yij)<∞. Ten, as n⟶∞,
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(i) Under H0, T∗n /K(0)⟶d χ2(a − 1), where and
thereafter “⟶d ” represents converging in distribution

(ii) Under H(1)
an , T∗n /K(0)⟶d χ2(a − 1, ‖τ∗‖22/σ

2)

Proof. We observe that

T
∗
n

K(0)
�

1
K(0)



a

i�1
z
2
in K(0) − K

z
2
in

hn

  ⎡⎣ ⎤⎦

� 
a

i�1
z
2
in 

2
−

1
K(0)



a

i�1
z
2
inK

z
2
in

hn

 .

(7)

Note that zin �

���������

n(Yi· − Y··)



/σ. Let εij � (Yij − μ)/σ and
vn,i � n− 1/2

n
j�1εij. Ten, vni, s are independent random

variables with mean
�
n

√
τi/σ and variance one, and

zin � n
− 1/2



n

j�1
εij −

�
n

√
Y·· − μ( 

σ
+

�
n

√
τi

σ
� vn,i − vn, (8)

where vn � a− 1
a
i�1vn,i � 1/a1⊤a vn, with vn � (vn,1, . . . , vn,a)⊤

and 1a being an a-dimensional column vector of all com-
ponents equal to one. For fxed a, by the Cramér–Wold
device, vn −

�
n

√
τ/σ is asymptotically normal distribution

with mean zero and variance-covariance matrix Ia. It is
straightforward to verify that



a

i�1
z
2
in � 

a

i�1
vn,i − vn 

2
� v⊤n  vn. (9)

Ten, there exists an orthogonal matrixQ and a diagonal
matrix Λ � diag 1a− 1, 0  such that Σ � Q⊤ΛQ. Let
Q⊤ � (q1, . . . , qa), where qi is the i-th row ofQ, and let v∗n �

Qvn with v∗n,i � q⊤i vn being the i th entry of v∗n . Ten, v∗n −

Q
�
n

√
τ/σ � Q(vn −

�
n

√
τ/σ) is asymptotically normal with

mean zero and variance-covariance matrix Ia. Recall from
(2) that



a

i�1
z
2
in � v ∗⊤n Λv∗n

� 
a− 1

i�1
v
∗2
n,i.

(10)

It follows that

(i) Under H0, v∗n is asymptotically normal with mean
zero and variance-covariance matrix Ia, so that


a
i�1(vn,i − vn)2⟶d χ2(a − 1). Ten T∗n /K(0)

⟶d χ2(a − 1), since the 2nd term on the righthand
of (1) is o(1) for z2

inK(z2
in/hn)≤Mhn⟶ 0, as

n⟶∞.
(ii) Under H(1)

an ,
�
n

√
τ/σ⟶ τ∗/σ, and v∗n is asymptoti-

cally normal with mean τ∗i /σ and variance-
covariance matrix Ia, so that 

a
i�1(vn,i − vn)2

⟶d χ2(a − 1, ‖τ∗‖22/σ
2). Hence, T∗n /K(0)⟶d

χ2(a − 1, ‖τ∗‖22/σ
2).

Combining Teorems 1 and 2 gives us the following
asymptotic distribution of Tn. □

Theorem 3. Assume that conditions in Teorem 2 hold.
Ten, as n⟶∞,

(i) Tn/K(0)⟶d χ2(a − 1)

(ii) Tn/K(0)⟶d χ2(a − 1, ‖τ∗‖2/σ2)

Te above theorem demonstrates that the smoothing
truncation can detect local alternatives close to the null at rate
of

�
n

√
, which is the optimal rate that all regular parametric

tests can achieve.

3.2. Smoothing Truncation Test with Diverging Number of
Treatments. Let Λ � nσ− 2‖τ‖22. To obtain the limiting null
and alternative distributions, we need additional
conditions.

