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In this paper, we take a new approach to uncertainty in a coherent system, where components are assumed to be all inactive in
a given time. In particular, the signature-based method is used to quantify the extropy of the past lifetime of the system, which
serves as a valuable indicator of its predictability. Te results provide several key fndings, including some bounds and stochastic
ordering aspects for this measure. We also introduce a new formula to select the system that is preferable based on its relative
extropy in the past. Te results of this work can provide insights for designing systems to improve their reliability and resilience.

1. Introduction

An important research topic in many felds, including
biology, survival analysis, reliability engineering,
econometrics, statistics, and demography, is the analysis
of distribution functions based on partial knowledge. Te
model selection, estimation, hypothesis testing, evalua-
tion of inequality and poverty, and portfolio analysis are
all relevant tasks in this area. Te entropy of a probability
distribution, which has numerous applications in in-
formation science, physics, probability, statistics, com-
munication theory, and economics, is one of the most
commonly used measurements in this feld. Te Shannon
entropy of a nonnegative random variable (rv) with
probability density function (pdf ) f, introduced by
Shannon in his seminal work [1], is defned as
H(X) � H(f) � − E[logf(X)], provided the expectation
exists.

Extropy, a complementary dual uncertainty measure
developed by Frank et al. [2], has garnered more attention in
recent years. Te extropy measure is applicable to absolutely
continuous, nonnegative rvs X supported on the interval
[0,∞). Te expression of it involves the survival function
(sf) S given by S(x) � P(X> x) and pdf f. Te extropy of X

is designated as follows:

J(X) � −
1
2


∞

0
f
2
(x)dx. (1)

It is crucial for engineers to appropriately measure un-
certainty across a system’s lifetime. Systems with a longer
lifespan and a lower uncertainty are generally thought to be
superior since dependability declines as uncertainty rises (see,
e.g., Ebrahimi and Pellerey [3]). Although J(X) is a useful
indicator of the lifetime (given by X) uncertainty of a new
system, it might not be acceptable in circumstances when
understanding of operators of the system’s current age is
limited. For instance, the J(X) measure is no longer applicable
if it is known that the system is operational at time t and want
to quantify the uncertainty related to its previous lifetime, as
signifed by Xt � X − t|X> t. A novel metric known as re-
sidual extropy has been proposed to get around this restriction.
Residual extropy is measured via the following formula:

J Xt(  � −
1
2


∞

t

f(x)

S(t)
 

2

dx, (2)

for all t> 0. Extropy has been the subject of extensive in-
vestigation by several researchers, including Frank et al. [2],
Qiu [4], Qiu and Jia [5], and others cited therein. In a recent
study, Qiu et al. [6] examined an assertion for the extropy of
the random lifetime due to a coherent system.
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In real systems, there is often a pervasive element of
uncertainty that afects both the past and the present.
Against this background, a complementary concept of en-
tropy has been established, which is distinct from residual
entropy, which describes the uncertainty of future events
and captures the uncertainty of past events. As can be seen
from publications such as those by Di Crescenzo and
Longobardi [7], Unnikrishnan Nair and Sunoj [8], and
Kayid and Shrahili [9], the literature has paid considerable
attention to the topic of past entropy and its statistical
applications.

Te research conducted by Gupta et al. [10] on the
properties of historical entropy in the context of ordered
random variables has led to a substantial advancement of the
area. Gupta et al. [10] have studied, in particular, the past
entropy and, moreover, the residual entropy of ordered
random variables and have dealt with stochastic order as-
pects arising from these random variables that have provided
new insight into past entropy’s fundamental concepts and its
use in statistical analysis.

Tis study includes a thorough analysis of extropy ap-
plied to the distribution of past lifetimes as well as a gen-
eralized version of equation (2). By introducing parameter 2,
which allows for a variety of weightings of the conditional
probabilities, our proposed measure allows for a nuanced
comparison of the shapes of diferent distributions of past
lifetimes. Our results demonstrate the immense potential of
this measure to provide new insights into the underlying
mechanics of these distributions, with applications beyond
the scope of our current work.

