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The connection of Zagreb polynomials and Zagreb indices to chemical graph theory is a bifurcation of mathematical chemistry,
which has had a crucial influence on the development of chemical sciences. Nowadays, the study of topological indices has become
a vast effective research area in chemical graph theory. In this article, we add up eight different Zagreb polynomials for the Silicate
Network and Silicate Chain Network. From these Zagreb polynomials, we catch up on degree-based Zagreb indices. We also
provide a graphical representation of the outcome that describes the dependence of topological indices on the given parameters
of polynomial structure.

1. Introduction

Using chemical graph theory, we can determine a wide range
of characteristics such as chemical networks; physical, chem-
ical, and thermal properties; biological activity; and chemical
activity. Topological indices, which are molecular descrip-
tors, can characterise these features and specific graphs [1,
2]. In chemical graph theory, vertices represent atoms and
edges represent chemical bonding between the atoms [3,
4]. The topological index of a chemical composition is a
numerical value or a continuation of a given structure under
discussion, which indicates chemical, physical, and biologi-
cal properties of a chemical molecule, see for details [5–7].

Hayat et al. [8] and Ghani et al. [9] presented valency-
based molecular descriptors for p-electronic measurements
of lower polycyclic aromatic hydrocarbon energy. As a result
of the incomplete combustion of organic matter, cyclic aro-
matic hydrocarbons (CPAHn) are widely diffused and relo-

cated in the ecosystem. Many CPAHn and their hydroxyl
are very poisonous, toxic, and/or carcinogenic to bacteria
as well as higher systems such as humans. In Qualitative
Structure Property Relationships (QSPR) and Qualitative
Structure Activity Relationships (QSAR), topological indices
are used directly as simple numerical descriptors in compar-
ison with physical, biological, or chemical parameters of
molecules, which is an advantage in the chemical industry.
Many researchers have worked on various chemical com-
pounds and computed topological descriptors of various
molecular graphs over the last few decades [10, 11].

In chemical graph theory, a molecular graph is a simple
connected graph composed of chemical atoms and bonds,
which are commonly referred to as vertices and edges,
respectively, and there must be linkage between the vertices
set VðGÞ and the edges set EðGÞ. The valency of each atom is
actually the total number of atoms linked to v of G, and it is
denoted by dv [12].
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In 1972, Gutman and Trinajstic initiated the idea of
computing the branching of the carbon-atom skeleton,
which was, later on, known as the first Zagreb index [13].
In 2004, Gutman and Das adulate characteristics of the first
and second Zagreb polynomials for some chemical graphs of
a chemical compound, which we studied in the research arti-
cles [14, 15]. The first Zagreb polynomial corresponding to
the first Zagreb index is defined as

M1 G, yð Þ = 〠
uv∈E Gð Þ

ydu+dv and M1 Gð Þ = 〠
u,v∈E Gð Þ

du + dv:

ð1Þ

The second Zagreb polynomial, which corresponds to
the second Zagreb index [14], is written as

M2 G, yð Þ = 〠
u,v∈E Gð Þ

ydudv and M2 Gð Þ = 〠
u,v∈E Gð Þ

dudv: ð2Þ

In 2013, Shirdel et al. initiated the concept of the hyper
Zagreb index [16]. The hyper Zagreb polynomial and index
are defined as

HM G, yð Þ = 〠
u,v∈E Gð Þ

y du+dvð Þ2 and HM Gð Þ = 〠
u,v∈E Gð Þ

du + dvð Þ2:

ð3Þ

The modified Zagreb polynomial and index [17] are
defined as

MD G, yð Þ = 〠
u,v∈E Gð Þ

y1/dudv and MD Gð Þ = 〠
u,v∈E Gð Þ

1
dudv

:

ð4Þ

In 2010, Furtula et al. introduced the augmented Zagreb
index [18]. The augmented Zagreb polynomial and index are
defined as

AZI G, yð Þ = 〠
u,v∈E Gð Þ

y dudvð Þ/ du+dv−2ð Þ½ �3 and AZI Gð Þ = 〠
u,v∈E Gð Þ

dudvð Þ
du + dv − 2ð Þ

� �3
:

