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In order to solve systems of nonlinear equations, two novel iterative methods are presented. Te successive over-relaxation
method and the Chebyshev-like iterative methods to solve systems of nonlinear equations have combined to obtain the new
algorithms. By this combination, two powerful hybrid methods are obtained. Necessary conditions for convergence of these
methods are presented. Furthermore, the stability analysis of both algorithms is investigated. Tese algorithms are applied for
solving two real stif systems of ordinary diferential equations. Tese systems arise from an HIV spreading model and an SIR
model of an epidemic which formulates the spread of a nonfatal disease in a certain population. Numerical results show promising
convergence and stability for both new hybrid methods.

1. Introduction

Systems of nonlinear equations (SNEs) arise in many dif-
ferent areas of science and engineering. As a matter of fact,
there are diferent problems where many of nonlinear
equations depending on some independent variables must
be solved as well. One may fnd such problems in diferent
areas of applied sciences. In practice, obtaining the exact
solutions of such systems is usually impossible, because of
their inherent nonlinear properties. Hence, to obtain an
approximate solution for nonlinear systems, one has to solve
them by an iterative method. Te oldest and confdent
method to solve these systems is the well-known Newton’s
method which is a second order convergent algorithm [1].
Many researchers have worked on solving SNEs in the frst
decades of this century. Indeed, there are diferent high-
order iterative methods to solve SNEs. But despite of their
high-order convergence property, they are not useful in
practice, because of their cost in computing the second
derivatives. For example, the Halley method [2] is one of
such methods. It must be noted that, in an n × n nonlinear
system the frst Fréchet derivative matrix has n2 elements
and the second Fréchet derivative matrix has n3 elements.

Tese show a huge number of operations in order to evaluate
a new solution approximation in any iteration. Tacitly, duo
to the limitation on working with some computers, for large
SNEs one cannot compute the frst or the second Fréchet
derivative matrices. Hence, presenting any new method
which does not need computation of derivative matrices will
be very welcome in the area of solving SNEs.

Suppose that S⊆Rn and for r � 1, 2, . . . , n consider Gr

as a nonlinear real-valued function on domain S. Let
G � (G1, G2, . . . , Gn)t, that is, G is a vector-valued, multi-
variable function on domain S. In general, one may present
an SNE as G(z) � 0. Most of the iterative methods to solve
SNEs need to evaluate the Jacobian matrix related to G in
one or more points at each iteration. Clearly, computing of
the Jacobianmatrix is the most time consuming section in all
iterative algorithms that need this matrix.

Tere are diferent iterative schemes to solve SNEs which
some of them are hybrid algorithms. For example, Babajee
et al. [3] presented two Chebyshev-like algorithms free from
second-order derivative for solving SNEs. A successive over-
relaxation Stefensen–Newton method to solve SNEs is in-
troduced by Darvishi and Darvishi [4]. Also, Darvishi and
Darvishi [5] introduced some hybrid methods, namely, the
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successive over-relaxation (SOR) Newton methods to solve
SNEs. A family of two-point third-order Chebyshev-like
methods is introduced by Traub [6]. Tis family of itera-
tive methods was based on the approximation of the second
derivative in the Chebyshev method by a fnite diference
between two frst derivatives. Indeed this third-order
Chebyshev-like algorithm is a powerful iterative method
to solve systems of nonlinear equations. Also, as successive
over-relaxation (SOR) method is a promising iterative
method to solve systems of linear equations; in this paper, we
combine these two powerful methods to introduce new
hybrid methods for solving systems of nonlinear equations.
We nominate these hybrid methods as SOR Chebyshev-like
(SORCL) algorithms. As the reported numerical results
show, these hybrid methods can solve systems of nonlinear
equations which arise from the stif systems of ordinary
diferential equations (ODEs). Convergence and stability
analysis of both methods are discussed. Meanwhile,
a comparison study between results of our methods and
other methods is presented.

2. SOR Chebyshev-Like Algorithms

A general form of an SNE can be presented as follows:

G(z) � 0, (1)

where G: Rn⟶ Rn is a multivariable, vector-valued
function. Tat is, Gt � (G1, G2, . . . , Gn) wherein Gr is
a real-valued, multivariable function. Te regularity con-
ditions on G are its diferentiability and nonsingularity of its
Jacobian matrix.

Te following one-step iterative SOR-Newton method to
solve SNE (1) is presented by Ortega and Rheinboldt [7]:

z
(k+1)
r � z

(k)
r − ω

Gr z(k,r− 1)
 

Grr z(k,r−1)
 

, r � 1, 2, . . . , n, k � 0, 1, 2, · · · ,

(2)

where Grr � zGr/zzr, ω is the relaxation parameter, and k is
the number of iteration steps. In (2), the k th approximation
of (1), namely, z(k) will be the starting point to obtain the
approximation of the solution in the next step which is
considered as follows:

z(k,0)
� z

(k,0)
1 , z

(k,0)
2 , . . . , z

(k,0)
n 

t
≡ z(k)

. (3)

Now, to obtain the elements of the next approximation,
frst, we set

z(k,j)
� z

(k,j)
1 , z

(k,j)
2 , . . . , z

(k,j)
n 

t
. (4)

Ten, using relation (2), the elements of (k + 1) th
approximation are computed one by one. Considering
z1, z2, . . . , zj are obtained in this iteration, then we have

z(k,j)
� z

(k+1)
1 , z

(k+1)
2 , . . . , z

(k+1)
j , z

(k)
j+1, . . . , z

(k)
n 

t
,

j � 1, 2, . . . , n − 1.
(5)

As a matter of fact, we have

z
(k,j)
r � z

(k,j−1)
r , for r � 1, 2, . . . , n, r≠ j. (6)

To see more details of the SOR-Newtonmethod, we refer
the readers to pages 214–222 of [7]. According to SOR-
Newton method, we combine the SOR and the Chebyshev-
like algorithms [6] to obtain two convergent, stable, and
efcient algorithms for solving SNE (1).

2.1.Te First SORChebyshev-Like Algorithm. In this section,
to solve SNE (1), the frst SOR Chebyshev-like algorithm,
denoted by SORCL1 is presented. Tis is defned by solving
the following equation for zr:

Gr z
(k+1)
1 , . . . , z

(k+1)
r−1 , zr, z

(k)
r+1, . . . , z

(k)
n  � 0. (7)

In this algorithm, frst, we set

z(k,r)
� z

(k+1)
1 , . . . , z

(k+1)
r− 1 , z

(k)
r , z

(k)
r+1, . . . , z

(k)
n 

t
, (8)

and then, we obtain zr from (7) as follows:

zr � z
N
r −

Gr z
(k+1)
1 , . . . , z

(k+1)
r−1 , z

N
r , z

(k)
r+1, . . . , z

(k)
n 

Grr z(k,r−1)
 

, (9)

where

z
N
r � z

(k)
r −

Gr z(k,r− 1)
 

Grr z(k,r−1)
 

, (10)

is the classical Newton iteration and Grr � zGr/zzr. Finally,
we set

z
(k+1)
r � z

(k)
r + ω zr − z

(k)
r , (11)

or

z
(k+1)
r � z

(k)
r − ω

Gr z(k,r− 1)
 

Grr z(k,r−1)
 

− ω
Gr z

(k+1)
1 , . . . , z

(k+1)
r−1 , z

N
r , z

(k)
r+1, . . . , z

(k)
n 

Grr z
(k+1)
1 , . . . , z

(k+1)
r−1 , z

(k)
r , z

(k)
r+1, . . . , z

(k)
n 

,

r � 1, . . . , n.