Condition 2. n⟶∞, as a⟶∞; hn

��
a

√
� o(1), as

n⟶∞

Condition 3. Suppose the Cramér condition holds for Yij, i.e.,

E Yij




m
≤m!M

m− 2σ
2
i

2
, (11)

for all i and j, where M is a positive constant, m≥ 2, and
σ2i � var(Yij)<∞.

Te frst part of Condition 2 means that we consider
high-dimensional settings with a diverging number of
populations. It is a setting considered in Akritas and
Papadatos [3]. Condition 2 restricts the smoothing pa-
rameters hn. Tis is a wild condition. As a⟶∞, it only
requires hn � o(a− 1/2). Condition 3 is trivially fulflled if Yij,
s are bounded; for Gaussian variables, it obviously holds.

By the defnition of Fn, we have

Fn � η(a − 1)
− 1



a

i�1
z
2
in. (12)

Te following result shows that the diference between
zin and zin is op(1) uniformly in i � 1, . . . , a for extremely
large a.

Lemma 1. Assume that a � O(exp(nδ)) for 0≤ δ < 1/2 and
sup1≤i≤a|τi| � O(n). Ten, sup1≤i≤a|zin − zin| � op(1), as
n⟶∞.

Proof

(i) We show that η � σ/
����
MSE

√
� 1 + Op(

��
un

√
). It is

easy to show the identity:
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1
n − 1



n

j�1
Yij − Yi· 

2
�

1
n − 1



n

j�1
Yij − μi 

2
−

n

n − 1
Yi· − μi( 

2

� Ln1,i − Ln2,i.

(13)

Ten, by the defnition of MSE and the triangle
inequality,

MSE − σ2


≤ a
− 1



a

i�1
Ln1,i − σ2


 + a

− 1


a

i�1
Ln2,i




≡ Qn1 + Qn2.

(14)

Hence, for any C> 0, we have

P Qn1


> unC  � P 

a

i�1
Ln1,i − σ2


> unaC⎛⎝ ⎞⎠

≤P sup1≤i≤a Ln1,i − σ2


> unC 

≤ 

a

i�1
P Ln1,i − σ2


> unC .

(15)

Let ε∗ij � (Yij − μi)/σ. Ten, ε∗ij 
n

j�1 is a sequence of
iid random variables with mean zero and variance 1

and satisfying Condition 3. Using the Bernstein
inequality, we obtain that

P
n − 1

n
Ln1,i − σ2




> unC  � P 

n

j�1
ε∗2ij − 1 




> nun

C

σ2
⎛⎝ ⎞⎠

≤ 2 exp −
n
2
u
2
nC

2

2σ4 nvar ε∗2i1  + nunCM/σ2  

⎧⎨

⎩

⎫⎬

⎭.

(16)

Combining (5) and (6) yields that

P Qn1


> unC ≤ 2a exp −
n
2
u
2
nC

2

2 nvar ε∗2i1  + nunCMσ2  

⎧⎨

⎩

⎫⎬

⎭⟶ 0, (17)

if a � o(exp min(nu2n, nun) ). Tus, Qn1 � Op(un).
Let Q∗n2 � a− 1

a
i�1(Yi − μi)

2/σ2. Ten, Qn2 � nσ2/
n − 1Q∗n2 and Q∗n2 � a− 1

a
i�1(n− 1

n
j�1εij)

∗2. It fol-
lows that, for a positive sequence un and positive
constant C,

P Q
∗
n2


> unC ≤P 

a

i�1
n

− 1


n

j�1
ε∗ij⎛⎝ ⎞⎠

2

> aunC
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤ 
a

i�1
P n

− 1


n

j�1
ε∗ij⎛⎝ ⎞⎠

2

> unC
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤ 
a

i�1
P 

n

j�1
ε∗ij




> n

����
unC

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(18)

By the Bernstein inequality, we have

P |Q
∗
n2( |> unC≤ 2a exp −

n
2
unC

2 nvar ε∗i1(  + n
�����
unCM


 

⎧⎨

⎩

⎫⎬

⎭⟶ 0, (19)
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if a � o(exp min(nun, n
��
un

√
) ). Terefore,

Q∗n2 � Op(un). Ten, by (4), MSE � σ2 + Op(un),
and thus, η − 1 � Op(

��
un

√
).