ð5Þ

Ranjini, Lokesha, and Usha introduced a redefined ver-
sion of the Zagreb indices ReZG1, ReZG2, and ReZG3 in
2013 [19]. The redefined Zagreb polynomial and indices
are defined as follows:

ReZG1 G, yð Þ = 〠
u,v∈E Gð Þ

y du+dvð Þ/dudv and ReZG1 = 〠
u,v∈E Gð Þ

du + dv
dudv

,

ð6Þ

ReZG2 G, yð Þ = 〠
u,v∈E Gð Þ

ydudv/ du+dvð Þ and ReZG2 = 〠
u,v∈E Gð Þ

dudv
du + dv

,

ð7Þ

ReZG3 G, yð Þ = 〠
u,v∈E Gð Þ

y dudvð Þ du+dvð Þ and ReZG3 = 〠
u,v∈E Gð Þ

dudvð Þ du + dvð Þ:

ð8Þ

A silicate Si is an element of a family of anions (an ion is
an atom or molecule with a net-electrical charge) containing
silicon and oxygen in industrial chemistry, usually repre-

sented by the general formula ½SiOð4−2tÞ−
4−t �n, where 0 ≤ t < 2.

Using this formula, the Orthosilicate familySiO4−
4 ðt = 0Þ,

see in [20], MetasilicateSiO2−
3 ðt = 1Þ, see in [21] and

PyrosilicateSi2O
6−
7 ðt = 1/2, n = 2Þ, see in [22]. We can extend

silicate Si to any anions containing silicon (atom-bonding
with other than O2), as Hexafluorosilicate SiF2−

3 , see in
[23]. Here, we discuss only chain of silicates, which is
obtained by alternating sequence of tetrahedron SiO4, see
for details [24, 25].

In this article, the above defined eight Zagreb polyno-
mials and Zagreb indices are constructed by the atom-
bonds set of Silicate Network SN P and Silicate Chain Net-
work CN P , which partitioned according to the valencies of
its Si and O2 atoms. We also investigate silicon tetrahedron
SiO4 in a compound structure and derived the precise for-
mulas of certain essential valency-based Zagreb indices
using the approach of atom-bonds partitioning of molecular
structure of silicates.

2. Zagreb Polynomials and Indices of Silicate
Network SN P

Metal oxides or metal carbonates are fused with sand to
form silicate networks. The basic unit of silicates is the tetra-
hedron SiO4, found in almost all silicates. The sides of the
tetrahedron SiO4 represent oxygen atoms, while the middle
represents silicon atoms from a chemical perspective [26].
Figure 1 depicts a SiO4 tetrahedron in a silicate network S

N P , where p is the number of hexagons between the centre
and the network’s boundary. A silicate sheet network is a
collection of SiO4 linked to other rings in a two-
dimensional plane by shared oxygen atoms, resulting in a
sheet-like structure, as shown in Figure 1.

Silicon atoms and corner atoms (lying on SiO4 tetrahe-
drons in each ring) have valency 3 in the Silicate Network
SN P, whereas all other atoms have valency 6. The num-
bers of atoms of valency 3 and valency 6 are 6p2 + 6p
and 9p2 − 3p, respectively. Thus, the total number of
atoms and the total number of atom-bonds are shown in
equation (9).

V SN Pð Þj j = 3 5p2 + 1
� �

 and  E SN Pð Þj j = 36p2: ð9Þ

According to the valencies of the atoms, there are
three types of atom-bonds in SN P: (3,3), (3,6) and (6,6).
The atom-bonds partition of SN P is shown in Table 1.

Theorem 1. Let SN p be a Silicate Network, then the first
Zagreb polynomial of SN P is 6py6 + 6ð3p2 + 1Þy9 + 6ð3p2
− 2pÞy12.
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Proof. Using the atom-bonds partition from Table 1 in the
formula of the first Zagreb polynomial (1), we obtain

M1 SN P, yð Þ = 〠
E 3,3ð Þ

y6 + 〠
E 3,6ð Þ

y9 + 〠
E 6,6ð Þ

y12: ð10Þ

This gives

M1 SN P , yð Þ = 6py6 + 6 3p2 + 1
� �

y9 + 6 3p2 − 2p
� �

y12: ð11Þ

By taking the first derivative of the polynomial in Theo-
rem 17 at y = 1, we get the first Zagreb index of Silicate Net-
work SN P as follows:

Corollary 2. Let SN p be a Silicate Network, then the first
Zagreb index of SN P is 378p2 − 108p + 54.

