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Let R be a ring, G be the group of all units of R, and X � R − G∪ 0{ }. In this paper, we investigate | av(x) | x ∈ X{ }| �

| o(x) | x ∈ X{ }| for a ring R, where av(x) is the set of all vertices of the zero-divisor graph of R adjacent to x. We also investigate
the question on zero-divisor graphs posed in the literature such that when the equality o(1 − e) � av(e) holds in a commutative
regular ring R with identity. Here, e is a nonzero idempotent of R which is not the identity element of R.

1. Introduction

In 1988, Beck introduced zero-divisor graphs for commu-
tative rings [1]. Te modifed defnition of a zero-divisor
graph was given by Anderson and Livingston [2]. Let R be
a ring with identity 1≠ 0, Z(R) be the set of zero-divisors,
and Z∗(R) � Z(R)\ 0{ } is the set of nonzero zero-divisors of
R. We defne a zero-divisor graph Γ(R) with vertex set
Z∗(R) such that vertex x is adjacent with vertex y if and only
if xy � 0. Tis graph has been studied extensively by several
authors like [3, 4]. Te notion has been developed for
noncommutative rings in [5]. Te articles [6, 7] provided
similar notions for the commutative semigroups. Te re-
search idea of regular group action in rings was introduced
by Han (see [8–11]).

Troughout, X will denote the set of all nonzero nonunit
elements of R, G is the group of all units of R, and J is the
Jacobson radical of R. We consider a group action of G on X

given by (g, x)→gx from G × X→X, called the regular
action. For each x ∈ X, we defne the orbit of x as ol(x) �

gx |∀g ∈ G  under the given group action and av(x) is the
set of all vertices of Γ(R) which are adjacent to x, for all
x ∈ X. In fact, avl(x) � annl(x)\ 0{ }. In [8], the authors

showed that if R is a local ring, Jn ≠ 0 � Jn+1 and X are
a union of n orbits under the regular action on X by G.

Te frst draft of this work appeared in [12] where, in
Section 3, we investigate some properties of regular action in
noncommutative rings with X as a fnite union of orbits
under the regular action. In Section 4, we will investigate the
question on zero-divisor graphs posed by Han in 2010 [13],
that is, for any idempotent element e (≠0, 1) in a commu-
tative regular ring R with identity, when does the equality
o(1 − e) � av(e) hold?

2. Preliminary Notes

In this section, we recall some lemmas.

Lemma 1 (see [9]). Let R be a ring with identity 1 such that
J≠ (0) and X is a union of n orbits under the regular action
on X by G. If there exists x ∈ J such that xn ≠ 0, then

(i) X � o(x)∪ o(x2)∪ · · · ∪ o(xn)

(ii) R is a local ring
(iii) Jn+1 � (0), that is, J is a nilpotent ideal of R

(iv) Jn is one-dimensional vector space over R/J
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Lemma 2 (see [9]). If R is a ring such that X is a union of n

orbits under the regular action on X by G, then there exists
x ∈ X with xn+1� 0≠ xn if and only ifR is a local ring and X is
the set of all right zero-divisors of R.

A sufcient condition is given in [13], for a ring to be
a division ring.

Lemma 3. Let R be a regular ring with identity. If R has no
nontrivial idempotents, then R is a division ring.

In [14], authors proved the following lemma.

Lemma 4. Let R be a commutative local ring with identity 1.
Tere are nontrivial rings R1 and R2 such that R≃R1 × R2 if
and only if there exists a nontrivial idempotent e ∈ R. In this
case, one can choose R1� Re and R2 � R(1 − e).

In [15], authors proved the following lemma.

Lemma 5. Let R be a local ring such that X is a union of n

distinct orbits under the regular action of G on X. If
Jn ≠ 0 �Jn+1, then the set of all ideals of R is exactly

ann(x), ann x
2

 , . . . , ann x
n

( , R, (0) . (1)

3. Regular Action in Rings

In this section, we investigate | av(x): x ∈ X{ }| in commu-
tative rings with identity.

Lemma 6. If there exists x ∈ X such that X � ann(x), then R

is a local ring.

Proof. Let x ∈ X such that X � ann(x), implies X is
a unique maximal ideal of R. Terefore, J � X � ann(x) and
R are a local ring. □

Theorem 7. Let I be ideal of R and X + I � {x + I ∣ x + I is
a nonunit}\ I{ } be the subset of R/I. Ten, G/I � g + I

| g∈ G} � G + I is the group of all units of R/I. Moreover, the
action (G + I) × (X + I)→X + I defned by (g + I, x +

I)→gx + I is a regular action of G + I on X + I.