(ii) Since zin � ηzin, we have

zin − zin � (η − 1)zin � Op

��
un

√
( zin. (20)

Rewrite zin � n− 1/2
n
j�1ε
∗
ij − n− 1/2(Y·· − μi)/σ ≡ ξn1,i −

ξn2,i, where ε∗ij � (Yij − μi)/σ. Note that ε∗ij 
n

j�1 is a sequence
of iid random variables with mean zero and variance σ ∗2i � 1
and satisfying Condition 3. It follows from the Bernstein
exponential inequality that

P sup1≤i≤a ξn1,i


> u
∗
n C ≤ 

a

i�1
P 

n

j�1
ε∗ij




>

����

nu∗n


C⎛⎝ ⎞⎠

≤ 2a exp −
nu
∗2
n C

2

2 nσ ∗2i +

����

nu∗n


CM  

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
⟶ 0,

(21)

if a � o(exp min(u ∗2n ,
�
n

√
u∗n ) ). Hence, sup1≤i≤a|ξn1,i| �

Op(u∗n ). Note that

ξn2,i � n
− 1/2

a
− 1



a

i�1
n

− 1


n

j�1

Yij − μi 

σ
+ n

− 1/2 μ − μi( 

σ

� n
− 1/2

a
− 1



a

i�1
n

− 1


n

j�1
ε∗ij −

n
− 1/2τi

σ

≡ ]n −
n

− 1/2τi

σ
,

(22)

where ]n � Op(u∗n ) and n− 1/2supi|τi|/σ � O(u∗n ) if
sup1≤i≤a|τi| � O(

����
nu∗n


). In fact,

P ]n


> u
∗
n C ≤P 

a

i�1


n

j�1
ε∗ij



> n
3/2au∗nC⎛⎝ ⎞⎠

≤P there are at least one i such that
n

j�1
ε∗ij



> n
3/2

unC⎛⎝ ⎞⎠

≤ 
a

i�1
P 

n

j�1
ε∗ij



> n
3/2

u
∗
n C⎛⎝ ⎞⎠.

(23)

Applying the Bernstein exponential inequality again, we
get that

P ]n


> u
∗
n C ≤ 2a exp −

n
3
u
∗2
n C

2

2 nσ ∗2i + n
3/2

u
∗
nCM  

⎧⎨

⎩

⎫⎬

⎭⟶ 0, (24)

if a � o(exp min(n2u∗2n , n3/2u∗n ) ). Ten, sup1≤i≤a|ξn2,i|

� Op(u∗n ), and thus, sup1≤i≤a|zin| � Op(u∗n ), which com-
bined with (12) leads to sup1≤i≤a|zin − zin| �

Op(
��
un

√
u∗n ) � op(1), if we take un � n− 1/4 and u∗n � n1/2,

under the condition of a � o(exp(n1/2)). □

Lemma 2. Assume that Conditions 1–3 hold. Under H0, we
have


a
i�1z

2
in − (a − 1)
�����
a − 1

√ �
�
2

√
Z + op(1)⟶d N(0, 2), (25)

where Z is a standard normal random variable.

Proof. Under H0, we have Yij � μ + εij. ByTeorem 2.1(b) of
Akritas and Paradatos [3], we have

��
a

√
(Fn − 1)⟶d N(0, 2),

as a⟶∞, assuming that EY4
ij <∞. Tat is,��

a
√

(Fn − 1) �
�
2

√
Z + op(1), where Z is a standard normal
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random variable. Ten, by (3) and part (i) of the proof for
Lemma 1,



a

i�1
z
2
in � (a − 1)η− 1

Fn

� (a − 1) 1 + op(1)  1 +

���
2
aZ



+ op

1
��
a

√  

� a − 1 +
��������
2(a − 1)Z


+ op(

��
a

√
).