Theorem 3. Let SN p be a Silicate Network, then the sec-
ond Zagreb polynomial of SN P is 6py9 + 6ð3p2 + 1Þy18 + 6
ð3p2 − 2pÞy36 .

Proof. Using the atom-bonds partition from Table 1 in the
formula of second Zagreb polynomial (2), we get

M2 SN P , yð Þ = 〠
E 3,3ð Þ

y9 + 〠
E 3,6ð Þ

y18 + 〠
E 6,6ð Þ

y36: ð12Þ

This gives

M2 SN P , yð Þ = 6py9 + 6 3p2 + 1
� �

y18 + 6 3p2 − 2p
� �

y36: ð13Þ

By taking the first derivative of the polynomial in Theo-
rem 19 at y = 1, we get the second Zagreb index of Silicate
Network SN P as follows:

Corollary 4. Let SN p be a Silicate Network, then the second
Zagreb index of SN P is 972p2 − 378p + 108.

Theorem 5. Let SN p be a Silicate Network, then the hyper
Zagreb polynomial of SN P is 6py36 + 6ð3p2 + 1Þy81 + 6ð3
p2 − 2pÞy144.

Proof. Using the atom-bonds partition from Table 1 in the
formula of hyper Zagreb polynomial (3), we get

H SN P , yð Þ = 〠
E 3,3ð Þ

y36 + 〠
E 3,6ð Þ

y81 + 〠
E 6,6ð Þ

y144: ð14Þ

This gives

H SN P, yð Þ = 6py36 + 6 3p2 + 1
� �

y81 + 6 3p2 − 2p
� �

y144:

ð15Þ

By taking the first derivative of the polynomial in Theo-
rem 21 at y = 1, we get the hyper Zagreb index of Silicate
Network SN P as follows:

Corollary 6. Let SN p be a Silicate Network, then the hyper
Zagreb index of SN P is 4050p2 − 1512p + 486.

Theorem 7. Let SN p be a Silicate Network, then the modi-
fied Zagreb polynomial of SN P is 6py1/9 + 6ð3p2 + 1Þy1/18 +
6ð3p2 − 2pÞy1/36 .

Proof. Using the atom-bonds partition from Table 1 in the
formula of modified Zagreb polynomial (4), we get

MD SN P, yð Þ = 〠
E 3,3ð Þ

y1/9 + 〠
E 3,6ð Þ

y1/18 + 〠
E 6,6ð Þ

y1/36 ð16Þ

This gives

MD SN P, yð Þ = 6py1/9 + 6 3p2 + 1
� �

y1/18 + 6 3p2 − 2p
� �

y1/36:

ð17Þ

By taking the first derivative of the polynomial in Theo-
rem 23 at y = 1, we get the modified Zagreb index of Silicate
Network SN P as follows:

2

1 2

22

2

2

SN2

Figure 1: Silicate Network of dimension 2.

Table 1: Atom-bonds partition of SN P , on the valency based on
each atom of SiO4.

Types of atom-bonds E 3,3ð Þ E 3,3ð Þ E 3,3ð Þ

Cardinality of atom-bonds 6p 6 3p2 + 1
� �

6 3p2 − 2p
� �
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Corollary 8. Let SN p be a Silicate Network, then the modi-
fied Zagreb index of SN P is 2p2 + 8/3p + 1/2.

