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Tis paper studies the variable selection of high-dimensional spatial autoregressive panel models with fxed efects in which
amatrix transformationmethod is applied to eliminate the fxed efects.Ten, a penalized quasi-maximum likelihood is developed
for variable selection and parameter estimation in the transformed panel model. Under some regular conditions, the consistency
and oracle properties of the proposed estimator are established. Some Monte-Carlo experiments and a real data analysis are
conducted to examine the fnite sample performance of the proposed variable selection procedure, showing that the proposed
variable selection method works satisfactorily.

1. Introduction

Panel data, which contains dimensions of time and space, are
becomingmore andmore common under the circumstances
of big data. Compared with traditional cross-sectional data
and time series data, a great advantage of panel data is that it
can efectively expand the sample size. A large number of
studies have given a variety of panel models, of which the
panel model with fxed efects is widely studied and applied
because it can capture non-time-varying and unobservable
exogenous variables. In fact, these models are still based on
the independence assumption which is improper in the real
situation, so in this paper, we consider spatial autoregressive
panel (SARP) models with fxed efects that permit in-
terdependence between spatial units in panel data. Most data
in the context of big data are high-dimensional, which also
means the number of covariates can diverge with the growth
of sample size and lead to a rapid increase in model com-
plexity. In order to reduce the amount of calculation and
model complexity, penalized methods are indispensable to
remove irrelevant variables. However, the variable selection
of high-dimensional spatial panel data is more complex than
that of high-dimensional cross-sectional data due to spatial
terms and fxed efects. Te ordinary penalized methods for
variable selection, such as the least absolute shrinkage and

selection operator (LASSO) (Tibshirani [1]), the smoothly
clipped absolute deviation (SCAD) penalty (Fan and Li [2]),
which are proposed for classical linear regression models,
cannot be used in the high-dimensional SARP models di-
rectly. Terefore, we propose a penalized estimation method
for high-dimensional SARP models with fxed efects and
establish corresponding asymptotic properties.

Up to now, there are a large number of related studies
which have given statistical inferences about spatial models.
Since Clif and Ord [3] proposed a structure with spatial
correlation, spatial models have been receiving increasing
attention. Anselin [4] proposed the maximum likelihood
estimation of the spatial autoregressive (SAR) model and
constructed an LM test for the spatial term. Kelejian and
Prucha [5] proposed a generalized spatial two-stage least
squares procedure for instrument matrices and studied its
properties. Lee [6] established the asymptotic distributions
of quasi-maximum likelihood for SAR models. Wei et al. [7]
constructed the partially linear varying coefcient SAR
models and approximated the nonlinear part locally by
a linear function. Du et al. [8] proposed the estimator for the
asymptotic covariance matrix of the parameter estimator of
partially linear additive SAR models and established the
asymptotic properties for the resulting estimators. Other
research results on SAR models can also be referred to
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Cheng et al. [9], Dai et al. [10], Gupta and Robinson [11], Lin
and Lee [12], Tian et al. [13], Tian et al. [14], and so on.Tese
studies based on cross-sectional data are not applicable to
panel data, and variable selection is rarely involved.

Recently, panel data have attracted tremendous atten-
tion, especially since a number of works have studied the
relevant statistical inference of spatial panel data models. For
example, Baltagi et al. [15] considered panel regression
models with SAR disturbances and LM tests under fve
hypotheses. Lee and Yu [16] proposed an orthonormal
transformation for spatial autoregressive panel models with
fxed efects and provided a method which allows the esti-
mation of coefcients without estimating fxed efects. Ju
et al. [17] estimated parameters of spatial dynamic panel data
models by the Bayesian method, and their method can adapt
to a skew-normal distribution. Tese research studies in-
vestigated the estimators and corresponding large sample
properties of spatial panel models; however, little work has
been performed on the variable selection of models.

To the best of our knowledge, Liu et al. [18] investigated
variable selection in the SAR model with independent and
identically distributed errors, but their model was not under
the situation of a diverging number of parameters and the
asymptotic properties they established were not available for
high-dimensional data. Xie et al. [19] considered the pe-
nalized estimation for SAR models with a diverging number
of parameters and established the oracle properties; how-
ever, their method was available for high-dimensional cross-
sectional data but not for panel data. Terefore, we consider
variable selection for the high-dimensional SARP model
with fxed efect, present the penalized estimators, and es-
tablish related asymptotic properties thoroughly.

Tis paper is organized as follows: in Section 2, we in-
troduce a high-dimensional SARP model with fxed efect
and eliminate the fxed efects term by transformation
matrix. In Section 3, we consider the penalized quasi-
maximum likelihood estimators (QMLE) which are based
on the SCAD penalty function for SARP models with fxed
efects and establish its consistency and oracle property.
Besides, we introduce a feasible iterative algorithm for the
penalized QMLE in this section. In Section 4, some Monte-
Carlo simulations are carried out to examine the fnite
sample performance of QMLE. In Section 5, a real data
application of China’s carbon emission is provided for il-
lustrative purposes. In Section 6, we give a brief conclusion
of this paper. Te detailed proofs of theoretical results are
provided in the Appendix.

2. MatrixTransformationforSARPModelswith
Fixed Effects

We consider the following SARP models with fxed efects:

Yt � ρWYt + Xtβ + u + Vt, t � 1, 2, . . . , T, (1)

where Yt � (y1t, y2t, . . . , yNt)
τ is an N × 1 vector of ob-

servations on the dependent variables, ρ is an unknown
spatial autoregressive coefcient, the spatial weight matrix
W is an N × N matrix of known constants with zero

diagonal elements and satisfes that the sum of rows is 1.
Xt � [Xt1, . . . ,Xtk, . . . ,XtdN

] is an N × dN matrix of ob-
servations on dN linear regressors, where dN is divergent as
N⟶∞, β � (β1, . . . , βdN

)τ is an unknown dN × 1 vector of
regression coefcients, u � (u1, . . . , uN)τ is an unknown
N × 1 vector of fxed efects, and Vt � (Vt1, . . . , VtN)τ is
a vector i.i.d across t with zero mean and fnite covariance
matrix σ2IN, where σ2 is an unknown parameter and IN is
the identity matrix. Terefore, the unknown parameters to
be estimated can be expressed as (σ2, ρ, βτ ,uτ)τ .

Te fxed efects u is an unknown N × 1 vector which
means that there is inconsistency regarding N; however, if
we just focus on σ2, ρ, and β, a transformation method is
available to eliminate u. According to the method used by
Lee and Yu [16], we let JT � IT − LTLT

T/T, where ιT repre-
sents a T-dimensional vector with all 1 and let FT,T− 1 be the
orthonormal eigenvector matrix of JT which corresponds to
the eigenvalues of one. Tus, we defne the transformed
matrices [Y∗1 , . . . ,Y∗T− 1] � [Y1, . . . ,YT]FT,T− 1, [V∗1 , . . . , V∗T]

� [V1, . . . ,VT]FT,T− 1, and apparently [u, . . . , u]FT,T− 1 � 0.
For k � 1, 2, . . . , dN, we similarly defne
[X∗1k, . . . ,X∗(T− 1)k] � [X1k, . . . ,XTk]FT,T− 1. Ten, (1) can be
rewritten as follows:

Y∗ � ρWY∗ + X∗β + V∗, (2)

where Y∗ � [Y∗τ1 , . . . ,Y∗τT− 1]
τ , W � IT− 1 ⊗W, ⊗ is Kro-

necker’s product symbol, X∗ � [X∗1 , . . . ,X∗k , . . . ,X∗dN
],

X∗k � [X∗τ1k ,X∗τ2k , . . . ,X∗τ(T− 1)k]τ , and V∗ � [V∗τ1 , . . . ,V∗τT− 1]
τ .