Consider a coherent system with n components that are
all inactive at time t in order to further explore the appli-
cability of the measure we suggest in this study. We use the
system signature approach to calculate the extropy of the
coherent system’s past-life distribution. With potential ap-
plications in network science, reliability engineering, and
industrial systems, the fndings have major ramifcations for
comprehending and simulating complex systems.

2. Results on the Past Extropy

We assume that the rv X stands as the lifetime of a system.
Note that the pdf of Xt � [X|X< t] is ft(x) � f(x)/F(t), so
that x ∈ (0, t). Te past extropy of X at time t is derived by
the following formula (see Krishnan et al. [11]):

J Xt(  � −
1
2


+∞

0
f
2
t (x)dx

� −
1
2


t

0

f(x)

F(t)
 

2

dx.

(3)

It is to be mentioned here that the extropy J(Xt), of the
past life, can take values from negative infnity to zero. Te
captivating research papers by Krishnan et al. [11],

Kamari and Buono [12], and Toomaj et al. [13] delve into
a plethora of fascinating topics concerning the in-
vestigation of past extropy. Tese works rigorously ana-
lyze expressions, bounds, characterizations, ageing
properties, stochastic orders, and other valuable prop-
erties, providing a comprehensive understanding of this
complex subject.

When a system fails, J(Xt) ofers a measure of un-
certainty regarding the system’s previous lifetime, as-
suming it failed at time t. Tis metric is particularly useful
for comparing random lives because it allows us to spot
subtle diferences in the morphologies of diverse distri-
butions of past lifetimes. To illustrate the importance of
past extropy in comparing random lifetimes, consider the
next example.

Example 1. Let us contemplate two system components
which have life lengths X and Y, with respective pdfs:

f(x) � 2x, x ∈ (0, 1),

g(x) � 2(1 − x), x ∈ (0, 1).
(4)

Te extropy of X and, further, that of Y are appealingly
recorded by knowing that J(X) � J(Y) � − 2/3. Tis dis-
covery has signifcant ramifcations for anticipating the
extropy measurements on rvs X and Y.

In particular, our results suggest that the expected
uncertainty associated with X and Y is the same when pdfs
f and g are assigned for these rvs. Let us assume that both
components were found to be defective during an in-
spection at a time t that lies between 0 and 1. In such
a case, we can use the notion of historical extropy to
quantify the uncertainty associated with the relative
failure times. Clearly, equation (3) can be taken into
account in order to evaluate the past extropy by the
identities:

J Xt(  � −
2
3t

,

J Yt(  �
2t2 − 6t + 6

3t − 6
,

(5)

for all t ∈ (0, 1). Te results of our analysis, presented in
Figure 1, reveal a compelling trend. Specifcally, we dem-
onstrate that the extropy of Xt is in command of Yt for
t ∈ (0, 1), despite the fact that J(X) � J(Y).

It is understood from Equation (3) that the extropy of
[t − X|X≤ t] (the idle time) is a striking fnding. Tis
alternate identifcation ofers new insight into the sys-
tem’s underlying dynamics and works for a useful cri-
terion for describing the extropy of the system’s temporal
behavior. In addition to this alternative identifcation,
equation (3) also gives another formula for the past
extropy, as follows:
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J Xt(  � −
1
2


t

0

f
2
(x)

F
2
(t)

dx

� −
1
2


t

0

f(x)

F(x)

f(x)

F(t)

F(x)

F(t)
dx

� −
1
2


+∞

0
r(x)ft(x)Ft(x)dx

� −
1
4


+∞

0
r(x)f2,t(x)dx

� −
1
4

E r X2,t  ,

(6)

in which r(x) � d/dx ln(F(x)) stands as the reversed hazard
rate of X and X2,t that follows the pdf

f2,t(x) � 2ft(x)Ft(x), (7)

such that Ft(x) � F(x)/F(t) for all x ∈ (0, t). Monotonicity
of past extropy is a fundamental property of rvs that exhibit
the decreasing reverse hazard rate (DRHR) property. Tis
property, defned by the decreasing property of r(x) for all
x> 0, is commonly observed in a number of real-world
applications. Here, we establish a theorem that provides
fresh insight into how historical extropy behaves when the
DRHR property is present. In particular, we show that the
past extropy of a DRHR rv increases monotonically over
time and provides a formal proof of this result.