Theorem 9. Let SN p be a Silicate Network, then the aug-
mented Zagreb polynomial of SN P is 6py729/64 + 6ð3p2 + 1Þ
y5832/343 + 6ð3p2 − 2pÞy5832/125:

Proof. Using the atom-bonds partition from Table 1 in the
formula of augmented Zagreb polynomial (5), we get

AZI SN P , yð Þ = 〠
E 3,3ð Þ

y729/64 + 〠
E 3,6ð Þ

y5832/343 + 〠
E 6,6ð Þ

y4656/1000:

ð18Þ

This gives

AZI SN P , yð Þ = 6py729/64 + 6 3p2 + 1
� �

y5832/343 + 6 3p2 − 2p
� �

y5832/125:

ð19Þ

By taking the first derivative of the polynomial in Theo-
rem 25 at y = 1, we get the augmented Zagreb index of Sili-
cate Network SN Pas follows:

Corollary 10. Let SN p be a Silicate Network, then the aug-
mented Zagreb index of SN P is 22301/50p2 − 624/25p +
34392/343.

Theorem 11. Let SN p be a Silicate Network, then the first
redefined Zagreb polynomial of SN P is 6py2/3 + 6ð3p2 + 1Þ
y1/2 + 6ð3p2 − 2pÞy1/3.

Proof. Using the atom-bonds partition from Table 1 in the
formula of first redefined Zagreb polynomial (6), we get

ReZG1 SN P , yð Þ = 〠
E 3,3ð Þ

y2/3 + 〠
E 3,6ð Þ

y1/2 + 〠
E 6,6ð Þ

y1/3: ð20Þ

This gives

ReZG1 SN P , yð Þ = 6py2/3 + 6 3p2 + 1
� �

y1/2 + 6 3p2 − 2p
� �

y1/3:

ð21Þ

By taking the first derivative of the polynomial in Theo-
rem 27 at y = 1, we get the first redefined Zagreb index of Sil-
icate Network SN P as follows:

Corollary 12. Let SN p be a Silicate Network, then the first
redefined Zagreb index of SN P is 15p2 + 3.

Theorem 13. Let SN p be a Silicate Network, then the second
redefined Zagreb polynomial of SN P is 6py3/2 + 6ð3p2 + 1Þ
y2 + 6ð3p2 − 2pÞy3.

Proof. Using the atom-bonds partition from Table 1 in the
formula of second redefined Zagreb polynomial (7), we get

ReZG2 SN P, yð Þ = 〠
E 3,3ð Þ

y3/2 + 〠
E 3,6ð Þ

y2 + 〠
E 6,6ð Þ

y3: ð22Þ

This gives

ReZG2 SN P, yð Þ = 6py3/2 + 6 3p2 + 1
� �

y2 + 6 3p2 − 2p
� �

y3:

ð23Þ

By taking the first derivative of the polynomial in Theo-
rem 29 at y = 1, we get the second redefined Zagreb index of
Silicate Network SN P as follows:

Corollary 14. Let SN p be a Silicate Network, then the second
redefined Zagreb index of SN P is 90p2 − 27p + 12.

Theorem 15. Let SN p be a Silicate Network, then the third
redefined Zagreb polynomial of SN P is 6py54 + 6ð3p2 + 1Þ
y196 + 6ð3p2 − 2pÞy432.

Proof. Using the atom-bonds partition from Table 1 in the
formula of third redefined Zagreb polynomial (8), we get

ReZG3 SN P, yð Þ = 〠
E 3,3ð Þ

y54 + 〠
E 3,6ð Þ

y196 + 〠
E 6,6ð Þ

y432: ð24Þ

This gives

ReZG3 SN P , yð Þ = 6py54 + 6 3p2 + 1
� �

y196 + 6 3p2 − 2p
� �

y432:

ð25Þ

By taking the first derivative of the polynomial in Theo-
rem 31 at y = 1, we get the third redefined Zagreb index of
Silicate Network SN P as follows:

Corollary 16. Let SN p be a Silicate Network, then the third
redefined Zagreb index of SN P is 11304p2 − 4860p + 1176.

3. Comparison

In this section, we present in Table 2 and Figure 2 a numer-
ical and graphical comparison of the Zagreb indices of
Zagreb polynomials for n = 2, 3, 4,⋯, 12 for the Silicate Net-
work SNp.

In the Silicate Network, the formulae for the polynomials
M1, M2, H, MD, AZI, ReZG1, ReZG2, and ReZG3 show that
the degree of the polynomial increases while the coefficients
remain constant. As a result, the growing behaviour in each
graph of their indices is consistent, although the expansion
varies as the degree of the polynomial increases.
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4. Zagreb Polynomials and Indices of Silicate
Chain Network CN P

In this section, we will look at a family of silicate chain net-
works denoted by CN P and obtained by linearly arranging p
tetrahedral SiO4, as shown in Figure 3.