(12)

Te iterative scheme (12) is the iterative method of the
SORCL1 algorithm, and we apply the iterations until re-
ceiving the desired convergence.

2.2. Te Second SOR Chebyshev-Like Algorithm. Te second
SOR Chebyshev-like algorithm which is denoted by
SORCL2 solves the following equation:

Gr z
(k+1)
1 , . . . , z

(k+1)
r−1 , zr, z

(k)
r+1, . . . , z

(k)
n  � 0, (13)

for zr, and then we set
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z(k,r)
� z

(k+1)
1 , . . . , z

(k+1)
r− 1 , z

(k)
r , z

(k)
r+1 . . . , z

(k)
n 

t
,

zN
� z

(k+1)
1 , . . . , z

(k+1)
r− 1 , z

N
r , z

(k)
r+1 . . . , z

(k)
n 

t
,

(14)

where

z
N
r � z

(k)
r −

Gr z(k,r− 1)
 

Grr z(k,r−1)
 

, (15)

so zr is obtained as follows:

zr � z
N
r −

1
2

Grr zN
  − Grr z(k,r−1)

  

Grr z(k,r− 1)
 

, z
N
r − z

(k)
r , (16)

Finally, we set

z
(k+1)
r � z

(k)
r + ω zr − z

(k)
r , (17)

or

z
(k+1)
r � z

(k)
r − ω

Gr z(k,r− 1)
 

Grr z(k,r−1)
 

−
ω
2

Grr zN
  − Grr z(k,r−1)

  

Grr z(k,r− 1)
 

, z
N
r − z

(k)
r .

(18)

Equation (18) is the iterative scheme of the SORCL2method
to solve SNE (1).Tis iterative equation is iterated until receiving
the desired convergence for the approximate solution of the
problem. In summary, equations (12) and (18), respectively, are
the iterative schemes of SORCL1 and SORCL2 algorithms. One
may apply them to solve an SNE like (1) using an initial
guess z(0).

 . Convergence Investigation

Convergence property of the SORCL1 and SORCL2 algo-
rithms is presented in this section. To do this, we need the
following hypotheses:

(i) S⊆Rn is a convex set.
(ii) grad ψ � G, where G has defned in (1) and ψ is

a real-valued strictly convex function on domain S.
(iii) ψ ∈ C2(S).
(iv) For some ρ ∈ R, Aρ � z ∈ S: ψ(z)≤ ρ  is a non-

empty and compact set. As a matter of fact, such real
number ρ exists and consequently set Aρ is a non-
empty and compact set.

(v) Let x ∈ Aρ and H � [Gij(x)] is the Hessian matrix
of function ψ that is evaluated at x such that for
i � 1, 2, .., n, Gii(x) ≠ 0 except in the case that x is the
point, say x0, at which ψ(x0) is the minimum value
of ψ.

Parts (I) and (II) from above hypothesises show that the
Hessian matrix of ψ is a positive semi-defnite one. Clearly, sets
Aρ are convex for all ρ ∈ R. Hypothesis (IV) shows that ψ takes
its minimum at some point z∗ ∈ S. It must be noted that,
hypothesis (IV) is satisfed nontrivially, subject to ψ receives its
minimum at z∗ ∈ S for some z∗. In addition, by hypothesises
(I), (II), and (III), there exists ρ ∈ R such that ρ>ψ(z∗) andAρ
is a compact set and ψ is a nonincreasing function. From (II) the
minimum point z∗ is unique. Furthermore as the fnal result,
a necessary and sufcient condition for function ψ to receive its
minimum at a point z∗ ∈ S is gradψ(z∗) � 0.

By hypotheses (I)–(IV) and their mentioned results,
convergence of SORCL1 algorithm can be investigated as
follows.

3.1. Convergence Investigation of SORCL1

Theorem 1. Let the terms of sequence z(k)  be computed by

z
(k+1)
j � z

(k)
j , j≠ r,

z
(k+1)
r � z

(k)
r − ω

Gr z(k,r− 1)
 

Grr z(k,r−1)
 

− ω
Gr z

(k+1)
1 , . . . , z

(k+1)
r−1 , z

N
r , z

(k)
r+1, . . . , z

(k)
n 

Grr z
(k+1)
1 , . . . , z

(k+1)
r−1 , z

(k)
r , z

(k)
r+1, . . . , z

(k)
n 

, r � 1, . . . , n,

(19)

where in

z
N
r � z

(k)
r −

Gr z(k)
 

Grr z(k)
 

, (20)

is the classical Newton method and

zN
� z

(k)
1 , . . . z

(k)
r− 1, z

N
r , z

(k)
r+1, . . . , z

(k)
n 

t
, (21)

hence

z
(k+1)
r � z

(k)
r − ω

Gr z(k)
 

Grr z(k)
 

− ω
Gr zN

 

Grr z(k)
 

. (22)

Also, for r � 1, 2, . . . , n and k � 0, 1, 2, . . ., we defne sets
Dk

r and values δk as follows:

D
k
r � z: ψ(z)≤ψ z(k,r−1)

  and zj � z
(k,r−1)
j , j≠ r ,

δk �
Grr z(k)

 

maxGrr(z)
, for z ∈ D

k
r ,

(23)
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in addition, consider δ > 0 that satisfes in

0< δ ≤ω≤ 2δk − δ( < 2, k � 0, 1, 2, . . . . (24)

Ten, for any initial guess z(0) ∈ Aρ the sequence z(k)  is
a well-defned sequence and converges to z∗, where z∗ is the
solution of the SNE (1).

Proof. First, we show that sequence z(k)  is a well defned
sequence. To do this, we consider sets D0

1 and D0
2 from

defnition of sets Dk
r as follows:

D
0
1 � z: ψ(z)≤ψ z(0,0)

 , zj � z
(0,0)
j , j≠ 1 ,

D
0
2 � z: ψ(z)≤ψ z(0,1)

 , zj � z
(0,1)
j , j≠ 2 .