Ten, it is easy to know [V∗τ1 , . . . ,V∗τT− 1]
τ

� (FT,T− 1 ⊗ I)[Vτ
1, . . . ,Vτ

T]τ , so we can obtain E(V∗V∗τ)
� σ2(FT,T− 1 ⊗ IN)τ(FT,T− 1 ⊗ IN) � σ2IN(T− 1). Besides,
E(V∗) � 0, Cov(V∗) � σ2IN(T− 1), and the parameter vector
to be estimated is marked as θ � (σ2, ρ, βτ)τ .

3. Methods and Large Sample Properties

3.1. Penalized Quasimaximum Likelihood Estimator. Let
MN(ρ) � IN(T− 1) − ρW, and ifVt is normally distributed, the
log-likelihood function ln L(θ) of model (2) is obtained in
the following equation:

ln L(θ) � −
N(T − 1)

2
ln(2π) −

N(T − 1)

2
ln σ2  + ln MN(ρ)




−
1
2σ2

MN(ρ)Y∗ − X∗β 
τ MN(ρ)Y∗ − X∗β .

(3)

In addition, we let pλ(·) be the SCAD penalty function,
and of course, other penalty functions can also be considered
here. Ten, we renumber parameter vector as
θ � (σ2, ρ, βτ)τ � (θ1, θ2, θ3, . . . , θdN+2)

τ , thus the penalized
quasimaximum likelihood function can be obtained as
follows:

Q(θ) � ln L(θ) − N(T − 1) 

dN+2

j�2
pλ θj



 , (4)
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where the SCAD penalty function pλ(·) is defned by its frst
derivative:

pλ′(ϑ) � λ I(ϑ≤ λ) +
(aλ − ϑ)+

(a − 1)λ
I(ϑ> λ) for ϑ> 0. (5)

We set a � 3.7 as Fan and Li [2] recommended in their
paper. To determine the tuning parameter λ, a Bayesian
information criterion can be applied:

BICλ � − 2 lnL(θ) + ln [N(T − 1)]dfλ, (6)

where dfλ is the number of nonzero parameters, and
λ � argminBICλ. Ten, we get the penalized QMLE
θ � (σ2, ρ, β

τ
)τ � argmax

θ
[Q(θ)].

3.2. Asymptotic Properties. Let θ0 � (σ20, ρ0, β
τ
0)

τ

� (θ10, θ20, θ30, . . . , θ(dN+2)0)
τ be the true parameter vector,

without loss of generality, we assume that the frst s(s> 1) of
θ0 is nonzero parameters and zero for the remainder. Re-
mark all the nonzero parameters as θ10, then we can rewrite
θ0 as (θτ10, θ

τ
20)

τ � (θτ10, 0
τ)τ . Let

M0 � IN(T− 1) − ρ0W,V∗0 � M0Y∗ − X∗β0, in order to obtain
the asymptotic properties of the penalized QMLE, there are
some regular assumptions as follows:

A1. Te T is fnite and T> 2.
A2. Te moment E( |V∗0 |4+v

i ) exists for some v> 0.
A3. Te elements wij  in W satisfy wij � O(1/hN),
where hN can be divergent or bounded, hN/N⟶0
when N⟶∞.
A4. Te matrix MN(ρ) is a nonsingular matrix for all ρ
in (− 1, 1).
A5. Te sequences of matrices W{ } and M− 1

0  are
uniformly bounded in both row and column sums for
all N.
A6. Te limN⟶∞1/(N(T − 1))X∗τX∗ exists and is
nonsingular. Te limN⟶∞1/(NdN)trX∗τX∗ exists.
Te elements of X∗ are uniformly bounded constants
for all N.
A7. M− 1

N (ρ) is bounded in both row and column sums,
uniformly in ρ in a closed subset ϱ of (− 1, 1) and ρ0
which is an interior point of ϱ.
A8. Te limN⟶∞1/(N(T − 1))(X∗,WM− 1

0 X∗β0)
τ

(X∗,W M− 1
0 X∗β0) exists and is nonsingular.

A9. Te limN⟶∞1/(N(T − 1))E(z2 ln L(θ0)/zθzθτ)
exists and is nonsingular.
A10. Te third derivatives z3 ln L(θ0)/zθizθjzθk exist
for all θ in an open set Θ that contains true parameter
point θ0. Tere exist functions Mijk that satisfy
|1/(N(T − 1))z3 ln L(θ0)/zθizθjzθk|≤Mijk ≤∞,
where E(M2

ijk)<∞ for n, p and i, j, k.
A11. Te eigenvalues of the Hessian matrix
E(z ln L(θ0)/zθz ln L(θ0)/zθ

τ) satisfy the following:

0<C1 < λmin
1

N(T − 1)
E

z ln L θ0( 

zθ
z lnL θ0( 

zθτ
  

≤ λmax
1

N(T − 1)
E

z lnL θ0( 

zθ
z lnL θ0( 

zθτ
  <C2 <∞,

1
N(T − 1)

E
z lnL θ0( 

zθi

z lnL θ0( 

zθj

 

2

<C3 <∞,

1
N(T − 1)

E
z2 lnL θ0( 

zθizθj

 

2

<C4 <∞ for allN, i, j.

(7)

A12. lim
n⟶∞

inf lim
βj⟶0+

inf λ− 1pλ′(|βj|)> 0 for j � s+

1, . . . , dN.
A13. max |pλ″(βj0): βj0 ≠ 0| ≜ bN, bN⟶0 as
N⟶∞.

Remark 1. Assumptions A1–A8 are set for spatial term and
regressors, A9–A11 are imposed on the likelihood functions,
and A12 and A13 are for penalty functions. In addition, A1
shows that N⟶∞ is the only large sample scenario; A2
ensures the moment exists; A3–A8 ensure the QMLE of SARP
exists; and A9–A13, which are similar to the assumptions
provided by Fan and Peng [20], are necessary for obtaining the
consistency and the oracle property of PQLME.