It can be seen in Silicate Chain Network CN P, see
Figure 3, that silicon atoms and corner atoms (lying on Si
O4 tetrahedrons in each ring) have valency 3, whereas all
other atoms have valency 6 [27]. The number of atoms of
valency 3 and valency 6 is 2ðp + 1Þ and p − 1, respectively.
Thus, the total number of atoms and total number of
atom-bonds are shown in equation (26).

V CN Pð Þj j = 3p + 1 and  E CN Pð Þj j = 6p: ð26Þ

According to the valencies of the atoms, there are also
three types of atom-bonds in CN P: (3,3), (3,6), and (6,6).
The atom-bonds partition of CN P is shown in Table 3.

Theorem 17. Let CN p be a Silicate Chain Network, then the
first Zagreb polynomial of CN P is ðp + 4Þy6 + 2ð2p − 1Þy9 +
ðp − 2Þy12.

Proof. Using the atom-bonds partition from Table 3 in the
formula of first Zagreb polynomial (1), we get

M1 CN P, yð Þ = 〠
E 3,3ð Þ

y6 + 〠
E 3,6ð Þ

y9 + 〠
E 6,6ð Þ

y12: ð27Þ

Table 2: Zagreb topological indices of Silicate Network SNp for p ≥ 2.

n M1 M2 H MD AZI ReZG1 ReZG2 ReZG3
2 1350 3240 13662 13.83 1834.43 63 318 36672

3 3132 7722 32400 26.50 4039.57 138 741 88332

4 5670 14148 59238 43.17 7136.75 243 1344 162600

5 8964 22518 94176 63.83 11125.97 378 2127 259476

6 13014 32832 137214 88.50 16007.23 543 3090 378960

7 17820 45090 188352 117.17 21780.53 738 4233 521052

8 23382 46492 247590 149.83 28445.87 963 5556 685752

9 29700 75438 314928 186.50 36003.25 1218 7059 873060

10 36774 93528 390366 227.17 44452.67 1503 8742 1082976

11 44604 113562 473904 271.83 53794.13 1818 10605 1315500

12 53190 135540 565542 320.50 64027.63 2163 12648 1570632
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Figure 2: Graphical comparison of Zagreb indices of Silicate Network.
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This gives

M1 CN P, yð Þ = p + 4ð Þy6 + 2 2p − 1ð Þy9 + p − 2ð Þy12: ð28Þ

By taking the first derivative of the polynomial in Theo-
rem 17 at y = 1, we get the first Zagreb index of Silicate
Chain Network CN P as follows:

Corollary 18. Let CN p be a Silicate Chain Network, then the
first Zagreb index of CN P is 54p − 18.

Theorem 19. Let CN p be a Silicate Chain Network, then the
second Zagreb polynomial of CN P is ðp + 4Þy9 + 2ð2p − 1Þ
y18 + ðp − 2Þy36 .

Proof. Using the atom-bonds partition from Table 3 in the
formula of second Zagreb polynomial (2), we get

M2 CN P , yð Þ = 〠
E 3,3ð Þ

y9 + 〠
E 3,6ð Þ

y18 + 〠
E 6,6ð Þ

y36: ð29Þ

This gives

M2 CN P , yð Þ = p + 4ð Þy9 + 2 2p − 1ð Þy18 + p − 2ð Þy36: ð30Þ

By taking the first derivative of the polynomial in Theo-
rem 19 at y = 1, we get the second Zagreb index of Silicate
Chain Network CN P as follows:

Corollary 20. Let CN p be a Silicate Chain Network, then the
second Zagreb index of CN P is 117p − 72.

Theorem 21. Let CN p be a Silicate Chain Network, then the
hyper Zagreb polynomial of CN P is ðp + 4Þy36 + 2ð2p − 1Þ
y81 + ðp − 2Þy144.