(25)

By defnition of z(0) and z(0,1), that is,

z(0)
� z(0,0)

� z
(0)
1 , z

(0)
2 , . . . , z

(0)
n 

t
,

z(0,1)
� z

(1)
1 , z

(0)
2 , . . . , z

(0)
n 

t
,

(26)

we have z
(1)
j � z

(0)
j , j≠ 1. As sequence ψ(z(k))  is a non-

increasing one, then ψ(z(0,1))≤ψ(z(0,0)), consequently
z(0,1) ∈ D0

1 ⊂ Aρ. Hence, using the mathematical induction
one may prove that all terms of z(k)  are in set Aρ, con-
sequently the sequence z(k)  is a well-defned one. To prove
convergence property of sequence z(k) , we use Taylor’s
expansion on function ψ around x for x ∈ (z(k), z(k+1)) ⊂ Dk

r ,
where (z(k), z(k+1)) denotes the open hyper-line between z(k)

and z(k+1). From Taylor’s expansion, we can write

ψ z(k+1)
  − ψ z(k)

   � Gr z(k)
  z

(k+1)
r − z

(k)
r  +

1
2
Grr(y) z

(k+1)
r − z

(k)
r 

2
, (27)

or

ψ z(k)
  − ψ z(k+1)

   � Gr z(k)
  z

(k)
r − z

(k+1)
r  −

1
2
Grr(y) z

(k)
r − z

(k+1)
r 

2

≥Gr z(k)
  z

(k)
r − z

(k+1)
r  −

1
2
maxGrr(y) z

(k)
r − z

(k+1)
r 

2
.

(28)

Using relation (22), we have

Gr z(k)
  � z

(k)
r − z

(k+1)
r 

Grr z(k)
 

ω
− Gr zN

 . (29)

Substituting relation (29) in (28) gives

ψ z(k)
  − ψ z(k+1)

  ≥
Grr z(k)

 

ω
z

(k)
r − z

(k+1)
r 

2

− Gr zN
  z

(k)
r − z

(k+1)
r  −

1
2
maxGrr(y) z

(k)
r − z

(k+1)
r 

2
.

(30)

As Newton’s method is a convergent algorithm, thus, for
ε that satisfes in

0< ε<
1
n

Grr z(k)
  z

(k)
r − z

(k+1)
r



, for suff iciently large n,

(31)

the following inequality holds:

Gr zN
 



≤ ε<
1
n

Grr z(k)
  z

(k)
r − z

(k+1)
r



. (32)

Hence, relations (30) and (32) give
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ψ z(k)
  − ψ z(k+1)

  ≥
Grr z(k)

 

ω
z

(k)
r − z

(k+1)
r 

2

−
1
n

Grr z(k)
  z

(k)
r − z

(k+1)
r



 z
(k)
r − z

(k+1)
r  −

1
2
maxGrr(y) z

(k)
r − z

(k+1)
r 

2

�
Grr z(k)

 

ω
z

(k)
r − z

(k+1)
r 

2
±
1
n

Grr z(k)
  z

(k)
r − z

(k+1)
r 

2

−
1
2
maxGrr(y) z

(k)
r − z

(k+1)
r 

2
.

(33)

Terefore,

ψ z(k)
  − ψ z(k+1)

  ≥
m

2
z

(k)
r − z

(k+1)
r 

2
1 ±

ω
n

−
ω
2δk

 ,

(34)

where m is the greatest lower bound of set Grr(z(k)),

k � 0, 1, 2, · · ·}; We note that, from the SORmethod, we have
0<ω< 2. It is worth mentioning that m≥ 0 because the
Hessian matrix of ψ is a positive semidefnite one. Two cases
m � 0 and m> 0 must be investigated, separately.

Case m � 0: Using hypothesis (V), there is a sequence
x(k)  that converges to z∗. Also, as x(k) ∈ (z(k), z(k+1)) and
sequence ψ(z(k))  is a nonincreasing one, the following
inequality holds:

ψ z(k)
 ≥ψ x(k)

 ≥ψ z(k+1)
 . (35)

Tus, as function ψ is a continuous function, x(k)⟶ z∗.
Case m> 0: As δ satisfes in the following inequality,

0< δ ≤ω≤ 2δk − δ( < 2, k � 0, 1, 2, . . . , (36)

two following cases must be considered. □

Case 1. (ψ(z(k)) − ψ(z(k+1)))≥m/2 (z(k)
r − z(k+1)

r )2(1−

ω/n − ω/2δk).
We know that the sequence ψ(z(k))  is a nonincreasing

and bounded sequence from below; hence, it is a convergent
sequence. Ten, |z(k)

r − z(k+1)
r |⟶ 0. We consider z as

a limit point of sequence z(k)  and for r � 1, 2, . . . , n we
defne the following sets:

I � r: Gr(z) � 0 ,

J � 1, 2, . . . , n{ }\I.
(37)

We consider relation (32), that is,
Gr z(k)

  + ωGr zN
  � z

(k)
r − z

(k+1)
r Grr z(k)

 ,

Gr z(k)
  � z

(k)
r − z

(k+1)
r 

Grr z(k)
 

ω
− Gr zN

 ,

(38)

as |z(k)
r − z(k+1)

r |⟶ 0 and Grr(z(k)) is bounded, hence, the
following relation holds:

lim
k⟶∞

z
(k)
r − z

(k+1)
r Grr z(k)

  � 0. (39)

Terefore,

lim
k⟶∞

Gr z(k)
  � − lim

k⟶∞
Gr zN

 . (40)

Again, as Newton’s method is a convergent iterative
scheme, we have

lim
k⟶∞

Gr zN
  � 0, (41)

thus

lim
k⟶∞

Gr z(k)
  � 0. (42)

Terefore, I≠∅. Furthermore, if J � ∅, hence z � z∗
and as ψ(z(k))  is a nonincreasing sequence, hence,
z(k)⟶ z∗. Otherwise if J≠∅, we have

J � j1, . . . , jl ,I � i1, . . . , in−l , (43)

where j1, . . . , jl, i1, . . . , in−l is a known permutation of
numbers 1, · · ·, n. Consider the following sets:

Hr � v ∈ Aρ: Gr(v) � 0 , r � 1, 2, . . . , n. (44)

As Gr(z) � 0 and z∈ Aρ hence z∈Hr, consequently all
sets Hr are nonempty sets. Besides, we can show that these
sets are closed sets. Now, we consider HJ � ∪ j∈JHj. As
HJ is a closed set then there is a positive τ such that for
x ∈HJ

‖z − x‖≥ τ. (45)

We know that (z(k) − z(k+1))⟶ 0; therefore, there
exists some n0 ∈ N such that ‖z(k) − z(k+1)‖< τ/2 for k≥ n0.
For Γ � min |Gj(z)|: j ∈ J , continuity of Gj implies that
there is a positive ε such that

Gj(x) >
Γ
2
, if ‖z − x‖< ε. (46)

Suppose that Bε′ ⊂ Rn for all z ∈Bε′ is defned in such
a way that

zj1
, . . . , zjl

  − zj1
, . . . , zjl

 
�����

�����< ε
′
. (47)

ψ(z)<ψ(z) + ε′ � ψ + ε′, (48)

where ε′ is a function of ε. It must be mentioned that for any
positive ε one can select ε′(ε)> 0 such that ‖z − z‖< ε if
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z ∈Bε′ , otherwise for any sequence εi
′  that approaches to

zero, there is a sequence z(l)  with z(l) ∈Bε′ and
‖z(l) − z‖≥ ε. For all l, we have z(l) ∈ Aψ+εl

′. As Aψ+εl
′ is

a compact set, consequently a limit point z(0) of z(l)  exists
such that ‖z(0) − z‖≥ ε. Relation (47) gives

z
(0)
j1

, . . . , z
(0)
jl

  − zj1
, . . . , zjl

 
�����

����� � 0. (49)