Proof. Let g + I, g′ + I ∈ G + I. Ten, (g + I)(g′ + I)

� gg′ + I ∈ G + I, 1+I ∈ G + I and g− 1 + I ∈ G + I such that
(g + I)(g− 1 + I) � gg− 1 + I � 1+I. So, G + I is the group
consisting of all units of R/I.

Let x + I ∈ X + I and g + I, g′ + I ∈ G + I, then (g + I)

(x + I) � gx + I ∈ X + I. In addition, (1 + I)(x + I)� 1x +

I � x + I and (g + I)((g′ + I)(x + I)) � (g + I)(g′x + I) �

g(g′x) + I) � (gg′)x + I � (gg′ + I)(x + I) � ((g + I) (g′
+ I))(x + I). Tus, G + I acts on X + I. □

Theorem 8. Let R be a commutative ring with identity and X

is a union of n orbits under the regular action of G on X. If
I(≠ (0), R) is ideal of R, then there exists im, where 1≤ im ≤ n,
such that I � o(xi1

)∪ o(xi2
)∪ · · · o(xim

) and |I|≤ n, where I

is a nontrivial left ideal of R.

Proof. Let X � o(x1)∪ o(x2)∪ · · · ∪ o(xn). Since I≠ (0) is
an ideal of R, then ∀ x ∈ I. Tere exists i and g ∈ G such that
x � gxi. So, xi ∈ I and o(xi)⊆ I. Tus, there exists im, where
1≤ im ≤ n, such that I � o(xi1

)∪ o(xi2
)∪ · · · o(xim

). Hence,
|I|≤ n. □

Theorem 9. Let R be a commutative ring with identity,
X � o(x1)∪ o(x2)∪ · · · ∪ o(xn), I is a nontrivial ideal of R

and I≠X. Ten, there exists an integer m such that X + I is
a union of m distinct orbits under the regular action of G + I

on X + I.

Proof. Suppose x1, x2, . . . , xk ∈ I and I � o(x1)∪ o(x2)

∪ · · · ∪ o(xk). Now, we have X + I � o(xi1
+ I)∪ o(xi2

+ I)∪ · · · ∪ o(xim
+ I), m≤ n − k, and xij

+ I is nonunit,
1≤ j≤m. On the other hand, for each x + I ∈ X + I, there
exist xij

∈ X, (1≤ ij ≤ n) and g ∈ G such that x � gxij
.

Hence,

x + I � gxij
+ I � (g + I) xij

+ I  ∈ o xij
+ I . (2)

Tus, X + I⊆ o(xi1
+ I)∪ o(xi2

+ I)∪ · · · ∪ o(xim
+ I).

However, ol(xij
+ I)⊆X + I, for each 1≤ j≤m. Consequently,

X + I � o(xi1
+ I)∪ o(xi2

+ I)∪ · · · ∪ o(xim
+ I). □

Theorem 10. Let R be a commutative ring with identity,
Jn ≠ (0) � Jn+1, X is a union of n orbits under the regular
action of G on X, then | av(x) | x ∈ X{ }| � | o(x) | x ∈{

X}| � n.

Proof. Let X � o(x1)∪ o(x2)∪ · · · ∪ o(xn). We know that
| av(x) |∀x ∈ X{ }|≤ n. We show that | av(x) | x ∈ X{ }| � n.
Te proof is done by induction on n. For n � 2, let
X � o(x1)∪ o(x2). So, | av(x) | x ∈ X{ }|≤ 2 and ann(xi)≠ 0,
where i � 1, 2. Suppose av(x1) � av(x2). If x∈ ann(x1), then
xx1 � 0 and so there exists an elementg ∈ G such thatx � gx1
or x � gx2. Terefore, gx1x2 � 0. Tis implies, x1x2 � 0 and
o(xi)⊆ ann(x1) � ann(x2), where i � 1, 2.Tus, X � ann(x1)

is the unique maximal ideal, which implies that R is a local ring
and ann(x1)≠ ann(x2) (by Lemma 5), which is a contradic-
tion. Tus, | av(x) | x ∈ X{ }| � 2.