Theorem 1. If X has a distribution with DRHR property,
then J(Xt) increases in t> 0.

Proof. Let us diferentiate (3) in terms of t to obtain

− 2J
′

Xt(  � r
2
(t) − 2r(t) 

t

0

f
2
(x)

F
2
(t)

dx

� r
2
(t) − r(t) 

t

0
r
2
(x)f2,t(x)dx,

(8)

where f2,t(x) is acquired from (7). If it is known that the
distribution of X induces the DRHR property, then r(x)

satisfes the inequality r(x) ≥ r(t) for all x≤ t. Now, ap-
pealing to (8), we obtain

r
2
(t) − r(t) 

t

0
r(x)f2,t(x)dx≤ 0, (9)

which can be rearranged as follows:

− 2J
′

Xt( ≤ 0, (10)

where J
′
(Xt) indicates the derivative of the past extropy in

terms of t. It follows that J
′
(Xt) increases t which completes

the proof. □

Below, we provide an upper bound for J(Xt) on the basis
of r.

Theorem 2. If r(x)< +∞ and distribution of X induces
DRHR property, then it holds that

J Xt( ≤ −
r(t)

4
, t> 0. (11)

Proof. Te DRHR property yields − r as an increasing
function.Tus, for all x ∈ (0, t), one has − r(x)≤ − r(t), and
thus in spirit of (4), one obtains

J Xt(  �
1
4


t

0
(− r(x))f2,t(x)dx

≤
− r(t)

4


t

0
f2,t(x)dx

� −
r(t)

4
,

(12)

where the last equality follows from the identity


t

0 f2,t(x)dx � 1. □

3. Extropy of the Past Lifetime of the
Coherent System

Assuming that every component has failed at a given time,
we show how to use of the signature-based approach to
determine the past lifespan extropy of a coherent system of
any structure. A coherent system satisfes the conditions of
being devoid of superfuous parts and having a monotonic
structure function. Tis system is recognized by the signa-
ture vector p � (p1, . . . , pn), in which the i th element pi �

P(T � Xi: n) serves as the probability that the i th compo-
nent in the system is the last failed component (see [14]).

Contemplate a coherent system in which component
lifetimes are denoted by X1, . . . , Xn and they are in-
dependent and identically distributed (i.i.d.). Let us assume

−6

−4

−2

0.25 0.50 0.75 1.00
t

Pa
st 

Ex
tr

op
y

Figure 1: Te extropy of J(Xt) (solid line) and J(Yt) (dashed line)
in Example 1.
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that the signature vector p � (p1, . . . , pn) is due to the
considering system. Let Tt � [t − T | Xn: n ≤ t] stands as the
past lifetime of the coherent system, considering that
components of the system are all inactive at time t. From
Khaledi and Kochar [15], the sf of Tt is derivable as follows:

P Tt >x(  � 
n

i�1
piP T

i
t >x , (13)

where

P T
i
t > x  � P t − Xi: n >x

Xn: n ≤ t 

� 
n

k�i

n

k

⎛⎝ ⎞⎠
F(t − x)

F(t)
 

k

1 −
F(t − x)

F(t)
 

n− k

, 0< x< t,

(14)

signifes the sf of the past lifetime due to an i-out-of-n system
seeing that the components are all idle at time t. From (13),
we obtain

fTt
(x) � 

n

i�1
pifTi

t
(x), (15)

where

fTi
t
(x) � di

F(t − x)

F(t)
 

i− 1

1 −
F(t − x)

F(t)
 

n− i
f(t − x)