(26)

Hence, 
a
i�1z2

in − (a − 1)/
�������
2(a − 1)


� Z + op(1)⟶d

N(0, 1). □

Theorem 4. Assume that Conditions 1–3 are satisfed. Ten,
under the null hypothesis H0: τi � 0 for i � 1, . . . , a,

T
∗
n − K(0)(a − 1)

K(0)
�����
a − 1

√ ⟶d N(0, 2), (27)

as n⟶∞.

Proof. Observe that

T
∗
n

K(0)
�

1
K(0)



a

i�1
z
2
in(K(0) − K

z
2
in

hn

 ⎡⎣ ⎤⎦

� 
a

i�1
z
2
in 

2
−

1
K(0)



a

i�1
z
2
inK

z
2
in

hn

 .

(28)

It follows that

T
∗
n − K(0)(a − 1)

K(0)
�����
2a − 2

√ �


a
i�1 z

2
in 

2
− (a − 1)

�����
2a − 2

√ −
1

K(0)
�����
2a − 2

√ 

a

i�1
z
2
inK

z
2
in

hn

 

≡ Kn1 + Kn2.

(29)

Since

E 

a

i�1
z
2
inK

z
2
in

hn

 ⎛⎝ ⎞⎠ � 

a

i�1
E z

2
inK

z
2
in

hn

  

� 
a

i�1
E hn

z
2
in

hn

K
z
2
in

hn

  ,

≤ 
a

i�1
Mhn � Mahn,

(30)

by the Markov inequality,

P
1

K(0)
�����
2a − 2

√ 

a

i�1
z
2
inK

z
2
in

hn

 > ε⎛⎝ ⎞⎠≤
Mahn

K(0)
�����
2a − 2

√ �
1

�
2

√
K(0)

Mhn

��
a

√

������
1 − 1/a

√ ⟶ 0, (31)

if hn

��
a

√
� o(1). Ten, Kn2 � op(1). By Lemma 2, we have

Kn1⟶
d

N(0, 1), as a⟶∞. Tese, combined (10) and
Slusky’s theorem, yield the result of theorem.

To study the power of the test, we consider the same local
alternatives as Akritas and Paradatos [3], which specifes

H
(2)
an : τi � a

3/4
n

− 1/2


i/a

(i− 1)/a
g(t)dt, (32)

where g(t) is a continuous function on [0, 1] such that

1
0 g(t)dt � 0. With such local alternatives, we have

λ � σ − 2
a
3/2



a

i�1


i/a

(i− 1)/a
g(t)dt 

2

� σ − 2
a

− 1/2


a

i�1
g
2

ti(  � σ − 2
a
1/2θ2(1 + o(1)),

(33)

where ti ∈ [i/a, (i − 1)/a] and θ2 � 
1
0 g2(t)dt. Obviously,

H(2)
an converges to H0 at the rate of a− 1/4n− 1/2. □

Lemma 3. Assume that Conditions 1–3 hold. Under H(2)
an , we

have

6 Journal of Mathematics




a
i�1z

2
in − (a − 1)
�����
a − 1

√ �
���
2Z

√
+ σ − 2θ2 + op(1)⟶d N σ − 2θ2, 2 .

(34)

Proof. Under Ha, we have Yij � μ + τi + εij. Ten,
�
n

√
Yi· − Y··(  �

�
n

√
Yi· − τi(  −

�
n

√
Y·· − τi( . (35)

Let Y∗ij � Yij − τi. Ten,

Y
∗
ij � μ + εij, (36)

Y
∗
i· � Yi· − τi, and Y

∗
·· � Y··, since 

a
i�1τi � 0. Tus, by (27),

�
n

√
Yi· − Y··(  �

�
n

√
Y
∗
i· − Y
∗
··  +

�
n

√
τi. (37)