Proof. Using the atom-bonds partition from Table 3 in the
formula of hyper Zagreb polynomial (3), we get

H CN P, yð Þ = 〠
E 3,3ð Þ

y36 + 〠
E 3,6ð Þ

y81 + 〠
E 6,6ð Þ

y144: ð31Þ

This gives

H CN P, yð Þ = p + 4ð Þy36 + 2 2p − 1ð Þy81 + p − 2ð Þy144: ð32Þ

By taking the first derivative of the polynomial in Theo-
rem 21 at y = 1, we get the hyper Zagreb index of Silicate
Chain Network CN P as follows:

Corollary 22. Let CN p be a Silicate Chain Network, then the
hyper Zagreb index of SN P is 504p − 306.

Theorem 23. Let CN p be a Silicate Chain Network, then the
modified Zagreb polynomial of CN P is ðp + 4Þy1/9 + 2ð2p −
1Þy1/18 + ðp − 2Þy1/36 .

Proof. Using the atom-bonds partition from Table 3 in the
formula of modified Zagreb polynomial (4), we get

MD CN P , yð Þ = 〠
E 3,3ð Þ

y1/9 + 〠
E 3,6ð Þ

y1/18 + 〠
E 6,6ð Þ

y1/36: ð33Þ

This gives

MD CN P , yð Þ = p + 4ð Þy1/9 + 2 2p − 1ð Þy1/18 + p − 2ð Þy1/36:
ð34Þ

1

2

3

4

5

6

7

8

CN8

= Oxygen atom

= Silicon atom

Figure 3: Silicate Chain Network of dimension 8.

Table 3: Atom-bonds partition of CN P , on the valency based on each atom of SiO4.

Types of atom-bonds E 3,3ð Þ E 3,3ð Þ E 3,3ð Þ

Cardinality of atom-bonds p + 4 2 2p − 1ð Þ p − 2

6 Journal of Mathematics



By taking the first derivative of the polynomial in Theo-
rem 23 at y = 1, we get the modified Zagreb index of Silicate
Chain Network CN P as follows:

Corollary 24. Let CN p be a Silicate Chain Network, then the
modified Zagreb index of CN P is 13/36p + 5/18.

Theorem 25. Let CN p be a Silicate Chain Network, then
the augmented Zagreb polynomial of CN P is ðp + 4Þy729/64
+ 2ð2p − 1Þy5832/343 + ðp − 2Þy5832/125:

Proof. Using the atom-bonds partition from Table 3 in the
formula of augmented Zagreb polynomial (5), we get

AZI CN P, yð Þ = 〠
E 3,3ð Þ

y729/64 + 〠
E 3,6ð Þ

y5832/343 + 〠
E 6,6ð Þ

y4656/1000:

ð35Þ

This gives

AZI CN P, yð Þ = p + 4ð Þy729/64 + 2 2p − 1ð Þy5832/343 + p − 2ð Þy5832/125:
ð36Þ

By taking the first derivative of the polynomial in Theo-
rem 25 at y = 1, we get the augmented Zagreb index of Sili-
cate Chain Network CN Pas follows:

Corollary 26. Let CN p be a Silicate Chain Network, then the
augmented Zagreb index of CN P is 2521/20p − 327/4.

Theorem 27. Let CN p be a Silicate Chain Network, then the
first redefined Zagreb polynomial of CN P is ðp + 4Þy2/3 + 2ð
2p − 1Þy1/2 + ðp − 2Þy1/3.

Proof. Using the atom-bonds partition from Table 3 in the
formula of first redefined Zagreb polynomial (6), we get

ReZG1 CN P, yð Þ = 〠
E 3,3ð Þ

y2/3 + 〠
E 3,6ð Þ

y1/2 + 〠
E 6,6ð Þ

y1/3: ð37Þ

This gives

ReZG1 CN P , yð Þ = p + 4ð Þy2/3 + 2 2p − 1ð Þy1/2 + p − 2ð Þy1/3:
ð38Þ

By taking the first derivative of the polynomial in Theo-
rem 27 at y = 1, we get the first redefined Zagreb index of Sil-
icate Chain Network CN P as follows:

Corollary 28. Let CN p be a Silicate Chain Network, then the
first redefined Zagreb index of CN P is 3p + 1.