F(t)
, x ∈ (0, t), (16)

where di � Γ(n + 1)/Γ(i)Γ(n − i + 1) in which Γ(·) is the
well-known gamma function and Ti

t � [t − Xi: n|

Xn: n ≤ t], i � 1, 2, . . . , n, is the time elapsed since failure of
the component in the system which has a lifetime Xi: n

provided that the system has become inactive prior to time t.
It is noteworthy from (13) that Ti

t signifes the i th order
statistics arisen from of n i.i.d. components lifetimes with the
common cumulative distribution function (cdf)
F(t − x)/F(t), x ∈ (0, t). We now give a formula for the
extropy of Tt. Now, we set Ft(x) � F(x)/F(t), 0<x< t. Te
transformation V � Ft(Tt) plays a necessary role in our
context. It is evidently seen that Ui: n � Ft(Ti

t) has a beta
distribution with parameters i and n − i + 1. Next, we give
a formula for the extropy of Tt.

Theorem 3. Let Tt be the past life of the system given that, at
time t, all components in the system have become inactive.
Ten, the extropy of Tt is

J Tt(  � −
1
2


1

0
g
2
V(u)ft F

− 1
t (u) du, (17)

for all t> 0.

Proof. Let us assume that gV(u) � 
n
i�1pigi(u), in which gi

is the pdf of a beta distribution with parameters i and
n − i + 1. We denoted by gV the density of the rv V which
denotes the lifetime of a system having a same structure
function as the underlying system, in which components
which have i.i.d. lifetimes according to the uniform distri-
bution. By combining (1) and (8) and making the change
z � t − x, one obtains

J Tt(  � −
1
2


t

0
fTt

(x) 
2
dx

� −
1
2


t

0


n

i�1
pifTi

t
(x)⎛⎝ ⎞⎠

2

dx

� −
1
2


t

0


n

i�1
pidi

F(t − x)

F(t)
 

i− 1

1 −
F(t − x)

F(t)
 

n− i
f(t − x)

F(t)
⎛⎝ ⎞⎠

2

dx

� −
1
2


t

0


n

i�1
pidi Ft(z)( 

i− 1 1 − Ft(z)( 
n− i

ft(z)⎛⎝ ⎞⎠

2

dz

� −
1
2


1

0
g
2
V(u)ft F

− 1
t (u) du.

(18)
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Te last identity results from the change of the variable z

into u � Ft(z). □

Teorem 3 presents a statement for the extropy of a sys-
tem’s lifespan provided that component failures at a certain
moment make a signifcant advance to our understanding of
system dependability. Tis expression is particularly helpful in
circumstances when component failures happen at pre-
determined times for assessing the strength of uncertainty
behind the randomness in the lifetime of a system.

If we assume that all components are idle at time t, then
J(Tt) is capable to measure the uncertainty which is ex-
pected to be induced via the conditional pdf of t − T under
the condition that Xn: n ≤ t. Let us consider an i-out-of-n
system with signature p � (0, . . . , 0, 1i, 0, . . . , 0), i �

1, 2, . . . , n, then equation (18) brings to

J Tt(  � −
1
2


1

0
g
2
i (u)ft F

− 1
t (u) du, t> 0. (19)

Te following result is an immediate consequence of
Teorem 3.

Theorem 4. If X has a distribution with the DRHR property,
then J(Tt) increases in t.

Proof. By noting that ft(F− 1
t (x)) � xrt(F− 1

t (x)), equation
(19) can be rewritten as

− 2J Tt(  � 
1

0
g
2
V(u)urt F

− 1
t (u) du, (20)

for all t> 0. We plainly observe that F− 1
t (u) � F− 1(uF(t)),

whenever u ∈ (0, 1), and as a result:

rt F
− 1
t (u)  � r F

− 1
(uF(t)) , 0< u< 1. (21)

If t1 ≤ t2, then F− 1(uF(t1))≤F− 1(uF(t2)). Terefore, as
X has a distribution with DRHR property, thus


1

0
g
2
V(u)u rt1

F
− 1
t1

(u)  du � 
1

0
g
2
V(u)u r F

− 1
uF t1( (   du

≥ 
1

0
g
2
V(u)u r F

− 1
uF t2( (   du

� 
1

0
g
2
V(u)u rt2

F
− 1
t2

(u)  du,

(22)

for all t1 ≤ t2. Using (18), we obtain

− 2J Tt1
 ≥ − 2J Tt2

 . (23)

Tis implies that J(Tt1
)≤ J(Tt2

). □

Te below example is given to apply Teorems 3 and 4.