Furthermore, relation (48) yields

ψ z(0)
  � ψ � ψ(z), (50)

hence

<gradψ(z), z − z(0)> � ψ(z) − ψ z(0)
  � 0, (51)

wherein 〈·, ·〉 is the dot product operator of two vectors. As
ψ is a strictly convex function, equation (51) is a contra-
diction. Consequently, a positive ε′ exists such that for
x ∈Bε′ the following inequality holds:

‖z − x‖< ε. (52)

Relation limk⟶∞Gr(z(k)) � 0 implies that there exists
an n1 ∈ N such that

Gr z(k)
 



<
Γ
2
, for k≥ n1. (53)

Besides, there exist some p≥ n1 exist such that
z(p) ∈Bε′ ; hence, there is an r′ ∈ 1, 2, . . . , n{ } in such a way
that Gr′(z(p)) � 0 hence r′ ∈ I. If z(q) ∈Bε′ and
z(q+1) ∈HJ for q≥p, then

η
2
> z(q)

− z(q+1)
�����

�����≥ z(q+1)
− z

�����

����� − z(q)
− z

�����

�����> η − ε>
η
2

.

(54)

Relation (54) is a contradiction, therefore, for q≥p we
have z(q) ∈Bε′ . Consequently, for q≥p we cannot fnd any
r ∈ 1, 2, . . . , n{ } such that Gr(z(p))≠ 0; therefore, one cannot
fnd any r inJ, i.e.,J � ∅ that is a contradiction.Terefore,
z(k)⟶ z∗.

Case 2. (ψ(z(k)) − ψ(z(k+1)))≥m/2(z(k)
r −z(k+1)

r )2(1+

ω/n − ω/2δk).
Tere is a very similar discussion of case A for Case B,

and hence to avoid any repetition we do not present that
discussion here.

3.2. Convergence Investigation of SORCL2. Convergence
analysis of SORCL2 is similar to Teorem 1. In this section,
we only present a sketch of proof of this analysis. To do this,
we need our mentioned hypothesises (I)–(V).

Theorem  . We assume that the elements of sequence z(k) 

are obtained by the following relations:

z
(k+1)
j � z

(k)
j , j≠ r, (55)

z
(k+1)
r � z

(k)
r − ω

Gr z(k)
 

Grr z(k)
 

−
ω
2

Grr zN
  − Grr z(k)

  

Grr z(k)
 

z
N
r − z

(k)
r ,

(56)

where

z
N
r � z

(k)
r −

Gr z(k)
 

Grr z(k)
 

, (57)

is the classical Newton’s method and

zN
� z

(k)
1 , . . . z

(k)
r− 1, z

N
r , z

(k)
r+1, . . . , z

(k)
n 

t
. (58)

Now, for r � 1, 2, . . . , n, k � 0, 1, . . ., we defne sets Dk
r as

D
k
r � z : ψ(z)≤ψ z(k,r−1)

 , zj � z
(k,r−1)
j , j≠ r , (59)

and if we defne δk as

δk �
Grr z(k)

 

maxGrr(y)
, for y ∈ D

k
r. (60)

Finally, we consider δ which satisfes in the following
inequality:

0< δ ≤ω≤ 2δk − δ( < 2, k � 0, 1, 2, . . . . (61)

Ten, for any z(0) ∈ Aρ � z ∈ S: ψ(z)≤ ρ , sequence
z(k)  is a well-defned sequence and converges to the so-
lution of SNE (1), say z∗.

Proof. Similar to proof of Teorem 1, we can prove that the
sequence z(k)  is a well-defned sequence. Hence, it is
enough to prove that the sequence is a convergent one. If y is
selected in such a way that y ∈ (z(k), z(k+1)), hence, by
Taylor’s expansion on ψ, we have

ψ z(k+1)
  − ψ z(k)

  

� Gr z(k)
  z

(k+1)
r − z

(k)
r  +

1
2
Grr(y) z

(k+1)
r − z

(k)
r 

2
,

(62)

or

ψ z(k)
  − ψ z(k+1)

   � Gr z(k)
  z

(k)
r − z

(k+1)
r  −

1
2
Grr(y) z

(k+1)
r − z

(k)
r 

2

≥Gr z(k)
  z

(k)
r − z

(k+1)
r  −

1
2
maxGrr(y) z

(k)
r − z

(k+1)
r 

2
.

(63)
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Relation (56) gives

Gr z(k)
  �

Grr z(k)
 

ω
z

(k)
r − z

(k+1)
r  −

1
2

Grr zN
  − Grr z(k)

   z
N
r − z

(k)
r , (64)

substituting relation (64) in relation (63) gives

ψ z(k)
  − ψ z(k+1)

  

≥
Grr z(k)

 

ω
z

(k)
r − z

(k+1)
r  −

1
2

Grr zN
  − Grr z(k)

   z
N
r − z

(k)
r ⎡⎢⎣ ⎤⎥⎦ z

(k)
r − z

(k+1)
r 

−
1
2
maxGrr(y) z

(k)
r − z

(k+1)
r 

2
.

(65)

Hence,

ψ z(k)
  − ψ z(k+1)

  

≥ z
(k)
r − z

(k+1)
r 

2Grr z(k)
 

ω
−
1
2

Grr zN
  − Grr z(k)

   z
N
r − z

(k)
r  z

(k)
r − z

(k+1)
r 

−
1
2
maxGrr(y) z

(k)
r − z

(k+1)
r 

2
.

(66)

As Grr is a bounded function, there is a positive number
M such that

Grr z(k)
 



≤M and Grr zN
 



≤M, (67)

thus

Grr zN
  − Grr z(k)

 


≤ 2M, (68)

substituting (68) in (66) yields

ψ z(k)
  − ψ z(k+1)

  

≥ z
(k)
r − z

(k+1)
r 

2Grr z(k)
 

ω
− M z

N
r − z

(k)
r  z

(k)
r − z

(k+1)
r  −

1
2

Grr z
(k)
r 

δk

z
(k)
r − z

(k+1)
r 

2
.

(69)

As Newton’s method is a convergent algorithm, thus, for
any ε that satisfes in

0< ε<
1

nM
Grr z(k)

  z
(k)
r − z

(k+1)
r



, for suff iciently large n,

(70)

we have

z
N
r − z

(k)
r



≤ ε<
1

nM
Grr z(k)

  z
(k)
r − z

(k+1)
r



, (71)

by using these relations, inequality (68) is changed to
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ψ z(k)
  − ψ z(k+1)

  

≥ z
(k)
r − z

(k+1)
r 

2Grr z(k)
 

ω
−
1
n

Grr z(k)
  z

(k)
r − z

(k+1)
r



 z
(k)
r − z

(k+1)
r  −

1
2

Grr z
(k)
r 

δk

z
(k)
r − z

(k+1)
r 

2
.

(72)

Hence,

ψ z(k)
  − ψ z(k+1)

  ≥ z
(k)
r − z

(k+1)
r 

2Grr z(k)
 

ω
±
1
n

Grr z(k)
  z

(k)
r − z

(k+1)
r 

2
,

−
1
2

Grr z
(k)
r 

δk

z
(k)
r − z

(k+1)
r 

2
.