Theorem 29. Let CN p be a Silicate Chain Network, then the
second redefined Zagreb polynomial of CN P is ðp + 4Þy3/2 +
2ð2p − 1Þy2 + ðp − 2Þy3.

Proof. Using the atom-bonds partition from Table 3 in the
formula of second redefined Zagreb polynomial (7), we get

ReZG2 CN P , yð Þ = 〠
E 3,3ð Þ

y3/2 + 〠
E 3,6ð Þ

y2 + 〠
E 6,6ð Þ

y3: ð39Þ

This gives

ReZG2 CN P , yð Þ = p + 4ð Þy3/2 + 2 2p − 1ð Þy2 + p − 2ð Þy3:
ð40Þ

By taking the first derivative of the polynomial in Theo-
rem 29 at y = 1, we get the second redefined Zagreb index of
Silicate Chain Network CN P as follows:

Corollary 30. Let CN p be a Silicate Chain Network, then the
second redefined Zagreb index of CN P is 25/4p − 4.

Theorem 31. Let CN p be a Silicate Chain Network, then
the third redefined Zagreb polynomial of CN P is ðp + 4Þ
y54 + 2ð2p − 1Þy196 + ðp − 2Þy432.

Table 4: Zagreb topological indices of Chain Network CNp for p ≥ 2.

n M1 M2 H MD AZI ReZG1 ReZG2 ReZG3
2 90 162 702 1 170.35 7 8.5 84

3 144 279 1206 1.36 296.4 10 14.75 648

4 198 396 1710 1.72 422.45 13 21 1212

5 252 513 2214 2.08 548.5 16 27.25 1776

6 306 630 2718 2.44 674.55 19 33.5 2340

7 360 747 3222 2.81 800.6 22 39.75 2904

8 414 864 3726 3.17 926.65 25 46 3468

9 468 981 4230 3.52 1052.7 28 52.25 4032

10 522 1098 4734 3.88 1178.75 31 58.5 4596

11 576 1215 5238 4.25 1304.8 34 64.75 5160

12 630 1332 5742 4.61 1430.85 37 71 5724
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Proof. Using the atom-bonds partition from Table 3 in the
formula of third redefined Zagreb polynomial (8), we get

ReZG3 CN P , yð Þ = 〠
E 3,3ð Þ

y54 + 〠
E 3,6ð Þ

y196 + 〠
E 6,6ð Þ

y432: ð41Þ

This gives

ReZG3 CN P, yð Þ = p + 4ð Þy54 + 2 2p − 1ð Þy196 + p − 2ð Þy432:
ð42Þ

By taking the first derivative of the polynomial in Theo-
rem 31 at y = 1, we get the third redefined Zagreb index of
Silicate Chain Network CN P as follows:

Corollary 32. Let CN p be a Silicate Chain Network, then the
third redefined Zagreb index of CN P is 564p − 1044.

5. Comparison

In this section, we present a numerical and graphical com-
parison of the Zagreb indices of Zagreb polynomials for n
= 2, 3, 4,⋯, 12, for the Silicate Chain Network CNp in
Table 4 and Figure 4.

These numerical variables correlate to a graph that is
useful in linking the structure with various physicochemical
attributes, chemical reactivity, and biological activities. The
values of M1, M2, H, AZI, and ReZG3 in this graph
(Figure 4) are rapidly increasing, while the values of MD,
“ReZG1,” and “ReZG2” are slowly increasing.

6. Closing Remarks

In this article, two important silicon tetrahedron compound
structures are considered, and the accurate formulas of
some important valency-based topological indices are cal-
culated using the technique of atom-bond partitioning of
these molecular structures. Our investigated results, such
as the Zagreb indies, are useful for determining physio-
chemical properties of chemical compounds; as in 2005,
Zhou explains in [28], such as formation enthalpies, boiling
points, chromatographic retention times, vapour pressure,
and surface areas. The obtained results are also innovative
and noteworthy contributions to network science, provid-
ing a foundation for understanding the deep topology of
these important networks. These findings may also be use-
ful in determining the role of silicon-carbon in electronics
and industry.
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The data used to support the findings of this study are
included in the article.
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