Example 2. We consider a coherent system of order 4,
depicted in Figure 2, in which the component lifetimes are
independently and identically distributed with a common
cdf F(x) � e− x− k , where k> 0. Te signature vector for this
coherent system can be evaluated as p � (0, 1/6, 7/12, 1/4).

To compute the exact value of the expected lifetime J(Tt), we
use relation (18) to obtain the following expression:

J Tt(  � −
k

2

1

0
t
− k

− log u 
1/k+1

ug
2
V(u)du, t> 0. (24)

Although it is not that easy to derive a perfectly clear
statement for (19), we can obtain meaningful results through
numerical calculations. Specifcally, we consider some values
of k> 0 and calculate the extropy of Tt as a function of time t

using numerical methods. Figure 3 shows the resulting
extropy values for Tt versus time. Remarkably, the un-
derlying cdf F induces DRHR property, for all k> 0, as stated
inTeorem 4. Consistent with this theorem, we observe that
J(Tt) increases with t for k> 0, as shown in Figure 3.

Te description given earlier sheds important insights on
the intricate connection between a rv’s extropy and time and
highlights the importance of considering the DRHR prop-
erty while scrutinizing such systems. Te fndings imply that
the DRHR feature of X is key in determining how the
extropy of Tt behaves over time, which has signifcant
implications for a variety of applications. In particular, the
results may lead to a substantial understanding of complex
systems in which the DRHR property of component life-
times is common. By characterizing the temporal behavior
of the extropy of coherent systems with DRHR components,
we can gain deeper insights into the performance and re-
liability of such systems. Overall, the given example high-
lights the power of information-theoretic methods for
analyzing complex systems and underscores the importance
of considering the underlying distributional properties of
component lifetimes in such analyzes.

In order to substantial reduction of the complicated
computations involved in identifying the signature vector, it
is useful to think of a system as having dualities. Kochar et al.
[16] presented a duality link between a system’s signature
and that of its dual, and it can be utilized to simplify the
derivation of the past extropy for coherent systems. In more
detail, if p � (p1, . . . , pn) signifes the signature of a co-
herent system with lifetime T, then pD � (pn, . . . , p1) gives
the signature of its dual system with lifetime TD. For co-
herent systems, the calculation of the past extropy can be
made easier using this duality characteristic. Te duality
principle is used in the following theorem to produce
a condensed expression for the past extropy of coherent
systems. Te following lemma will be useful in our end.

Lemma 5. Let ϕ be a continuous function on (0,1) so that

1
0 xnϕ(x)dx � 0 for all n≥ 0. Ten, it holds that ϕ(x) � 0 for

every x ∈ [0, 1].

1

4 3

2

Figure 2: A coherent system with signature p � (0, 1/6, 7/12, 1/4).
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Theorem 6. Let Tt denote the life length a coherent system
with signature p has, assuming that it has n components with
i.i.d. lifetimes. If ft(F− 1

t (u)) � ft(F− 1
t (1 − u)) satisfes for all

u ∈ (0, 1) and for all t> 0, then J(Tt) � J(TD
t ) for all p and

every n.

Proof. We frst prove the sufcient part. To this end, let
ft(F− 1

t (u)) � ft(F− 1
t (1 − u)) for all u ∈ (0, 1). Remark that

gi(1 − u) � gn− i+1(u) for all i � 1, . . . , n and u ∈ (0, 1).
Terefore, in spirit of (11), one can derive


1

0
g
2
VD (u)ft F

− 1
t (u) du � − 

1

0


n

i�1
pn− i+1gi(u)⎛⎝ ⎞⎠

2

ft F
− 1
t (u) du

� 
1

0


n

r�1
prgn− r+1(u)⎛⎝ ⎞⎠

2

ft F
− 1
t (u) du

� 
1

0


n

r�1
prgr(1 − u)⎛⎝ ⎞⎠

2

ft F
− 1
t (u) du

� 
1

0


n

r�1
prgr(u)⎛⎝ ⎞⎠

2

ft F
− 1
t (u) du

� 
1

0
g
2
V(u)ft F

− 1
t (u) du.