Let G � WM− 1
0 , then the frst derivative

1/
��������
N(T − 1)


zQ(θ0)/zθ is as follows:

zQ θ0( 

zσ2
� −

N(T − 1)

2σ20
+

1
2σ40

Vτ
0V
∗
0 ,

zQ θ0( 

zρ
� − trG +

1
σ20
V∗τ0 WY∗ − N(T − 1)pλ′ ρ0


 sgn ρ0( 

zQ θ0( 

zβ
�

1
σ20
X∗τV∗0 − N(T − 1)pλ′ β0


 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

(8)

where pλ′(|β0|) � [pλ′(|β10|)sgn(β10), . . . , pλ′(|βdN0|)

sgn(βdN0)]
τ . Ten, we have theorems as follows:

Theorem 2 (Consistency). Under assumptions A1–A12, we
suppose that d4

N/N⟶0 as N⟶∞, then there is a local
maximizer θ of Q(θ) that satisfes the following:

θ − θ0
����

���� � Op

���

dN



N
− 1/2

+ aN  , (9)

where aN � max pλ′(|θj0|): θj0 ≠ 0 .

According to Teorem 2, we can choose a proper λ to
achieve

�����
N/dN


consistent penalized QMLE under A1–A12.

We know that E(z ln L(θ0)/zθz ln L(θ0)/zθ
τ) is the

Hessian matrix under θ0. Note that E(V∗0V
∗τ
0 ) � σ20IN(T− 1),

then the covariance matrix of 1/
����������
(N(T − 1))


z ln L(θ0)/zθ

is obtained as follows:
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var
1

��������
N(T − 1)


z lnL θ0( 

zθ
  � E

1
��������
N(T − 1)


z ln L θ0( 

zθ
·

1
��������
N(T − 1)


z ln L θ0( 

zθτ
 ,

≜
1

N(T − 1)
I θ0(  +

1
N(T − 1)

∆ θ0( ,

(10)

where

I θ0(  � − E
z
2 ln L θ0( 

zθzθτ
 

�

trG2
+ tr GτG  +

1
σ20

GX∗β0( 
τGX∗β0

1
σ20

trG
1
σ20

GX∗β0( 
τX∗

1
σ20

trG
N(T − 1)

2σ40
01×dN

1
σ20
X∗τGX∗β0 0dN×1

1
σ20
X∗τX∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(11)

and ∆(θ0) is a symmetric matrix:

∆ θ0(  �

2μ3
σ40



N(T− 1)

i�1
GiiGi·X

∗β0 +
μ4 − 3σ40

σ40


N(T− 1)

i�1
Gii ∗ ∗

1
2σ60

μ3ι
τ
N(T− 1)GX

∗β0 + μ4 − 3σ40 trG 
μ4 − 3σ40
4σ80

∗

μ3
σ40



N(T− 1)

i�1
GiiX
∗
i·

μ3
2σ60

ιτN(T− 1)X
∗ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

In addition, μ3 � E[(V∗0 )3i ], μ4 � E[(V∗0 )4i ], Gi· repre-
sents the ith row ofG,Gij is the (i, j) element of G and X∗i· is
the ith row of X∗. A8 ensures that 1/(N(T − 1))I(θ0) is
nonsingular as N goes infnite. Apparently, ∆(θ0) � 0 that
provided V∗0 is normally distributed, so the covariance
matrix of 1/

��������
N(T − 1)


z ln L(θ0)/zθ is 1/(N(T − 1))

[I(θ0) + ∆(θ0)].

Theorem 3. Under A1–A13, we suppose that
λ⟶0,

�����
N/dN


λ⟶∞, d5

N/N⟶0 as N⟶∞, then with
probability tending to 1, for any θ1 that satisfy ‖θ1 − θ10‖ �

Op(
�����
dN/N


) and any constants C, the following equation

holds:

Q θτ1, 0
τ

( 
τ

  � max
θ2‖ ‖≤C

����
dN/N

√ Q θτ1, θ
τ
2( 

τ
 . (13)
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Let I(θ10, 0) and ∆(θ10, 0) be I(θ) and ∆(θ) knowing
θ20 � 0, respectively, and

 θ10(  � diag 0, pλ″ θ20


 , pλ″ θ30


 , . . . , pλ″ θs0


  ,

b � 0, pλ′ θ20


 sgn θ20


 , pλ′ θ30


 sgn θ30


 , . . . , pλ′ θs0


 sgn θs0


  
τ
.

(14)

Then, we have the following oracle property of PQMLE.

Theorem 4 (Oracle property). Under A1–A13, we suppose
that λ⟶0,

�����
N/dN


λ⟶∞, d5

N/N⟶0 as N⟶∞, then
with probability tending to 1, the root-(N/dN)-consistent
local maximizer θ � (θ

τ
1,

θ
τ
2)

τ must satisfy the following:

(i) (Sparsity) θ2 � 0.
(ii) (Asymptotic normality)

��������
N(T − 1)

 1
N(T − 1)

I1 θ10, 0(  +  θ0(   θ1 − θ10  + b ⟶N(0,H + K), (15)

where I1(θ10, 0) and ∆1(θ10, 0) is the frst s upper-left
submatrix of I(θ10, 0) and ∆(θ10, 0), respectively;H �

limN⟶∞1/(N(T − 1))I1(θ10, 0) and
K � limN⟶∞1/(N(T − 1))∆1(θ10, 0).

3.3. Numerical Algorithm. Te analytical solution for
maximizing Q(θ) cannot be obtained due to nonconcave
penalty function and spatial term. Although the local
quadratic approximation (LQA) algorithm (Fan and Li [2])
cannot be applied to SARP models directly, there are still
some ideas that can be used for reference. Let
Γ(θ) � diag(0, pλ′(|ρ|)/|ρ|, pλ′(|β1|)/|β1|, . . . , pλ′(|βdN

|)/|βdN
|)

which can be regarded as the approximation matrix of
pλ″(|θj|), U(θ) � Γ(θ)θ is the vector form of pλ′(|θj|), and
f(θ) � z ln L(θ)/zθ. A feasible fsher’s scoring algorithm is
as follows:

Step 1: We initialize θ(0) � (σ2(0)
, ρ(0), β(0)).

Step 2:We update θ(m+1) � θ(m) + [I(θ(m)) + Γ(θ(m))]−

1[f(θ(m)) − U(θ(m))].
Step 3: If ‖θ(m+1) − θ(m)‖< ϵ, where ϵ is the error limit,
we take θ(m+1) as the fnal estimator, i.e., θ � θ(m+1),
otherwise iterate Step2.

Te initial value θ(0) in Step1 is obtained by using the
ordinary least squares method based on (2), and the inverse
matrix in Step2 can be approximated by the generalized
inverse matrix.