Now, suppose the assertion holds for n−1 and let
xi, xj ∈ X such that ann(xi) � ann(xj). Without loss of
generality, let ann(x1) � ann(x2). If xi∈ ann(x1) for all i,
1≤ i≤ n, then R is a local ring, and by Lemma 5,
ann(x1)≠ ann(x2), which is a contradiction. Tus, there
exists an i such that ann(x1) � ann(x2) does not contain xi,
where 1≤ i≤ n. Assume that ann(x1) does not contain xj,
and I � ann(xj). By Lemma 3, there exist an integer m such
that X + I is a union of m orbits under the regular action of
G + I on X + I. By induction hypothesis, | av(x + I){

| x + I ∈ X + I}| � m. Moreover, ann(xj) does not contain
x1 and x2. We consider following two cases. □

Case 11. o(x1 + I)≠ o(x2 + I). In this case, ann(x1 +

I)≠ ann(x2 + I). Ten, there exists an element s + I∈
ann(x1 + I) and s + I ∉ annl(x2 + I). Terefore, (s + I)(x1 +

I) � I but (s + I)(x2 + I)≠ I. So sx1 ∈ I and sx2 ∉ I. On the
one hand, sx1xj � 0 implies xj ∈ annr(sx1) � ann(sx1).
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Terefore, xjsx1 � 0 and xjs ∈ ann(x1). On the other hand,
sx2xj ≠ 0; hence, xj ∉ annl(sx2) � ann(sx2). Also, xjsx2 ≠ 0.
Tus, ann(x2) � ann(x1) does not contain xjs. Consequently,
ann(x1)≠ ann(x2), which is a contradiction.

Case 12. We frst let o(x1 + I) � o(xi + I), for every
xi + I ∈ R/I. Ten, there exists gi ∈ G such that
xi + I � gix1 + I. We show that R is a local ring, and M �

rx1 + i | r ∈ R, i ∈ I  is the unique maximal left ideal of R.
Let N be an ideal of R such that N⊈M and x ∈ N be an
arbitrary element. Since x + I ∈ R/I, there exists an orbit
o(xi + I)⊆X + I such that x + I ∈ o(xi + I). Tis yields the
existence of an element g′ ∈ G such that x + I � g′
xi + I � g′gx1 + I. Terefore, x � g′gx1 + i and x ∈M. So,
N⊆M. Terefore, R is a local ring and ann(x1)≠ ann(x2)

(by Lemma 5).
Secondly, suppose that there is an element xk + I ∈ R/I

such that o(xk + I)≠ o(x1 + I). Ten, ann(xk)≠ ann(x1)

(follows similarly as in Case 1) and ann(xk)≠ ann(x2). Now,
let I� ann(xk). Ten, by the same argument as in Case 1, the
result follows.

Theorem 13. Let R be a commutative local ring with
identity 1 such that X is a union of a fnite number of orbits
under the regular action on X by G, then | av(x): x ∈ X{ }| �

| o(x): x{ ∈ X}|.

Proof. Let R be a commutative local ring with identity, then
there exists an element x ∈ R, such that xn+1 � 0, xn ≠ 0 (by
Lemma 2) and X � o(x)∪ o(x2)∪ o(x3)∪ · · · ∪ o(xn) (by
Lemma 1). Since for every i (i � 1, 2, . . ., n)
xn− i+1, xn− i+2, . . . , xn ∈ av(xi), then ann(xi) � o(xn−i+1)∪ o

(xn−i+2)∪ · · · ∪ o(xn). So, we have

ann(x) � o x
n

( ,

ann x
2

  � o x
n−1

 ∪ o x
n

( ,

ann x
3

  � o x
n−2

 ∪ o x
n−1

 ∪ o x
n

( ,

⋮

ann x
n

(  � o(x)∪ o x
2

 ∪ · · · ∪ o x
n

( .

(3)

Moreover, for all y ∈ X, there exists an orbit o(xi), such
that y ∈ o(xi). Terefore, there exists g ∈ G such that y �

gxi and thus ann(y) � ann(xi). Hence, | av(x): ∀ x ∈ X{ }|

� | o(x): ∀ x ∈ X{ }| � n. □

Theorem 14. Let R be a commutative ring with identity 1
andX � o(x1)∪ o(x2)∪ · · · ∪ o(xn). If for every x ∈ X, there
exists an element xj ∈ X such that x∈ ann(xj), and then, R is
a local ring.

Proof. Since x ∈ X, then there exists an orbit o(xi) such that
x ∈ o(xi). So, there exists an element g ∈ G such that
x � gxi, also x ∈ ann(xj). Terefore, xi ∈ ann(xj) and
o(xi)⊆ ann(xj), for every 1≤ i≤ n. Tus, ann(xj) � X is
a maximal ideal, and this proves that R is a local ring. □

4. When Does the Equality o(1− e) = av(e)
Hold?

Before stating our main theorem in this section, we need to
recall some defnitions and lemmas [14].