(25)

Now, appealing to equation (18) will complete
the proof. □

For the i-out-of-n systems, an immediate consequence of
the previous theorem is given below.

Corollary  . Suppose that Ti
t is the life length of an i-out-of-n

system having n i.i.d. components. Let ft(F− 1
t (u)) �

ft(F− 1
t (1 − u)) holds true for all u ∈ (0, 1) and for every t> 0.

Ten, J(Ti
t) � J(Tn− i+1

t ) for all n and i � 1, 2, . . . , n/2 if n is
even and, moreover, i � 1, 2, . . . , (n − 1)/2 if n is odd.

4. Bounds for Extropy of the Past Lifetime

In complex systems, where the number of components is
large, calculating the expected lifetime J(Tt) is a challenging
task. Tis situation occurs frequently in practice, and it
might be challenging to fnd reliable estimates of the system
lifetime. Utilizing a prior extropy bound to estimate the
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Figure 3: Exact value of J(Tt) in Example 1 for various values of k.
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lifetime of the coherent system is one way to get around this
problem. Past extropy bounds have been shown to be ef-
fective in estimating the uncertainty in the lifetime of
complex systems, as demonstrated in recent research studies
[6, 17]. In the next result, we present bounds on the past
extropy of the system with respect to the past extropy of the
parent distribution J(Xt). Tese constraints are a helpful
tool for determining how long a coherent system will last in
complicated systems with many of constituent parts.

Theorem 8. Let Tt � [t − T | Xn: n ≤ t] signify the past lifetime
of the system. Components are assumed to have a common sf S

and the signature of the system is p � (p1, . . . , pn). Suppose that
J(Tt)<∞ for all t. It holds that

J Tt( ≥ Bn(p)( 
2
J Xt( , (26)

where Bn(p) � p1g1(m1) + · · · + pngn(mn) and mi �

i − 1/n − 1.

Proof. It is plain to observe that the mode of the beta
distribution with parameters i and n − i + 1 is
mi � i − 1/n − 1. Terefore, we obtain

gV(v)≤p1g1 m1(  + · · · + pngn mn(  � Bn(p), v ∈ (0, 1).

(27)

Tus, one has

− 2J Tt(  � 
1

0
g
2
V(v)ft F

− 1
t (v) dv

≤ Bn(p)( 
2


1

0
ft F

− 1
t (v) dv

� − 2 Bn(p)( 
2
J Xt( .

(28)

Te last equality is obtained by noting that

J Xt(  � 
1

0
ft F

− 1
t (v) dv, (29)

by which the fnal result is validated. □

When a system has a complex structure or a large number
of components, the supplied bound in (24) is quite useful. Now,
using extropy measure, we derive a public lower bound.

Theorem 9. Underneath the requirements of Teorem 8, we
have

J Tt( ≥ 

n

i�1
piJ T

i
t , (30)

for all t.

Proof. From Jensen’s inequality when applying to the
concave function k(t) � − t2/2, we obtain
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and hence
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(32)

Here, this completes the proof. □

Remark that equality in (28) is satisfed for i-out-of-n
systems as pj � 0, for j≠ i, and pj � 1, for j � i. Tat is,
J(Tt) � J(Ti

t). When the lower bounds inTeorems 8 and 9
are computable, the maximum value can be considered as
a sharper lower bound.