4. Monte-Carlo Experiments

In this section, we conduct some Monte-Carlo experiments to
examine the performance of estimation and variable selection.
Te simulate data are generated from model (1) as follows:

Yt � ρWYt + Xtβ + u + Vt, t � 1, 2, . . . T. (16)

4.1. Parameters and Regressors Setting. We consider T � 3
and N � 50, 100, 150 as diferent sample sizes at three levels.
We set the spatial autoregressive coefcient ρ � 0.3, 0.5, 0.7
as three degrees of spatial dependence. Moreover, we set the
case of ρ � 0 which implies that the proposed model reduces
to the panel model with fxed efects to examine the pe-
nalized estimator performance. In order to make dN diverge,
we set dN � 5, 10, 15, respectively, when N � 50, 100, 150,
i.e., β0 � (5, − 2, 1, 0τ2)

τ , (5, − 2, 1, 0τ7)
τ , and (5, − 2, 1, 0τ12)

τ ,
where 0m is am × 1 zero vector. For the disturbance term, we
set three variance levels σ2 � 0.5, 1, 2 and two types of
disturbance distributions as follows: (i) εit ∼ N(0, σ2) and
(ii) εit ∼ σ/

�
3

√
t(3) to explore the infuence of the disturbance

on the proposed estimator. We set ui ∼ U(0, 1) and
Xt ∼ N(0,Σ0.5), where Σ0.5 is the AR (1) matrix and is shown
as follows:

1 · · · 0.5dN− 1

⋮ ⋱ ⋮

0.5dN − 1
· · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

In addition, we consider another setting, that is, N � 50
and T � 6, 9, 12, and β0 � (5, − 2, 1, 0τ5)

τ , (5, − 2, 1, 0τ6)
τ , and

(5, − 2, 1, 0τ7)
τ for T � 6, 9, 12, respectively, which is just to

simulate large T scenarios, and it only considers the normal
disturbance. Except for N, T, and disturbance settings, the
others are same as the setting mentioned earlier.

Referring to Baltagi and Yang [21] for the generation of
spatial weight matrix, the main idea is that all individuals in
a “group” are regarded as “neighbors” to each other and each
individual has equal infuence on their “neighbor.”Te steps
of the procedure are as follows: (a) we set a constant
c ∈ (0, 1) and let GN � round(Nc) be the number of
“groups” and m � N1− c be the average number of in-
dividuals in each area. (b) We generate “group” size as
ni ∼ U(0.8m, 1.2m)(i � 1, . . . , GN) and adjust ni so that it
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satisfes 
GN

i�1ni � N. (c) We set matrices
Wi(i � 1, 2, . . . , GN) with zero for diagonal elements and
1/(ni − 1) for others. (d) We set matrix
W � diag(W1, . . . ,WGN

) as the fnal spatial weight matrix in
model (1) which also satisfes A3–A5. In this paper, we set
c � 0.8 and generate W by the method mentioned
previously.

Considering that choosing diferent penalty function will
not produce additional computation, we use the Adaptive
Lasso (AdLasso) penalty function (Zou [22]) as a compari-
son, and the form of AdLasso penalty function is as follows:

pλ(ϑ) � λ
|ϑ|

ϑOLS



2 . (18)

Referring to Zhao and Xue [23], we construct a gener-
alized mean square error (GMSE) to compare the estimation
accuracy, which is defned as follows:

GMSE � θ − θ0 
τ
E Dτ

i·Di·(  θ − θ0 , (19)

where D � [0N(T− 1),WY∗,X∗] and Di· is the ith row of D.

4.2. Monte-Carlo Results. Tis subsection shows the results
of Monte-Carlo simulations which are reported in Table 1–3.
Lable “C” in table means the average number of zero re-
gression coefcients that are correctly estimated as zero, and
“I” depicts the average number of nonzero regression co-
efcients that are erroneously set to zero. Tese two in-
dicators indicate the efects of variable selection.

Table 1 presents the results of the penalized QMLE of
a SARP model with fxed efects under normal disturbance
when T is fxed. Tere are some conclusions we can derive
from Table 1: (a) Te GMSEs reduce, and the efects of
variable selection improve as N increases, which proves the
consistency and sparsity of estimation. (b) Te performance
of the penalized QMLE under disturbances of small variance
is better than the large one. Small variance means less
uncertainty which results in higher estimator accuracy. (c)
According to the scenario of ρ � 0, the variable selection
imposed on the spatial autoregressive coefcient is efective.
(d)Te GMSEs and the variable selection efect of the SCAD
method are almost the same as the AdLasso method in all
simulations. Table 2 presents the results of the penalized
QMLE of a SARP model with fxed efects under t distur-
bance and shows that all conclusions derived from Table 1
are still available. Comparing Tables 1 and 2, we know that
although the performance of the penalized QMLE under t
disturbance is not as good as the normal one, it is still well
below the misspecifed distribution. Table 3 presents the
results of the penalized QMLE of an SARP model with fxed
efects under normal disturbance when N is fxed with
diferent T. From Table 3, we can derive the conclusion that
the proposed penalized QMLE also performs well under
large T.

5. Application

Now, we apply the proposed procedure to analyze the dataset
of China’s carbon emissions. Te dataset contains the carbon
emission data and 10 other relevant indicators for 30 prov-
inces and cities in China from 2008 to 2019 (except for Hong
Kong, Macao, Taiwan, and Tibet, due to the difculty of data
collection) which means N � 30, T � 12, and dN � 10, and is
partially shown in Figure 1. Te raw data are obtained from
the China Energy Statistics Yearbook, National Bureau of
Statistics of China (https://data.stats.gov.cn/). Te carbon
emission data are calculated by using the formula based on
energy consumption and energy carbon content which is
proposed by the IPCC.

We consider a spatial autoregressive panel model for the
analysis of factors afecting carbon emissions as follows:

lnyit � ρ
N

j�1
wij lnyit + 

10

k�1
βk lnxitk + ui + Vit. (20)

We set up the standardized spatial weight matrix W
based on seven geographical divisions (East China,
Northeast China, North China, Central China, South China,
Northwest China, and Southwest China), and the variables
represented by X1 ∼ X10, Y (original data before logarithm
transformation) are listed in Table 4. First, we need to test
whether the real data conform to our proposed model. In
fact, the QMLE proposed in this paper have penalized the
spatial autoregressive coefcient ρ, which sufciently sub-
stitutes for the test of spatial autocorrelations. To test the
existence of individual fxed efects, we use the chow test for
the poolability of the data and the Hausman test [24]. Te p
value of the chow test is much less than 0.01, which means
there indeed exist some individual efects in the data; the p
value of the Hausman test is also much less than 0.01, which
means the individual efects should be fxed rather than
random. Ten, we ft the dataset for (20), ordinary fxed
efects panel models (i.e., ρ � 0) and classical linear models
(i.e., ρ � 0, ui � u) are ftted for comparison. Te tuning
parameters λ are determined by BICλ. All results are given in
Table 5. From the analysis results, we can draw the following
conclusions: (i) Te SARP model with fxed efects based on
the SCAD penalty function shows similar results to the
model based on the ALASSO penalty function, and they all
reduce β4, β9, β10 to zero. (ii) Te penalized estimators
β1, β2, β3, β5, β6, and β7 of the SARP model with fxed efects
are positive, which is basically reasonable; β8 is negative,
which may be because the investment in the energy industry
of the state economy promotes emission reduction tech-
nology. (iii) Te spatial autoregressive coefcient ρ is not
0 under the SCAD and ALASSO penalty functions based on
the SARP model with fxed efects, thus showing the exis-
tence of spatial dependence. (iv) Panel models with fxed
efects under the penalty function reduce β1 to zero, which is
obviously unreasonable; the R square also indicates that the
SARP models with fxed efects are better for China’s carbon
emission dataset.
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Table 1: Variable selections for ρ and β under diferent N and diferent σ20 when Vit ∼ N(0, σ20).