(73)

Ten,

ψ z(k)
  − ψ z(k+1)

  ≥ z
(k)
r − z

(k+1)
r 

2
Grr z(k)

 
1
ω
±
1
n

−
1
2δk

 , (74)

or

ψ z(k)
  − ψ z(k+1)

  ≥
m

2
z

(k)
r − z

(k+1)
r 

2
1 ±

ω
n

−
ω
2δk

 ,

(75)

where m is the greatest lower bound of
Grr(y(k)): k � 0, 1, 2, . . . . For r � 1, 2, . . . , n, we defne the
following sets:

I � r: Gr(z) � 0  andJ � 1, 2, . . . , n{ }\I. (76)

Relation (69) gives

Gr z(k)
  � z

(k)
r − z

(k+1)
r 

Grr z(k)
 

ω
−
1
2

Grr zN
  − Grr z(k)

   z
N
r − z

(k)
r . (77)

As (z(k)
r − z(k+1)

r )⟶ 0 and Grr(z(k)) is bounded then

lim
k⟶∞

z
(k)
r − z

(k+1)
r 

Grr z(k)
 

ω
� 0, (78)

therefore, from (77) we have

lim
k⟶∞

Gr z(k)
  � −

1
2

lim
k⟶∞

Grr zN
  − Grr z(k)

   z
N
r − z

(k)
r . (79)

However, from the convergence of Newton’s method,

lim
k⟶∞

Grr zN
  − Grr z(k)

   z
N
r − z

(k)
r  � 0. (80)

Note that [Grr(zN) − Grr(z(k))] is bounded; then,

lim
k⟶∞

Gr z(k)
  � 0. (81)

Tus,I≠ �. Hereafter, we can prove the theorem similar
to proof of the previous theorem. □

4. Stability Analysis

Stability analysis of SORCL1 and SORCL2 algorithms are
investigated in this part. It is well-known that the continuous
function G: S⊆Rn⟶ Rn on the compact set S is also
a bounded function.

Defnition 1 (see [8]). z1 is called a stable solution for SNE
G(z) � 0, if for every ε> 0 there exists δ > 0 such that if z1 is
a solution for SNE G(z) � 0 and ‖z0 − z0‖≤ δ then
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‖z1 − z1‖≤ εwhere z0 and z0, respectively, are the initial starting
points to achieve the solutions z1 and z1 by an iterative method.

First, we investigate numerical stability of SORCL1
method.

Theorem 3. We consider the iteration step of the SORCL1
method as follows:

z
(k+1)
r � z

(k)
r − ω

Gr z(k)
 

Grr z(k)
 

− ω
Gr zN

 

Grr z(k)
 

. (82)

Suppose that z(k) and z(k) are two solutions of SNE
G(z) � 0 which are obtained by the starting points z(0) and
z(0), respectively. Ten, for every ε> 0, there exists δ > 0 such
that ‖z(0) − z(0)‖≤ δ implies that ‖z(k) − z(k)‖≤ ε where
G: S⊆Rn⟶ Rn is a continuous function on the compact
set S.

Proof. By mathematical induction for n � 1, we have

z
(1)
r − z

(1)
r



 � z
(0)
r − ω

Gr z(0)
 

Grr z(0)
 

− ω
Gr zN

 

Grr z(0)
 

− z
(0)
r + ω

Gr z(0)
 

Grr z(0)
 

+ ω
Gr zN

 

Grr z(0)
 





� z
(0)
r − z

(0)
r  − ω

Gr z(0)
 

Grr z(0)
 

− ω
Gr zN

 

Grr z(0)
 

+ ω
Gr z(0)

 

Grr z(0)
 

+ ω
Gr zN

 

Grr z(0)
 





≤ z
(0)
r − z

(0)
r



 + ω
Gr z(0)

 

Grr z(0)
 




+ ω

Gr zN
 

Grr z(0)
 




+ ω

Gr z(0)
 

Grr z(0)
 





+ ω
Gr zN

 

Grr z(0)
 





.

(83)

As Gr is a bounded function, there are positive numbers
K1

1, K1
2, K1

3, and K1
4 such that

Gr z(0)
 



≤K
1
1 Grr z(0)

 


, Gr zN
 



≤K
1
2 Grr z(0)

 


,

Gr z(0)
 




≤K

1
3 Grr z(0)

 




, Gr zN

 




≤K

1
4 Grr z(0)

 




.

(84)

So for |z(0)
r − z

(0)
r |≤ δ0, we have

z
(1)
r − z

(1)
r



≤ δ0 + ωK
1
1 + ωK

1
2 + ωK

1
3 + ωK

1
4 ≡ δ1. (85)

Tus, for δ1 ≤ ε, we have

z
(1)
r − z

(1)
r



≤ ε. (86)

Now, we assume that, for n � k, the required inequality
holds and we prove the inequality for n � k + 1. We have

z
(k+1)
r − z

(k+1)
r



 � z
(k)
r − ω

Gr z(k)
 

Grr z(k)
 

− ω
Gr zN

 

Grr z(k)
 

− z
(k)
r + ω

Gr z(k)
 

Grr z(k)
 

+ ω
Gr zN

 

Grr z(k)
 





� z
(k)
r − z

(k)
r  − ω

Gr z(k)
 

Grr z(k)
 

− ω
Gr zN

 

Grr z(k)
 

+ ω
Gr z(k)

 

Grr z(k)
 

+ ω
Gr zN

 

Grr z(k)
 





≤ z
(k)
r − z

(k)
r



 + ω
Gr z(k)

 

Grr z(k)
 




+ ω

Gr zN
 

Grr z(k)
 




+ ω

Gr z(k)
 

Grr z(k)
 





+ ω
Gr zN

 

Grr z(k)
 





,

(87)

by the induction hypothesis for |z(k)
r − z

(k)
r |≤ δk and

bounded property of function G we have
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z
(k+1)
r − z

(k+1)
r



≤ δk + ωK
k
1 + ωK

k
2 + ωK

k
3 + ωK

k
4 ≡ δk+1.

(88)

Set δ � min δ1, . . . , δk+1  hence |z(k+1)
r − z

(k+1)
r |≤ ε

whenever ‖z(0) − z(0)‖≤ δ. Tis completes the proof.

Te numerical stability of the SORCL2 method is pre-
sented in the following theorem. □

Theorem 4. We consider the iteration step of SORCL2
method as follows:

z
(k+1)
r � z

(k)
r − ω

Gr z(k)
 

Grr z(k)
 

−
ω
2

Grr zN
  − Grr z(k)

  

Grr z(k)
 

z
N
r − z

(k)
r . (89)

If solutions z(k) and z(k) of nonlinear system G(z) � 0
are obtained by SORCL2 algorithm using the initial guesses
z(0) and z(0), respectively, then for every ε> 0 there exists
δ > 0 such that ‖z(k) − z(k)‖≤ ε if ‖z(0) − z(0)‖≤ δ where

G: S⊆Rn⟶ Rn is a continuous function on the compact
set S.