Example 3. Suppose that Tt � [t − T|X5: 5 ≤ t] indicates the
past lifetime of a system with signature
p � (0, 3/10, 5/10, 2/10, 0) consisting of n � 5 i.i.d. compo-
nent lifetimes having a common cdf F(x) � x2, x ∈ (0, 1). It
is easy to verify that B5(p) � 2. Tus, by Teorem 8, the
extropy of Tt is dominated as follows:

J Tt( ≥
2
t
, 0< t< 1. (33)

Furthermore, the lower bound achieved in (30) is de-
rived as follows:

J Tt( ≥
[Γ(n + 1)]

2

2tΓ(2n)


n

i�1
pi

Γ(2i − 1)Γ(2n − 2i + 1)

[Γ(i)Γ(n − i + 1)]
2 , (34)

for all t ∈ (0, 1). Suppose that the component lifetimes are
distributed uniformly.We computed the bounds in (33) (dotted
line), as well as the exact value of J(Tt) acquired from (17), and
further the bounds in (34) (dashed line). Te results are put on
show in Figure 4. In this example, the lower bound in (34) is
preferable than the lower bound acquired as (33).

5. Preferable System

Pairwise comparisons are a common task in engineering and
scientifc research, but the physical type of particular
structures often precludes the use of traditional stochastic
ordering methods. Indeed, there are many pairs of systems
that simply cannot be compared using standard stochastic
indices. To address this limitation, we propose a novel ap-
proach to comparing system performance in this context. In
the continuing part, we illustrate a novel method to make
comparison of information measures when no traditional
stochastic ordering is available. In particular, we focus on the
important technical criterion of system longevity, which is
widely regarded as a key indicator of performance. To ensure
a fair comparison, we assume that the competing systems
have similar characteristics. Under this assumption, our
analysis shows that the parallel system design is more proper
than other systems because it induces a greater production
and a better expected lifetime.
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To quantify the reliability of the proposed approach,
we use the well-established concept of survival analysis. In
particular, we derive a key property from (13) that allows
us to rigorously evaluate the reliability of our approach
and demonstrate its superiority over existing methods.
Clearly,

P T
1
t > x ≤P Tt >x( ≤P T

n
t >x( , x> 0, (35)

for all t> 0. Instead of relying only on pairwise comparisons,
another approach is to choose a system whose structure or
distribution is more similar to that of the parallel system. To
achieve this, we ask the following question: which of these
systems has a confguration more similar (or closer) to the
parallel system and more dissimilar (or more distant) to the
serial system? We propose to use the idea of the relative
extropy distinction to answer this question. More specif-
cally, we use relative extropy, a powerful information-
theoretic metric that has proven useful in describing the
diferences between probability distributions. Te past rel-
ative extropy induced by the pdf ft(x) � f(x)/F(t) with
respect to gt(x) � g(x)/G(t) is defned as

D Xt: Yt(  �
1
2


t

0
ft(x) − (x)gt(x) 

2dx≥ 0, (36)

under the condition that the integral exists. Te equality
holds if and only if ft(x) � gt(x) almost everywhere. We
have

D Tt: T
1
t  �

1
2


t

0
fTt

(x) − fT1
t
(x) 

2
dx, (37)

D Tt: T
n
t(  �

1
2


t

0
fTt

(x) − fTn
t
(x) 

2
dx. (38)

High (low) values of D(Tt: T1
t ) and D(Tt: Tn

t ) indicate
that Tt is signifcantly diferent from that of the parallel and
serial systems, respectively. Tese diferences may have
a negative impact on the performance of the coherent
system, making it less preferable to the parallel or series
system, depending on which system has a more similar past-
life distribution. To formalize this notion of preference, we
provide a tool for a preferred system on the basis of the
relative extropy diference measure. Specifcally, we defne
a system as preferable if its past lifetime distribution is more
similar to that of the parallel system than to that of the serial
system, as measured by the relative past extropy discrimi-
nation. In other words, we defne

J Tt(  �
D Tt: T

1
t  − D Tt: T

n
t( 

D Tt: T
1
t  + D Tt: T

n
t( 

, (39)

for all t> 0. Te range of past relative extropy divergence
J(Tt) is bounded by − 1 and 1 for all t> 0. More precisely,
J(Tt) � 1 only if Tt � Tn

t , and J(Tt) � − 1 only if Tt � T1
t .