(ρ, dN, N) Method
σ20 � 2 σ20 � 1 σ20 � 0.5

GMSE C I GMSE C I GMSE C I

(0, 5, 50)
AdLasso 0.0662 2.934 0 0.0307 2.982 0 0.0156 2.996 0
SCAD 0.0678 2.730 0 0.0356 2.752 0 0.0198 2.830 0
Oracle 0.0621 3.000 0 0.0299 3.000 0 0.0151 3.000 0

(0, 10, 100)
AdLasso 0.0367 7.986 0 0.0170 7.996 0 0.0082 8.000 0
SCAD 0.0341 7.988 0 0.0176 7.990 0 0.0082 7.990 0
Oracle 0.0292 8.000 0 0.0153 8.000 0 0.0075 8.000 0

(0, 15, 150)
AdLasso 0.0220 12.946 0 0.0101 12.976 0 0.0053 12.976 0
SCAD 0.0224 12.972 0 0.0119 12.982 0 0.0069 12.984 0
Oracle 0.0192 13.000 0 0.0100 13.000 0 0.0050 13.000 0

(0.3, 5, 50)
AdLasso 0.1102 1.910 0 0.0507 1.990 0 0.0233 1.994 0
SCAD 0.0795 1.938 0 0.0485 1.964 0 0.0236 1.964 0
Oracle 0.0765 2.000 0 0.0413 2.000 0 0.0194 2.000 0

(0.3, 10, 100)
AdLasso 0.0584 6.942 0 0.0244 6.978 0 0.0114 7.000 0
SCAD 0.0435 6.970 0 0.0204 6.976 0 0.0125 6.986 0
Oracle 0.0383 7.000 0 0.0201 7.000 0 0.0097 7.000 0

(0.3, 15, 150)
AdLasso 0.0327 11.934 0 0.0156 11.992 0 0.0075 12.000 0
SCAD 0.0291 11.998 0 0.0174 11.998 0 0.0075 11.998 0
Oracle 0.0259 12.000 0 0.0128 12.000 0 0.0069 12.000 0

(0.5, 5, 50)
AdLasso 0.0908 1.978 0 0.0486 1.998 0 0.0221 2.000 0
SCAD 0.0779 1.950 0 0.0447 1.974 0 0.0233 1.988 0
Oracle 0.0764 2.000 0 0.0388 2.000 0 0.0206 2.000 0

(0.5, 10, 100)
AdLasso 0.0436 6.970 0 0.0210 7.000 0 0.0108 7.000 0
SCAD 0.0417 6.980 0 0.0201 6.980 0 0.0106 6.996 0
Oracle 0.0381 7.000 0 0.0199 7.000 0 0.0091 7.000 0

(0.5, 15, 150)
AdLasso 0.0289 11.990 0 0.0146 11.998 0 0.0070 11.998 0
SCAD 0.0268 11.998 0 0.0145 11.998 0 0.0074 12.000 0
Oracle 0.0262 12.000 0 0.0129 12.000 0 0.0066 12.000 0

(0.7, 5, 50)
AdLasso 0.0967 1.984 0 0.0442 1.998 0 0.0206 2.000 0
SCAD 0.0844 1.945 0 0.0453 1.992 0 0.0226 1.994 0
Oracle 0.0827 2.000 0 0.0402 2.000 0 0.0192 2.000 0

(0.7, 10, 100)
AdLasso 0.0467 6.996 0 0.0199 7.000 0 0.0096 7.000 0
SCAD 0.0446 6.998 0 0.0210 7.000 0 0.0098 7.000 0
Oracle 0.0395 7.000 0 0.0191 7.000 0 0.0094 7.000 0

(0.7, 15, 150)
AdLasso 0.0265 11.980 0 0.0138 11.998 0 0.0070 12.000 0
SCAD 0.0259 11.996 0 0.0136 12.000 0 0.0074 12.000 0
Oracle 0.0255 12.000 0 0.0126 12.000 0 0.0065 12.000 0

Table 2: Variable selections for ρ and β under diferent N and diferent σ20 when Vit ∼ σ0/
�
3

√
t(3).

(ρ, dN, N) Method
σ20 � 2 σ20 � 1 σ20 � 0.5

GMSE C I GMSE C I GMSE C I

(0, 5, 50)
AdLasso 0.0708 2.932 0 0.0318 2.976 0 0.0162 2.996 0
SCAD 0.0742 2.690 0.006 0.0404 2.740 0.002 0.0233 2.810 0
Oracle 0.0641 3.000 0 0.0299 3.000 0 0.0153 3.000 0

(0, 10, 100)
AdLasso 0.0369 7.974 0.002 0.0172 7.984 0 0.0090 7.986 0
SCAD 0.0405 7.980 0.002 0.0168 7.980 0.002 0.0089 7.982 0
Oracle 0.0297 8.000 0 0.0159 8.000 0 0.0080 8.000 0

(0, 15, 150)
AdLasso 0.0246 12.936 0.002 0.0121 12.974 0 0.0055 12.976 0
SCAD 0.0272 12.968 0 0.0146 12.976 0 0.0073 12.980 0
Oracle 0.0220 13.000 0 0.0102 13.000 0 0.0055 13.000 0

(0.3, 5, 50)
AdLasso 0.1230 1.910 0.002 0.0538 1.972 0.002 0.0234 1.992 0
SCAD 0.1033 1.914 0 0.0561 1.952 0 0.0237 1.952 0
Oracle 0.0768 2.000 0 0.0472 2.000 0 0.0205 2.000 0

(0.3, 10, 100)
AdLasso 0.0584 6.942 0 0.0288 6.978 0 0.0120 6.998 0
SCAD 0.0460 6.956 0.002 0.0263 6.964 0 0.0136 6.982 0
Oracle 0.0440 7.000 0 0.0205 7.000 0 0.0110 7.000 0
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Table 2: Continued.