Let z∗in �
�
n

√
(Y
∗
i· − Y
∗
·· )/σ. It follows from (3) that

Fn �
σ

����
MSE

√
1

a − 1


a

i�1

�
n

√ Y
∗
i· − Y
∗
·· 

σ
+

�
n

√
τiσ

⎧⎨

⎩

⎫⎬

⎭

2
σ

����
MSE

√
1

a − 1


a

i�1
z
∗2
in +

nτ2i
σ2

+ 2z
∗
in

�
n

√ τi

σ
 

≡ Ln1 + Ln2 + Ln3,

(38)

where

Ln1 �
σ

����
MSE

√
1

a − 1


a

i�1
z
∗2
in ,

Ln2 �
σ

����
MSE

√
1

a − 1


a

i�1
n
τ2i
σ2

,

Ln3 �
σ

����
MSE

√
2

a − 1


a

i�1
z
∗
in

�
n

√ τi

σ
.

(39)

Since Ln1 � (σ/
����
MSE

√
)(1/a − 1)

a
i�1z∗2ij is the F statistic,

denoted by F∗n with a little bit of abuse of notation, for model
(12) with all τi � 0, F∗n � (σ/

����
MSE

√
)(a − 1)− 1

a
i�1z∗2in , using

Teorem 2.1 of Akritas and Paradatos [3], we have��
a

√
(F∗n − 1)⟶d N(0, 2), or equivalently, F∗n � 1 +

����
2/aZ

√
+

op(a− 1/2), so that
��
a

√
Ln1 �

��
a

√
F
∗
n

�
��
a

√
+

�
2

√
Z + op(1).

(40)

Note that the 2nd term is

Ln2 �
1

a − 1


a

i�1
n
τ2i
σ2

1 + op(1)  � (a − 1)
− 1

n
‖τ‖

2
2

σ2
1 + op(1) 

� (a − 1)
− 1λ 1 + op(1) 

� a
− 1/2σ − 2θ2 1 + op(1) ,

(41)

and the 3rd term is

Ln3 �
2

a − 1


a

i�1

�
n

√ Y
∗
i· − Y
∗
··

σ
�
n

√ τi

σ

�
2n

a − 1
σ − 1



a

i�1
τi

Y
∗
i·

σ
.

(42)

It is straightforward to show that E(Ln3) � 0 and
var(Ln3) � (4n/(a − 1)2)(‖τ‖22/σ

2) � (4λ/(a − 1)2). Since
λ �

��
a

√
σ− 2θ2(1 + o(1)), Ln3 � Op(a− 1

�
λ

√
) � op(a− 1/2).

Tus,
��
a

√
Ln2 � σ − 2θ2(1 + op(1)), and

��
a

√
Ln3 � op(1), which

together with (10)–(14) yields that
��
a

√
Fn − 1(  �

�
2

√
Z + σ − 2θ2 + op(1). (43)

Ten, by (3),



a

i�1
z
2
in �

����
MSE

√

σ

× a − 1 +
�����
a − 1

√ �
2

√
Z + σ− 2θ2  + op(

��
a

√
) .

(44)

Hence,


a
i�1z

2
in − (a − 1)
�����
a − 1

√ �
�
2

√
Z + σ − 2θ2 + op(1)⟶ N σ− 2θ2, 2 . (45)

□

Theorem 5. Under the alternative hypothesis H(2)
an : τn ≠ 0

→
,

T
∗
n − K(0)(a − 1)

K(0)
�����
a − 1

√ ⟶d N σ− 2θ2, 2 , (46)

as n⟶∞, provided that Conditions 1-3 are satisfed.
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Proof. Since

T
∗
n

K(0)
�

1
K(0)
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i�1
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(47)

it can be rewritten that

T
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�����
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i�1 z
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Note that

E 
a

i�1
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inK
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inK
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a

i�1
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(49)

It follows that from Markov’s inequality, for any ε> 0,

P
1

�����
a − 1

√ 

a

i�1
z
2
inK

z
2
in

hn

 > ε⎛⎝ ⎞⎠

≤
Mahn

ε
�����
a − 1

√ �
M

���
ahn



ε
������
1 − 1/a

√ ⟶ 0,

(50)

if
��
a

√
hn⟶ 0. Tus, Kn4 � op(1). By Lemma 3, we have

Kn3⟶ N(σ − 2θ2, 2). Ten, by Slusky’s theorem and (15),
the result of theorem holds. □

Corollary 1. Under the null hypothesis
H0: τi � 0, i � 1, . . . , a,

Tn − K(0)(a − 1)

K(0)
�����
a − 1

√ ⟶d N(0, 2), (51)

as n⟶∞, provided that Conditions 1–3 are satisfed.