In other words, when J(Tt) is closer to 1, the past-life
distribution of Tt more closely resembles that of the parallel
system, and when J(Tt) is closer to − 1, the past-life dis-
tribution of Tt more closely resembles that of the series
system.

It is worth noting that the past relative extropia di-
vergence given by the equation DKL relies on the signature
of the system and further the parent distribution. Tis
observation highlights the importance of carefully selecting
the appropriate divergence measure for a given problem.
With this in mind, we propose the following defnition for
selecting a preferred system.

Defnition 10. Let T1,t and T2,t be past lifetimes of two
coherent systems with n i.i.d. component lifetimes and
signatures p1 and p2, respectively. We say that T2,t is more
preferable than T1,t in terms of the past relative extropy
(PRE) at time t, denoted by T1,t ≤ PRET2,t, if and only if
J(T1,t)≤J(T2,t) for all t> 0.

By using the change of u � Ft(x), equations (35) and
(36) can be rewritten as follows:

D Tt: T
1
t  �

1
2


1

0
gV(v) − g1(v) 

2
ft Ft(v)( dv,

D Tt: T
n
t(  �

1
2


1

0
gV(v) − gn(v) 

2
ft Ft(v)( dv.

(40)

An example is given as follows to illustrate the measure
proposed.

Example 4. Consider two signatures p1 � (0, 2/3, 1/3, 0) and
p2 � (1/4, 1/4, 1/2, 0), which are associated with the rvs T1,t

and T2,t, respectively. We assume that the component
lifetimes are i.i.d. according to the standard uniform dis-
tribution in (0, 1), and therefore we have
ft(F− 1

t (u)) � 1/t, 00. It is obvious that they are not com-
parable with the usual stochastic ordering methods. We can
use the method PRE to compare the past lifetime distri-
butions of the systems. In this case, we obtain J(T1,t) �

−40
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t
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Figure 4: Exact value of J(Tt) (solid line) and the corresponding
lower bounds (33) (dotted line) and (34) (dashed line) for the
standard uniform distribution at inspection time t.
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0.7230 and J(T2,t) � 0.7324, indicating that T2,t is more
similar to the past lifetime distribution of the parallel system
than T1,t. Based on the preferred system criterion proposed
earlier, we can conclude that T2,t is the preferred system
because its past-life distribution is more similar to that of the
parallel system than that of the serial system. In other words,
it is more likely that T2,t has better performance compared
to T1,t.

Te abovementioned example illustrates the potential
advantages of the PRE method for comparing complex
systems that cannot be compared using traditional stochastic
ordering methods. By using this powerful information-
theoretic tool, we can make more sophisticated and in-
formed design decisions in engineering and scientifc
research.

6. Conclusion

Quantifying the uncertainty linked to the lifetime of engi-
neering systems has garnered more attention in recent years.
Predictability is a crucial component of system reliability,
and quantifying a system’s lifespan predictability can help
with crucial design decisions. In such circumstances,
extropy, a Shannon entropy extension, has shown to be
a useful tool by enabling us to quantify the uncertainty
behind the randomness of the lifetime of a system. In the
current study, we have obtained a formula for the extropy of
a system’s lifetime under the assumption that all of its
constituent parts have failed at time t. We look at this
measure’s numerous characteristics and derive bounds for
its value with signifcant design choices in engineering and
science. We give various examples and show their outcomes
to demonstrate the usefulness of the suggested measures and
partial orderings. Te criteria for choosing a preferable
system was then developed, and it was based on the relative
extropy between the past lifetime distributions of competing
systems. Tis criterion can help with crucial design choices
in engineering and scientifc research since it ofers a simple
and straightforward framework for comparing the perfor-
mance of complicated systems. In general, this approach
supports ongoing attempts to provide more complicated
tools for describing and contrasting the reliability of com-
plex systems. We can obtain deeper insights into how these
systems behave and improve design choices by utilizing the
rich theories of information theory and probability theory.
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