(ρ, dN, N) Method
σ20 � 2 σ20 � 1 σ20 � 0.5

GMSE C I GMSE C I GMSE C I

(0.3, 15, 150)
AdLasso 0.0403 11.934 0 0.0167 11.984 0 0.0075 11.998 0
SCAD 0.0384 11.992 0 0.0201 11.992 0 0.0101 11.994 0
Oracle 0.0272 12.000 0 0.0132 12.000 0 0.0069 12.000 0

(0.5, 5, 50)
AdLasso 0.1016 1.968 0.006 0.0514 1.998 0.002 0.0224 2.000 0
SCAD 0.0961 1.938 0.002 0.0470 1.972 0.002 0.0254 1.980 0
Oracle 0.0790 2.000 0 0.0394 2.000 0 0.0216 2.000 0

(0.5, 10, 100)
AdLasso 0.0466 6.968 0 0.0226 6.998 0 0.0116 7.000 0
SCAD 0.0456 6.964 0 0.0236 6.972 0 0.0123 6.994 0
Oracle 0.0389 7.000 0 0.0129 7.000 0 0.0098 7.000 0

(0.5, 15, 150)
AdLasso 0.0285 11.986 0 0.0158 11.992 0 0.0078 11.998 0
SCAD 0.0278 11.996 0 0.0161 11.998 0 0.0089 12.000 0
Oracle 0.0277 12.000 0 0.0132 12.000 0 0.0069 12.000 0

(0.7, 5, 50)
AdLasso 0.0984 1.970 0.004 0.0447 1.998 0 0.0214 2.000 0
SCAD 0.0971 1.940 0.002 0.0463 1.982 0 0.0236 1.988 0
Oracle 0.0827 2.000 0 0.0405 2.000 0 0.0210 2.000 0

(0.7, 10, 100)
AdLasso 0.0515 6.974 0 0.0346 6.988 0 0.0096 7.000 0
SCAD 0.0530 6.992 0 0.0275 6.994 0 0.0100 6.998 0
Oracle 0.0398 7.000 0 0.0195 7.000 0 0.0095 7.000 0

(0.7, 15, 150)
AdLasso 0.0291 11.980 0 0.0142 11.996 0 0.0082 12.000 0
SCAD 0.0318 11.994 0 0.0157 12.000 0 0.0091 12.000 0
Oracle 0.0273 12.000 0 0.0127 12.000 0 0.0068 12.000 0

Table 3: Variable selections for ρ and β under diferent T and diferent σ20 when Vit ∼ N(0, σ20).

(ρ, dN, T) Method
σ20 � 2 σ20 � 1 σ20 � 0.5

GMSE C I GMSE C I GMSE C I

(0, 7, 6)
AdLasso 0.0273 4.988 0 0.0125 4.990 0 0.0061 4.994 0
SCAD 0.0265 4.992 0 0.0123 4.992 0 0.0061 5.000 0
Oracle 0.0239 5.000 0 0.0116 5.000 0 0.0061 5.000 0

(0, 8, 9)
AdLasso 0.0143 5.970 0 0.0072 5.976 0 0.0037 6.000 0
SCAD 0.0153 5.970 0 0.0072 5.970 0 0.0037 6.000 0
Oracle 0.0140 6.000 0 0.0070 6.000 0 0.0037 6.000 0

(0, 9, 12)
AdLasso 0.0111 6.978 0 0.0055 7.000 0 0.0027 7.000 0
SCAD 0.0116 6.976 0 0.0055 7.000 0 0.0028 7.000 0
Oracle 0.0108 7.000 0 0.0051 7.000 0 0.0027 7.000 0

(0.3, 7, 6)
AdLasso 0.0350 3.938 0 0.0173 3.994 0 0.0082 3.996 0
SCAD 0.0350 3.950 0 0.0166 3.994 0 0.0081 4.000 0
Oracle 0.0308 4.000 0 0.0162 4.000 0 0.0079 4.000 0

(0.3, 8, 9)
AdLasso 0.0213 4.970 0 0.0099 4.988 0 0.0052 5.000 0
SCAD 0.0206 4.974 0 0.0096 4.990 0 0.0055 4.992 0
Oracle 0.0204 5.000 0 0.0096 5.000 0 0.0051 5.000 0

(0.3, 9, 12)
AdLasso 0.0158 5.986 0 0.0079 6.000 0 0.0046 6.000 0
SCAD 0.0152 5.984 0 0.0079 6.000 0 0.0046 6.000 0
Oracle 0.0143 6.000 0 0.0077 6.000 0 0.0038 6.000 0

(0.5, 7, 6)
AdLasso 0.0329 3.958 0 0.0163 3.994 0 0.0081 3.996 0
SCAD 0.0345 3.970 0 0.0165 3.996 0 0.0081 3.998 0
Oracle 0.0326 4.000 0 0.0159 4.000 0 0.0080 4.000 0

(0.5, 8, 9)
AdLasso 0.0192 4.970 0 0.0095 4.998 0 0.0048 5.000 0
SCAD 0.0201 4.990 0 0.0098 4.998 0 0.0057 5.000 0
Oracle 0.0185 5.000 0 0.0090 5.000 0 0.0046 5.000 0

(0.5, 9, 12)
AdLasso 0.0147 5.988 0 0.0072 6.000 0 0.0039 6.000 0
SCAD 0.0152 5.992 0 0.0074 6.000 0 0.0040 6.000 0
Oracle 0.0139 6.000 0 0.0069 6.000 0 0.0037 6.000 0

(0.7, 7, 6)
AdLasso 0.0331 3.974 0 0.0164 3.996 0 0.0082 4.000 0
SCAD 0.0353 3.984 0 0.0167 3.998 0 0.0081 4.000 0
Oracle 0.0326 4.000 0 0.0156 4.000 0 0.0079 4.000 0
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Figure 1: Carbon emissions in 30 provinces and cities in China.

Table 4: Variable descriptions of China’s carbon emission dataset.

Variables Meaning Symbol Unit
Y CO2 emission CE Mt
X1 Population urbanization PU %
X2 Electric consumption EC TWh
X3 Energy intensity EI tce/10Kyuan
X4 Space urbanization SU %
X5 GDP per capita GDP 10Kyuan
X6 Population P 10K
X7 Invention patent per 10K capita IPC /10K
X8 Fixed investment in the energy industry of state economy FIEISE 100Myuan
X9 Volume of freight transport VFT 10Kt
X10 Proportion of increase in the tertiary industry PITI %

Table 3: Continued.

(ρ, dN, T) Method
σ20 � 2 σ20 � 1 σ20 � 0.5

GMSE C I GMSE C I GMSE C I

(0.7, 8, 9)
AdLasso 0.0193 4.964 0 0.0095 4.998 0 0.0048 5.000 0
SCAD 0.0212 4.984 0 0.0099 4.998 0 0.0052 5.000 0
Oracle 0.0191 5.000 0 0.0093 5.000 0 0.0046 5.000 0

(0.7, 9, 12)
AdLasso 0.0148 5.994 0 0.0072 6.000 0 0.0038 6.000 0
SCAD 0.0162 6.000 0 0.0077 6.000 0 0.0040 6.000 0
Oracle 0.0144 6.000 0 0.0071 6.000 0 0.0038 6.000 0

Table 5: Diferent models ftting China’s carbon emission dataset.