From Corollary 1, one gets the rejection region of the Tn

test:

W � Tn: Tn >K(0)(a − 1) +
�
2

√
Z1− αK(0)

�����
a − 1

√
 ,

(52)

where Z1− α is the upper α-percentile of N(0, 1).

Corollary 2. Under the alternative hypothesis H(2)
an : τn ≠ 0

→
,

Tn − K(0)(a − 1)

K(0)
�����
a − 1

√ ⟶d N σ − 2θ2, 2 , (53)

as n⟶∞, provided that Conditions 1–3 are satisfed.

It is obvious that the power of Tn for testing problem H0
against H(2)

an is

P Tn ∈W|H
(2)
an  � P

Tn − K(0)(a − 1)/K(0)
�����
a − 1

√
− σ − 2θ2 

�
2

√ >Z1− α −
σ− 2θ2

�
2

√
⎧⎨

⎩

⎫⎬

⎭

� 1 − Φ Z1− α −
σ − 2θ2

�
2

√ .

(54)
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Tis means that the test still has power to distinguish
H(2)

an from H0.
Finally, it is worth pointing out that our theorems above

are established under the equal sample size setting, but they
can be extended to allow for diferent sample sizes. Since it
involves in more dedicated proofs, we leave this as an open
problem that can be explored in the future.

4. Numerical Results

In this section, we consider the numerical performance of
the proposed test Tn and compare it with the F test.

4.1. Simulations. Without loss of generality, we take μ � 0
and σ � 1 in model (1). Our test involves kernel function K

and the bandwidth hn. We take K as the standard normal
density function and set hn � 100(na)− 0.2 which satisfes
Condition 2. For the following two examples, we draw
samples from the normal distribution for model (1). Spe-
cifcally, for each level i, we draw a sample of size n from
N(τi, 1) with τi being diferent in the following two ex-
amples. For each setting, we conduct 1000 simulations to
calculate the critical values of tests under the null hypothesis.
Tat is, for signifcance level α � 5%, we calculate the values
of the test statistics in each simulation and then use the
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Figure 1: Powers of the tests. Dashed: Tn, dotted: Fn.

Table 1: Comparison of the powers between the F test and the proposed test.

a Critical value of Fn Power of Fn Critical value of Tn Power of Tn

50 1.3565 0.8796 1.1601 0.9980
100 1.2463 0.7191 2.3446 0.9930
150 1.1992 0.6006 3.6925 0.9920
200 1.1715 0.5163 5.4545 0.9810
250 1.1528 0.4545 6.7949 0.9720
300 1.1390 0.4078 8.0685 0.9690
350 1.1284 0.3713 10.3332 0.9700
400 1.1199 0.3421 11.3591 0.9640
450 1.1129 0.3183 13.0851 0.9500
500 1.1070 0.2984 14.7558 0.9490
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100(1 − α) th percentile of the realized values of test statistics
in 1000 simulations. To evaluate the global power of test, we
generate 1000 normally distributed samples from this al-
ternative and evaluate the test statistics for each sample. Te
power of test is calculated as the proportion of the realized
values of test statistic larger than the critical value.

Example 1. (global power). We consider diferent model
sizes with n � 100 and a � 50 × k for k � 1, 2, . . . , 10, and
want to test the hypotheses

H0: τi � 0, ∀i � 1, . . . , a againstHa: τ1 � 1, τ2 � · · · � τa � 0. (55)

Te simulation results are summarized in Table 1. It is
shown that the power of the F test drops signifcantly as the
number a of levels increases while the power of our proposed
test drops just slightly. It is clear that our proposed test
signifcantly outperforms the F test.