Proof. Here also, the theorem is proved by the mathematical
induction. For n � 1, we have

z
(1)
r − z

(1)
r | � |z

(0)
r − ω

Gr z(0)
 

Grr z(0)
 

−
ω
2

Grr zN
  − Grr z(0)

  

Grr z(0)
 

z
N
r − z

(0)
r 


,

−z
(0)
r + ω

Gr z(0)
 

Grr z(0)
 

+
ω
2

Grr zN
  − Grr z(0)

  

Grr z(0)
 

z
N
r − z

(0)
r 



≤ z
(0)
r − z

(0)
r



 + ω
Gr z(0)

 

Grr z(0)
 




+
ω
2

Grr zN
  − Grr z(0)

  

Grr z(0)
 

z
N
r − z

(0)
r 





+ ω
Gr z(0)

 

Grr z(0)
 





+
ω
2

Grr zN
  − Grr z(0)

  

Grr z(0)
 

z
N
r − z

(0)
r 





.

(90)

Due to the fact that the functions Gr and Grr are
bounded, there are positive numbers K1

1, K1
2, M, and M′

such that

Gr z(0)
 



≤K
1
1 Grr z(0)

 


, Gr z(0)
 




≤K

1
2 Grr z(0)

 




,

Grr zN
  − Grr z(0)

 


≤ Grr zN
 



 + Grr z(0)
 



≤ 2M,

Grr zN
  − Grr z(0)

 




≤ Grr zN

 




+ Grr z(0)

 




≤ 2M
′
.

(91)

Since Newton’s method is a convergent method, there
are sufciently large integers m and m′ such that
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z
N
r − z

(0)
r



<
1

mM
Grr z(0)

 


,

z
N
r − z

(0)
r



<
1

m
′
M
′ Grr z(0)

 




.

(92)

Terefore, for |z(0)
r − z

(0)
r |≤ δ0, we have

z
(1)
r − z

(1)
r



≤ z
(0)
r − z

(0)
r



 + K
1
1ω +

ω
m

+ K
1
2ω +

ω

m
′ ≤ δ0 + K

1
1ω +

ω
m

+ K
1
2ω +

ω

m
′ ≡ δ1. (93)

Tus, for δ1 ≤ ε, we have

z
(1)
r − z

(1)
r



≤ ε. (94)

Now, we assume that the required inequality holds for
n � k. We show that the inequality also holds for n � k + 1.
We have

z
(k+1)
r − z

(k+1)
r



≤ z
(k)
r − z

(k)
r



 + ω
Gr z(k)

 

Grr z(k)
 




+
ω
2

Grr zN
  − Grr z(k)

  

Grr z(k)
 

z
N
r − z

(k)
r 





+ ω
Gr z(k)

 

Grr z(k)
 





+
ω
2

Grr zN
  − Grr z(k)

  

Grr z(k)
 

z
N
r − z

(k)
r 





,

(95)

thus for |z(k)
r − z

(k)
r |≤ δk and positive numbers Kk

1 andKk
2 we

can write

z
(k+1)
r − z

(k+1)
r



≤ z
(k)
r − z

(k)
r



 + K
k
1ω +

ω
m

+ K
k
2ω

+
ω

m
′ ≤ δk + K

k
1ω +

ω
m

+ K
k
2ω +

ω

m
′ ≡ δk+1.

(96)

Consequently, for δ � min δ1, . . . , δk+1 , we have
‖z(k+1)

r − z
(k+1)
r ‖≤ ε whenever ‖z(0) − z(0)‖≤ δ. Tis com-

pletes the proof.
Hence, by Teorems 3 and 4, algorithms SORCL1 and

SORCL2 are stable iterative methods. □

5. Numerical Results

One of the models which while obtaining its solutions needs
solving a system of nonlinear equations is the system of
ordinary diferential equations (ODEs). A system of ODEs
arises in many diferent areas of applied mathematics and
social and natural sciences. One may fnd many problems in
physics and biology which are mathematically modelled by
systems of ODEs. For example, the susceptible-infected-
recovered (SIR) model of an epidemic is shown by a system
of ODEs [9–12]. Te HIV spreading model is also expressed
by a system of ODEs [13–16]. Besides, studying of dynamics

of infltration of cancer cells needs solving a system of
nonlinear ODEs [17]. Also, a system of ODEs can arise easily
from a n th order linear diferential equation.Tere are many
analytical and numerical schemes to solve a system of ODEs
[18–22]. One of the numerical methods to solve a system of
ODEs is discretizing it by a fnite diferencemethod and then
solving it. Tis changes the system of diferential equations
to an algebraic system of (nonlinear) equations which can be
solved by (nonlinear) iterative solvers. In this section, we
solve two stif systems of ODEs by our methods. Further-
more, a comparison study between our algorithms and
another algorithms including ode15s MATLAB function is
presented. Tis solver is a suitable one for solving stif
systems of ODEs.

Problem 1. As the frst example, we solve the following
system of ODEs which arises from spreading of viruses in an
HIV disease:
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dT

dt
� p − αT + rT 1 −

T + I

Tmax
  − kVT,

dI

dt
� kVT − βI,

dV

dt
� NβI − λV,

(97)

with initial conditions

T(0) � 0.1, I(0) � 0, V(0) � 0.1. (98)

Besides, in model (97), we have the followings:

T ≡ T(t): the function of density of normal CD4+T

cells in time t

V ≡ V(t): the function of HIV-free cells in time t

I ≡ I(t): the function of infected CD4+T cells by the
HIV viruses in time t,
α: natural death rate of noninfected CD4+T cells
β: natural death rate of HIV-infected CD4+T cells
λ: natural death rate of HIV viruses
p: source term for noninfected CD4+T cells
k: the rate of CD4+T cells which are infected by HIV
viruses

r: the rate of proliferation of CD4+T cell density
N: the number of HIV viruses which are produced by
each infected CD4+T cell
Tmax: maximum density of CD4+T cells

Finally, for describingmodel (97), we have the followings
[14, 16, 17, 23]:

(i) r(1 − T + I/Tmax) shows the logical proliferation of
the normal CD4+T cells.

(ii) Te term kVT shows the incidence of HIV infection
of normal CD4+T cells.

(iii) Growth of infected CD4+T cells is not statistically
signifcant.

(iv) It is assumed that any infected CD4+T cell produces
N virus particles during its life-time. Tis includes
any of its daughter cells of infected CD4+T cells.

(v) At a constant rate p, the body produces CD4+T cells
from precursors in the bone marrow and thymus.

(vi) When T-cells are stimulated by antigens or mito-
gens, T-cells proliferate via mitosis with a rate r.

Te following values are considered for the parameters in
this study:

p � 0.1, α � 0.02, β � 0.3, r � 3, λ � 2.4, k � 0.0027, Tmax � 1500, N � 100. (99)

Tere are some numerical methods to solve model (97).
Merdan [24] solved the model by homotopy perturbation
method, Ongun [25] applied the Laplace Adomian de-
composition method to solve the model, Merdan et al. [26]
applied the Padè approximate method and the modifed
variational iteration method (VIM) for solving (97), Yüzbaşi
[27] used the Bessel collocation method. A modifcation of
the classical Laplace Adomian decomposition method is
used by Doǧan [28] and fnally, Srivastava et al. [29] applied
the diferential transformmethod (DTM) to solve themodel.