Coefcient
SARPF PF

SCAD ALASSO Nonpenalty SCAD ALASSO Nonpenalty
ρ 0.2080 0.2000 0.2065 0.0000 0.0000 0.0000
β1-PU 0.2385 0.1978 0.2231 0.0000 0.0000 0.0672
β2-EC 0.3476 0.3457 0.3434 0.3648 0.3674 0.3530
β3-EI 0.5908 0.5942 0.6006 0.6416 0.6397 0.6847
β4-SU 0.0000 0.0000 0.0243 0.0000 0.0000 0.0191
β5-GDP 0.1327 0.1514 0.1413 0.2428 0.2448 0.2275
β6-P 0.2222 0.2016 0.2354 0.1893 0.1798 0.2736
β7-IPC 0.0668 0.0659 0.0680 0.0810 0.0789 0.0835
β8-FIEISE − 0.0288 − 0.0249 − 0.0311 0.0000 0.0000 − 0.0292
β9-VFT 0.0000 0.0000 0.0063 0.0000 0.0000 0.0235
β10-PITI 0.0000 0.0000 − 0.0282 0.0000 0.0000 0.0269
R square 0.8410 0.8413 0.8413 0.8245 0.8244 0.8299
1SARPF: SARP model with fxed efects and PF: panel model with fxed efects.
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6. Conclusion

Within the framework of high-dimensional SARP models
with fxed efects, we propose a penalized quasi-maximum
likelihood approach based on matrix transformation. Tis
approach can achieve parameter estimation and variable
selection simultaneously, and we have proven that the
proposed estimators are asymptotically consistent and
normally distributed under some conditions. Te Monte-
Carlo simulations and a real data analysis of China’s carbon
emissions are conducted to prove the proposed properties,
and their results show the efectiveness of the proposed
method.

Tis paper focuses only on the variable selection problem
of high-dimensional SARP models with fxed efects which
are still linear.Tere may not be similar results for nonlinear
panel models and other more fexible spatial models. Fur-
thermore, we use two penalty functions for variable

selections, but the best method remains unknown. We will
continue to study these issues in the future.

Appendix

Proof of theorems

In order to prove the theorems, we need the following
lemmas:

Lemma A.1. Under A1–A8, we can have

1
��������
N(T − 1)


z ln L θ0( 

zθ
� Op(1). (A.1)

Proof. 1/
��������
N(T − 1)


z ln L(θ0)/zθ can be written as
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��������
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zρ
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��������
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(A.2)

Apparently, E(1/
��������
N(T − 1)


z lnL(θ0)/zθ) � 0.

According to A2–A8, we can have
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(A.3)
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So that all the elements of 1/
��������
N(T − 1)


z ln L(θ0)/zθ are

Op(1), then Lemma A.1 holds. □

Lemma A.2. Under A1–A8, we have

z ln L θ0( 

zθ

��������

��������

2

� Op NdN( . (A.4)

Proof. According to A2–A8 and Lemma A.1, we can have
the following equation:
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(A.5)

According to A1, we have ‖z ln L(θ0)/zθ‖2 � Op(NdN).
Tus, Lemma A.2 holds. □

Lemma A.3. Under A1–A8, we have

1
N(T − 1)

z
2 ln L θ0( 

zθzθτ
+ I θ0(   � op(1). (A.6)

Proof. Te elements of matrix are linear or quadratic forms
of V∗0 , and the matrix is as follows:

1
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σ20trG − V∗τ0 GX∗β0 − V∗τ0 GV∗0 
N(T − 1)

σ40
−

1
σ60
V∗τ0 V∗0 ∗

1
σ20
X∗τGV∗0 −

1
σ40
X∗τV∗0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.7)

According to the law of large numbers, we know that all
the elements are op(1); thus, Lemma A.3 holds. □

Proof of Teorem 2. Let αN �
���
dN


(N− 1/2 + aN) and

‖u‖ � C, where C is a large enough constant. Similar to the
proof of Teorem 1 in Fan and Peng [2], it is sufcient to

prove it if we can prove that for any given ϵ> 0, there is
a large enough constant C such that

P sup
‖u‖�C

Q θ0 + αNu( <Q θ0(  ≥ 1 − ϵ. (A.8)
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Tat means that with probability tending to 1, there is
a local maximum θ in the ball θ0 + αNu: ‖u‖≤C  such that
‖θ − θ0‖ � Op(αN) . Note that pλ(0) � 0, then we have

D(u) � Q θ0 + αNu(  − Q θ0( 

� ln L θ0 + αNu(  − ln L θ0(   − N(T − 1) 

dN+2

j�2
pλ θj0 + αNuj



  − pλ θj0



  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤ ln L θ0 + αNu(  − ln L θ0(   − N(T − 1) 

s

j�2
pλ θj0 + αNuj



  − pλ θj0



  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≜A1 + A2.

(A.9)

By the Taylor expansion of D(u), we have

A1 � αN

z ln L θ0( 

zθ
 

τ

u +
1
2
α2Nu

τ z
2 ln L θ0( 

zθzθτ
 u +

1
6

z

zθ
uτ

z
2 ln L θ∗0( 

zθzθτ
 u uα3N

≜A11 + A12 + A13,

A2 � − N(T − 1) 
s

j�2
αNpλ′ θj0



 sgn θj0 uj + α2Npλ″ θj0



 u
2
j[1 + o(1)] 

≜A21 + A22,

(A.10)

where θ∗ lies between θ0 and θ. According to Lemma A.2, we
have

A11


 � αN

z ln L θ0( 

zθ
 

τ

u



≤ αN

z lnL θ0( 

zθ

��������

��������
‖u‖

� Op αN

�����

NdN



 ‖u‖≤Op Nα2N ‖u‖.

(A.11)

By Lemma A.3 and A9, we have

A12 �
1
2

N(T − 1)α2Nu
τ 1

N(T − 1)

z
2 ln L θ0( 

zθzθτ
 u

�
1
2

N(T − 1)α2Nu
τ

−
1

N(T − 1)
I θ0(  + op(1) u

� − Op Nα2N ‖u‖
2
.

(A.12)

By the Cauchy–Schwarz inequality, A10, d4
N/N⟶0

and d2
NaN⟶0 as N⟶∞, we have
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A13
����

���� �
1
6



dN+2

i,j,k�1

z
3 ln L θ∗( 

zθizθjzθk

uiujukα
3
N





≤
1
6

N
2



dN+2

i,j,k�1
M

2
ijk

⎛⎝ ⎞⎠

1/2

‖u‖
3α3N

� Op d
3/2
N αN Nα2N‖u‖

3
� op Nα2N ‖u‖

2
.

(A.13)

Tus, |A13| � op(Nα2N)‖u‖2. For A21 and A22, we have

A21


≤N 
s

j�2
αNpλ′ θj0



 sgn θj0 uj




≤

�
s

√
NαNaN‖u‖ � Op Nα2N ‖u‖,

A22


 � N 
s

j�2
α2Npλ″ θj0



 sgn θj0 u
2
j[1 + o(1)]≤NbNα

2
N‖u‖

2
� op Nα2N ‖u‖

2
.

(A.14)

Tus, A12 is negative and dominates all terms when C is
large enough. Ten, Teorem 2 holds. □

Proof of Teorem 3. Let η � C
�����
dN/N


, we just need to prove

that with probability tending to 1 as N⟶∞ for any θ1
satisfying ‖θ1 − θ10‖ � Op(

�����
dN/N


) we have, for

j � s + 1, . . . , dN:

zQ(θ)

zθj

< 0, 0< θj < η,

zQ(θ)

zθj

> 0, − η< θj < 0.