Defnition 15. Let R be a fnite commutative ring with
identity, R is called irreducible if it does not contain non-
trivial idempotent elements. Terefore, R is irreducible if
and only if it is not isomorphic to the product of some other
nontrivial commutative rings with identity.

Lemma 16. Let R be a commutative regular ring with
identity. If R contains exactly two nontrivial idempotent el-
ements, then X contains exactly two orbits.

Proof. Since (1 − e)2 � 1− e − e + e2 � 1− e, then e and 1 − e

are two idempotent elements in R. We show that
e ∉ o(1 − e). Let e ∈ o(1 − e), then there exists an element
g ∈ G such that

e � g(1 − e)⇒ e � g − ge⇒ e(1 + g) � g. (4)

Terefore, g− 1(1 + g)e � 1. Tus, e is an inverse element
of R which is a contradiction. By Lemma 1 in [8], X contains
exactly two orbits. □

Lemma 17. Let R be a commutative regular ring with
identity. Ten, R exactly contains two nontrivial idempotent
elements if and only if R � F1 × F2, where F1 and F2 are
felds.

Proof. Let R � F1 × F2. Ten, R contains exactly two non-
trivial idempotent elements. Conversely, if R contains two
idempotent elements, we show that R � F1 × F2. It is clear that
R� Re× R(1 − e) (see Lemma 4) and for each orbit which
contains x, there exist an idempotent element e such that
o(x) � o(e) (by Lemma 17). Tus, for x ∈ X, there exists an
element g ∈ G such that x � ge or x � g(1 − e). Hence,

Re � ge | g ∈ G ∪ 0{ },

R(1 − e) � g(1 − e) | g ∈ G ∪ 0{ }.
(5)

We show that Re is a commutative regular ring. For
ge ∈ Re, there exists an element g− 1e ∈ Re such that
geg− 1ege � ge. In a similar way, R(1 − e) is a regular
commutative ring. Ten, by Lemma 4, it follows that Re and
R(1 − e) are felds. □

Corollary 18. Let R be a regular commutative ring and R has
two nontrivial idempotent elements. Ten, the zero-divisor
graph R is a complete bipartite graph.

Now, we have the following theorem.

Theorem 19. Let R be a regular commutative ring. For any
idempotent ∈ R (e≠ 0, 1), o(1 − e) � av(e) if and only if
R � F1 × F2, where F1 and F2 are felds.
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Proof. If R � F1 × F2, then o(1 − e) � av(e). Conversely, if
e1 is an idempotent element of R, by Lemma 4, we get
R � Re1 × R(1 − e1). If e2 be another idempotent element of
R, then we show that Re1 does not contain e2. If e2 ∈ Re1,
then e2(1 − e1) � 0. Terefore, e2 ∈ o(e1). So there is an
element g ∈ G such that e2 � ge1. Tus, e22 � e2 � g2e1
� ge1. So g(g−1)e1 � 0 implies (g − 1) ∈ o(1 − e1). Now,
there is an element g′ ∈ G such that

g − 1 � g′ 1 − e1( ⇒g � g′ 1 − e1(  + 1

⇒ e2 � ge1 � g′ 1 − e1( e1 + e1 � e1.
(6)

We conclude e2 � ge1 � e1. In the same way, we can
show that R(1 − e1) does not contain e2. Now, suppose that
e2 � xe1 + y(1 − e1). Ten, e2e1 � xe1 and e2(1 − e1) �

y(1 − e1). Since e2e1 is idempotent and by the above ar-
gument, e2e1 � e1 and e2(1 − e1) � 1− e1. Terefore, e2
e1 − e2(1 − e1) � 1− e1 + e1 � 1. Ten, e2 � 1. Tus, R con-
tains exactly two idempotent elements. So, by Lemma 17,
R � F1 × F2. □

5. Discussion and Conclusion

In this paper, we investigated the cardinality of the set
av(x) | x ∈ X{ } equal to the cardinality of the set
o(x) | x ∈ X{ } for a ring R, where av(x) is the set of Γ(R) of

R which are adjacent to x, for all x ∈ X, and o(x) is the orbit
of x under the group action. Furthermore, we discussed
some properties of regular action in noncommutative rings
with X as a fnite union of orbits under the regular action. In
[12], we investigated the question on zero-divisor graphs,
denoted by Γ(R) posed by Han in 2010 [13], when the
equality o(1 − e) � av(e) holds for any idempotent element
e (≠0, 1) in a commutative regular ring R with identity. Te
researchers show that there are several notions of zero-
divisor graphs for commutative rings in [1], non-
commutative rings in [5], and commutative semigroups in
[6, 7] which link between algebraic structure and graph
theory and motivate others to focus on the same method.
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