5.1. Discretization. If we integrate the following diferential
equation in interval [tn, tn+1],

df

dt
� f(t, y(t)), y t0(  � y0, (100)

the following diference equation is obtained:

y tn+1(  − y tn(  � 
tn+1

tn

f(t, y(t))dt. (101)

One may discretize (100) according to the following
integral approximation:


tn+1

tn

f(t, y(t))dt ≈ tn+1 − tn(  (1 − θ)f tn, yn(  + θf tn+1, yn+1( ( , n � 0, 1, . . . . (102)

where θ ∈ [0, 1]. In (102), if θ � 0, we have an explicit
method; otherwise, we have an implicit method. Using (101)
and (102) change (100) to

y tn+1(  � y tn(  + h (1 − θ)f tn, yn(  + θf tn+1, yn+1( ( ,

(103)
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where h � tn+1 − tn. Terefore, discretizing (97) by (103)
yields

Tn+1 � Tn + h (1 − θ) p − αTn + rTn 1 −
Tn + In

Tmax
  − kVnTn 

+ θ p − αTn+1 + rTn+1 1 −
Tn+1 + In+1

Tmax
  − kVn+1Tn+1 ,

In+1 � In + h (1 − θ) kVnTn − βIn(  + θ kVn+1Tn+1 − βIn+1(  ,

Vn+1 � Vn + h (1 − θ) NβIn − ρVn(  + θ NβIn+1 − ρVn+1(  ,

(104)

where n � 0, 1, 2, · · ·.
Problem 1 is solved by SORCL1 and SORCL2 methods.

For comparison of our results, we used the other methods to
solve the problem. For this comparison, we used the Laplace
Adomian decomposition method (LADM), LADM-Padè
method [25], the variational iteration method (VIM), and
modifed variational iteration method (MVIM) [26]. All of
these methods had presented their results only for the frst
six iterations and they could not solve the problem for large
values of t. Hence, we have compared results of SORCL1 and
SORCL2methods with these methods for t � 1 day. Also, we
solved the problem by ode15sMATLAB function. Tables 1–3
show this comparison. Furthermore, plots of Figures 1(a)–
1(c), respectively, show values of T, I and V cells for t � 1
day which are obtained by all methods. As we can see from
these tables, our methods solve the problem as well as the
other methods. But even though the mentioned methods
cannot solve the problem for large values of time, SORCL1
and SORCL2methods can do that as well. Plot (a) in Figure 1
shows the obtained results for T values by all seven men-
tioned methods. Similarly, plots (b) and (c) in Figure 1 show
the numerical results for values of I and V cells, respectively.
Finally, the results of SORCL1 and SORCL2 methods for
about 300 days are presented in plots of Figure 2.

If we consider G(T, I, V) � (G1(T, I, V), G2(T, I, V), G3
(T, I, V))t then indeed we are trying to solve system
G(T, I, V) � 0. To achieve a required accuracy for solving
Problem 1, we solved the problem by all seven methods in
addition with Newton’s method. Our stopping criterion was
err � ‖G‖∞ ≤ 10− 13. Te numerical results are presented in
Table 4. As we can see from this table, VIM, MVIM, LADM,
and LADM-Padè methods could not solve the problem. Te
results of this table show quality of our novel methods with
respect to the other methods.

Model (97) shows the model of spreading of HIV virus in
a body without any treatment. Figure 2(a) shows the values
of T, I, and V cells for about 300 days which are obtained by
the SORCL1 method. Tere is a complete description for
these values in reality. For example, number of T cells during
days 0 − 50 has a normal situation and this shows the pre-
clinical period.Tat is, one is infected by the virus but he/she
is asymptomatic. After this time, decreasing of T cells shows

progress of the disease. Tere are similar descriptions for
values of I and V cells. Similarly, Figure 2(b) shows number
of T, I, and V cells for about 300 days which have obtained
by SORCL2 method.

Problem 2. As the second example, we consider the fol-
lowing SIR model:

dS

dt
� −βS(t)I(t),

dI

dt
� βS(t)I(t) − ρI(t),

dR

dt
� ρI(t),

(105)

with the initial conditions

S(0) � 20, I(0) � 15, R(0) � 10. (106)

In model (105), we have

S ≡ S(t): number of at risk people in time t

I ≡ I(t): number of involved people in time t

R ≡ R(t): number of cured people in time t

β: rate of disinfection
ρ: cured rate

After discretization of (105), for n � 0, 1, 2, · · · we have
Sn+1 � Sn + h (1 − θ) −βSnIn(  + θ −βSn+1In+1(  ,

In+1 � In + h (1 − θ) βSnIn − ρIn(  + θ βSn+1In+1 − ρIn+1(  ,

Rn+1 � Rn + h (1 − θ) ρIn(  + θ ρIn+1(  .

(107)

System (105) models the spread of a nonfatal disease in
a population. Tis model is solved by SORCL1 and SORCL2
algorithms for β � 0.01 and ρ � 0.02. Te results are com-
pared with results which have obtained by ode15s and
Newton’s methods. Table 5 shows the CPU time and ac-
curacy of solution to solve Problem 2 for all four methods.
As shown in Table 5, the results of SORCL1 and SORCL2 are
very better than the other methods. Also, plots in
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Table 1: Numerical comparison for values of T(t), with ω� 0.57 and θ � 1 using diferent methods.

t ode15s VIM MVIM LADM LADM-Padè SORCL1 SORCL2
0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.2088080833 0.2088073214 0.2088080868 0.2088073298 0.2088072731 0.212234553 0.212234553
0.4 0.4062405393 0.4061346587 0.4062407949 0.4061358315 0.4061052625 0.4187046364 0.4187046364
0.6 0.764423889 0.762453035 0.7644287245 0.762476222 0.7611467713 0.798310304 0.798310304
0.8 1.414046831 1.397880588 1.414094173 1.398082863 1.377319859 1.495473502 1.495473502
1 2.591594802 2.506746669 2.591921076 2.597874151 2.329169761 2.773281653 2.773281653

Table 2: Numerical comparison for values of I(t), with ω � 0.57 and θ � 1 using diferent methods.

t ode15s VIM MVIM LADM LADM-Padè SORCL1 SORCL2
0 0 0 1e− 13 0 0 0 0
0.2 6.0327e− 06 6.03263e− 06 6.0327e− 06 6.03271e− 06 6.03271e− 06 6.16281e− 06 6.16281e− 06
0.4 1.31583e− 05 1.31488e− 05 1.31583e− 05 1.31589e− 05 1.31592e− 05 1.36271e− 05 1.36271e− 05
0.6 2.12238e− 05 2.10142E− 05 2.12233e− 05 2.1233e− 05 2.12684e− 05 2.23969e− 05 2.23969e− 05
0.8 3.01774e− 05 2.79513e− 05 3.01745e− 05 3.02427e− 05 3.00692e− 05 3.25499e− 05 3.25499e− 05
1 4.00378e− 05 2.43156e− 05 4.00254e− 05 4.03332e− 05 3.98737e− 05 4.42173e− 05 4.42173e− 05