Example 2. (local power). With diferent model sizes of n �

200 and a � 2, 20, 200, 2000, we test

H0: τ � τ0 versusHan: τ � (1 − θ)τ0 + θτ1, (56)

with θ � 0, 0.1, . . . , 1, τ0 � (0, . . . , 0)T,
τ1 � 0.5 × (− 1, . . . , − 1, 1, . . . , 1)T, where τ1 has the 1st half
components of − 0.5 and the 2nd half of 0.5. Figure 1 displays
the powers of tests, which verifes desired results on the
power: when θ � 0, the null and the alternative coincide, so
that the power of test should be the signifcance level α; as θ
increases, the alternative gets further away from the null, and
the power should become larger. It is seen that the proposed
smoothing truncation test has same performance as the F test
in low-dimension settings and ismuch better than the F test in
high-dimensional settings. In particular, our test exhibits
robust performance as the dimension changes, but the F test
has difculty to distinguish the alternatives from the null.

4.2. A Real Example. In this section, we apply the proposed
test and the traditional F test to analyse a breast tumor
dataset. Tis dataset contains 107 cDNA microarray exper-
iments [12]. As indicated in Benito et al. [13], there were two
distinct experiment biases in the data which might be from
diferent handling procedures. Jiang et al. [14] corrected the
systematic batch biases in the cDNA microarray data
and published the batch-adjusted dataset on the website:
https://www.stat.unc.edu/postscript/papers/marron/GeneArr
ay/. Te data consist of vectors representing relative ex-
pression of a � 5961 genes for each of which there are n � 107
total cases. To perform high-dimensional tests, we keep the
samples unchanged for frst two genes and centralized and
standardized the sample for each of the remaining genes.
Hence, in this transformed dataset, the two samples for the
frst two genes have diferent means from the others, which
results in a high-dimensional sparse setting for hypothesis
testing problem (3). Now, we employ the traditional F test and
the proposed test for this problem. With h � 10(an)− 0.2, we
calculate the p values of F andTn as 1 and 0.024.Tat is, at 5%
level, the F test fails in distinguishing the population mean

diferences, but our test is successful for this testing problem.
Tis is expected, since the F test loses its power from 5959
noise samples and ours wins due to its ability in reducing the
contributions of noises.
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Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] G. Casella and R. L. Berger, Statistical Inference, Tomson
Learning, Boston, MA, USA, 2nd edition, 2002.

[2] S. F. Arnold, “Asymptotic validity of F-tests for the ordinary
linear model and the multiple correlation model,” Journal of
the American Statistical Association, vol. 75, no. 372,
pp. 890–895, 1980.

[3] M. G. Akritas and N. Papadatos, “Heteroscedastic one-way
ANOVA and lack-of-ft tests,” Journal of the American Sta-
tistical Association, vol. 99, pp. 368–382, 2004.

[4] J. Cao and K. J. Worsley, “Te detection of local shape changes
via the geometry of Hotelling’s T2 felds,” Annals of Statistics,
vol. 27, pp. 925–942, 1999.

[5] J. E. Taylor and K. J. Worsley, “Random felds of multivariate
test statistics, with applications to shape analysis,” Annals of
Statistics, vol. 36, pp. 1–27, 2008.

[6] J. Fan, “Test of signifcance based on wavelet thresholding and
neyman’s truncation,” Journal of the American Statistical
Association, vol. 91, no. 434, pp. 674–688, 1996.

[7] S. X. Chen, J. Li, and P.-S. Zhong, “Two-sample and ANOVA
tests for high dimensional means,” Annals of Statistics, vol. 47,
no. 3, pp. 1443–1474, 2019.

[8] H. Wang, Rank Tests in Multifactor Heteroscedastic ANOVA
and Repeated Measures Designs with Large Number of Levels,
Ph.D. thesis,Te Pennsylvania State University, Pennsylvania,
PA, USA, 2004.
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