(A.15)

By Taylor expansion, we can have

zQ(θ)

zθj

�
z ln L(θ)

zθj

− N(T − 1)pλ′ θj0



 sgn θj0 

�
z ln L θ0( 

zθj

+ 

dN+2

k�1

z
2 ln L θ0( 

zθjzθk

θk − θk0(  + 

dN+2

l,k�1

z
3 ln L θ∗( 

zθjzθkzθl

θk − θk0(  θl − θl0( 

− N(T − 1)pλ′ θj0



 sgn θj 

≜B1 + B2 + B3 + B4,

(A.16)

where θ∗ lies between θ0 and θ. We consider B1, B2, B3 frst,
and by Lemma A.1, we can have

B1 � Op(
��
N

√
) � Op

�����

NdN



 . (A.17)

Term B2 can be written as

B2 � 

dN+2

k�1

z
2 ln L θ0( 

zθjzθk

− E
z
2 ln L θ0( 

zθjzθk

   θk − θk0(  + 

dN+2

k�1
E

z
2 ln L θ0( 

zθjzθk

  θk − θk0( 

≜B21 + B22.

(A.18)

According to Lemma A.3, A11 and
‖θ − θ0‖ � Op(

�����
dN/N


), by the Cauchy–Schwarz inequality,

we have

Journal of Mathematics 13



B21


≤ θ − θ0
����

����

������������������������������



dN+2

k�1

z2 ln L θ0( 

zθjzθk

− E
z2 ln L θ0( 

zθjzθk

  

2



� Op

���
dN

N



 Op

�����

NdN



  � Op dN(  � Op

�����

NdN



 .

(A.19)

So, |B21| � Op

�����
NdN


. From Lemma A.3, the Cau-

chy–Schwarz inequality and A11, we have

B22


 � N(T − 1) 

dN+2

k�1

1
N(T − 1)

I θ0( (j, k)  θk − θk0( 





≤N(T − 1)

������������������������



dN+2

k�1

1
N(T − 1)

I θ0( (j, k) 

2




θ − θ0
����

����

� O(N)O(1)Op

���
dN

N



  � Op

�����

NdN



 .

(A.20)

From the Cauchy–Schwarz inequality and A10, we can
have

B3


 � 

dN+2

l,k�1

z
3 ln L θ∗( 

zθjzθkzθl

θk − θk0(  θl − θl0( 





� N(T − 1) 

dN+2

l,k�1

1
N(T − 1)

z
3 ln L θ∗( 

zθjzθkzθl

θk − θk0(  θl − θl0( 





≤N(T − 1)

�������������������������



dN+2

l,k�1

1
N(T − 1)

z3 ln L θ∗( )

zθjzθkzθl

 

2



θ − θ0
����

����
2
.

� Op NdN

dN

N
  � Op d

2
N  � op

�����

NdN



 .

(A.21)

Ten, B1 + B2 + B3 � Op(
�����
NdN


), i.e.,

zQ(θ)

zθj

� Op

�����

NdN



  − N(T − 1)pλ′ θj



 sgn θj 

� Nλ Op

�����
dN/N



λ
  − (T − 1)

pλ′ θj



 

λ
sgn θj 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(A.22)

By the condition of the theorem and A12, we have
pλ′(|θj|)/λ> 0, so it is easy to know that the sign of zQ(θ)/zθj

is completely determined by the sign of θj which implies
Teorem 2. □
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Proof of Teorem 4. Teorem 2 shows that there is a
�����
dN/N



consistent local maximum θ if we choose a proper tune
parameter λ. According to Teorem 3, part (i) holds, so we
only need to prove part (ii). As we know, there is an esti-
mator θ � (θ

τ
1, 0τ)

τ which satisfes the following equation:

zQ(θ)

zθj

θ�θ
� 0 j � 1, . . . , dN + 2( . (A.23)

We note it as zQ(θ)/zθ, and by the Taylor expansion, we
have

z ln L θ0( 

zθ
+

z
2 ln L θ0( 

zθzθτ
θ − θ0  +

1
2

θ − θ0 
τ z

zθ
z
2 ln L θ∗( 

zθzθτ
  θ − θ0 

� N(T − 1) pλ′ θ0(  + pλ″ θ0(  θ − θ0  + op(1) ,

(A.24)

where θ∗ is between θ0 and
θ, pλ″(θ0) � diag 0, pλ″(|ρ0|), pλ″(|β10|), . . . , pλ″(|β(dN)0|) ,
pλ′(θ0) � [0, pλ′(|ρ0|)sgn(ρ0), pλ′(|β10|)sgn(β10), . . . , p′λ
(|β(dN)0|)sgn(β(dN)0)]

τ . Mark 1/2(θ − θ)τz/zθ(z2

lnL(θ∗)/zθzθτ)(θ − θ0) as ∇3 ln L(θ∗). According to A10
and the Cauchy–Schwarz inequality, we can have

∇3 ln L θ∗( 
����

����≤
N(T − 1)

2

�������������������������



dN+2

j,k,l�1

1
N(T − 1)

z3 ln L θ∗( )

zθjzθkzθl

 

2



θ − θ0
����

����
2

� Op d
5/2
N . (A.25)

Let B � [Is×s, 0s×(dN+2− s)] and
A � (− 1/(N(T − 1))z2 lnL(θ0)/zθzθτ)s×s which is the frst
upper-left s × s submatrix of

− 1/(N(T − 1))z2 lnL(θ0)/zθzθτ , then from part (i), (A.24)
and (A.25), we know

B
z ln L θ0( 

zθ
� N(T − 1) A +  θ0(  + op(1)  θ1 − θ10  + N(T − 1)b − Op d

5/2
N . (A.26)

We multiply both sides by 1/
��������
N(T − 1)


and denote

1/
��������
N(T − 1)


Bz ln L(θ0)/zθ as ZN

ZN �
��������
N(T − 1)


A +  θ0(  + op(1)  θ1 − θ10  + b  − Op

���

d
5
N

N



⎛⎝ ⎞⎠. (A.27)

From Lemma A.3, we have
A � 1/(N(T − 1))I1(θ10, 0) + op(1), then

ZN �
��������
N(T − 1)

 1
N(T − 1)

I1 θ10, 0(  +  θ0(  + op(1)  θ1 − θ10  + b  − Op

���

d
5
N

N



⎛⎝ ⎞⎠. (A.28)

By the condition that d5
N/N⟶0 and Slutsky’s theorem,

as N⟶∞, we have
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��������
N(T − 1)

 1
N(T − 1)

I1 θ10, 0(  +  θ0(   θ1 − θ10  + b ⟶
D

ZN, (A.29)

where “⟶D ” means convergence in distribution. Fur-
thermore, the central limit theorem for linear-quadratic
forms of Kelejian and Prucha [25] and assumption 9 shows

ZN �
1

��������
N(T − 1)

 B
z ln L θ0( 

zθ
⟶D N(0,H + K). (A.30)

Tus,

��������
N(T − 1)

 1
N(T − 1)

I1 θ10, 0(  +  θ0(   θ1 − θ10  + b ⟶
D

N(0,H + K). (A.31)

□
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