Table 3: Numerical comparison for values of V(t), ω � 0.57, and θ � 1 using diferent methods.

t ode15s VIM MVIM LADM LADM-Padè SORCL1 SORCL2
0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.061879843 0.061879953 0.061879909 0.061879953 0.06187996 0.063028451 0.063028451
0.4 0.038294888 0.038308201 0.038295958 0.03830818 0.038313249 0.039728108 0.039728108
0.6 0.02370455 0.023920293 0.023710295 0.023919816 0.024391743 0.025044621 0.025044621
0.8 0.014680364 0.016217046 0.014700419 0.016212343 0.009967219 0.015792402 0.015792402
1 0.009100845 0.016084187 0.009157239 0.016055022 0.003305076 0.009963699 0.009963699

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (day)

0

0.5

1

1.5

2

2.5

3

T 
(t)

RK4
VIM
MVIM
LADM

LADMPade
SORCL1
SORCL2

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (day)

RK4
VIM
MVIM
LADM

LADMPade
SORCL1
SORCL2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

I (
t)

× 10-5

(b)
Figure 1: Continued.
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Figure 1: (a) Approximate values of T cells using methods: ode15s, VIM, MVIM, LADM, LADM-Padè, SORCL1, and SORCL2. (b)
Approximate values of I cells usingmethods: ode15s, VIM,MVIM, LADM, LADM-Padè, SORCL1, and SORCL2. (c) Approximate values of
V cells using methods: ode15s, VIM, MVIM, LADM, LADM-Padè, SORCL1, and SORCL2.
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Figure 2: (a) Approximate values of T, I, and V cells using SORCL1 method. (b) Approximate results for T, I, and V cells using SORCL2
method.

Table 4: Numerical comparison diferent methods, with ω � 1.9 and θ � 1/2 for SORCL1 and SORCL2 to solve Problem 1.

Methods Error CPU time (s)
SORCL1 8.38e− 13 601.4073
SORCL2 8.40e− 13 664.9404
ode15s 2.48E− 13 910.9302
Newton — —
VIM — —
MVIM — —
LADM — —
LADM Padè — —
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Table 5: Numerical comparison for diferent methods, with ω � 1.9 and θ � 1/2 for SORCL1 and SORCL2 methods.

Methods Error CPU time (s)
SORCL1 3.26e− 14 316.1678
SORCL2 3.26e− 14 338.9482
Newton 4.49e− 14 1373.1443
ode15s 4.50e− 14 376.8468
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Figure 3: (a) Approximate values of S, I, and R using SORCL1 method. (b) Approximate values of S, I, and R using SORCL2 method.
(c) Approximate values of S, I, and R using Newton’s method. (d) Approximate values of S, I, and R using ode15s method.
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Figures 3(a) and 3(b) show the values of S(t), I(t), and R(t)

for about one year which are obtained by SORCL1 and
SORCL2 methods. Similarly, Figures 3(c) and 3(d) show
these results which have obtained by Newton’s and ode15s

methods, respectively. As we can see from plots of Figure 3,
all results are in a similar mode, but as shown in Table 5, the
CPU time for new methods are less than these values for
Newton’s and ode15s methods.

For this problem, we also have a comparative study
between SORCL1, SORCL2, ode15s, and Newton’s method.
Our stopping criteria have been err≤ 10− 13. Te results of
this study are presented in Table 5. As we can see from this
table, CPU time of Newton’s method is about 4.3 times of
CPU time for SORCL1 and SORCL2methods and CPU time
of ode15s is about 1.2 times of this value for our presented
methods. Tese results show the quality of SORCL1 and
SORCL2 methods with respect to Newton’s and ode15s
methods.

It is worthy mention that Awawdeh et al. [30] in-
vestigated solution of (105) by the homotopy analysis
method (HAM). Tey used 20 terms to approximate
functions S(t), I(t) and R(t). Using 20 terms shows com-
plexity of HAM to solve the SIR model while our presented
methods do not have any complexity for their application.

5.2. Another Tolerance Level. To justify qualifcation of
SORCL1 and SORCL2 methods, we considered another tol-
erance levels as 10− 9, 10− 11 for HIV model and 10− 11 and
10− 12 for the SIRmodel.Te results of these tolerance levels are
reported in Tables 6–9. As these tables show, for these tolerance
levels also our algorithms have better values with respect to the
other methods. Even though somemethods have failed to solve
the problems and are not comparable with our algorithms.

6. Conclusions

In this paper, two high-order methods for solving systems of
nonlinear equations are introduced. Convergence and sta-
bility analysis for both methods are presented. Tese
methods solved two well-known stif systems of ODEs as
well. Te relaxation parameter, ω, in these iterative methods
is very important and obtaining its optimal value needs more
works. Te novel methods which presented in this paper are
stable ones because they can approximate values of un-
known functions for large values of time. Tis confrms our
theoretical study on stability. Besides, they solve problems
faster than the other existing methods which have solved our
test problems in this paper. Terefore these methods are
powerful methods. Terefore, by results from our test
problems (reported and nonreported), we express the fol-
lowing facts about SORCL1 and SORCL2 algorithms:

(i) Tey are suitable schemes to solve systems of or-
dinary diferential equations (stif or non-stif).

(ii) Tey can use to solve any system of nonlinear
equations which arise from diferent areas of sci-
ence and technology.

(iii) Tey are fast algorithms.
(iv) By our theoretical study and numerical simulations,

they are stable methods.
(v) Obtaining the optimal value for relaxation pa-

rameter of these methods is a worthy project and
needs more studies.

(vi) Investigation of how our methods be afected if the
initial conditions are incrementally perturbed can
be a part of future research.

(vii) Te last suggestion for a future work is extension of
our algorithms for updating them to solve systems
of fractional order diferential equations. Tis plan
includes handling coupled systems of fractional
diferential equations (see, for example, [31]).

Data Availability

Te data that support the fndings of this study are available
from the corresponding author upon reasonable request.

Table 6: Tolerance level at 10−9 (HIV model).

Methods Error CPU time (s)
SORCL1 6.78E− 08 108.1994
SORCL2 6.78E− 08 148.4667
ode15s 2.48E− 08 475.0106
Newton — —
VIM — —
MVIM — —
LADM — —
LADM Padè — —

Table 7: Tolerance level at 10−11 (HIV model).

Methods Error CPU time (s)
SORCL1 6.25E− 10 108.2855
SORCL2 6.25E− 10 122.9805
ode15s 2.48E− 10 496.73321
Newton — —
VIM — —
MVIM — —
LADM — —
LADM Padè — —

Table 8: Tolerance level at 10−11 (SIR model).

Methods Error CPU time (s)
SORCL1 3.89E− 11 158.3483
SORCL2 3.89E− 11 151.1118
Newton 4.46E− 11 245.7357
ode15s 4.50E− 11 203.0112

Table 9: Tolerance level at 10−12 (SIR model).

Methods Error CPU time (s)
SORCL1 3.90E− 12 172.5616
SORCL2 3.90E− 12 167.3746
Newton 4.47E− 12 242.780842
ode15s 4.50E− 12 693.2061
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