
Research Article
An Efficient Algorithm for Decomposition of Partially
Ordered Sets

Elsayed Badr ,1 Mohamed EL-Hakeem,2 Enas E. El-Sharawy,3 and Thowiba E. Ahmed 3

1Scientifc Computing Department, Faculty of Computers and Artifcial Intelligence, Benha University, Banha, Egypt
2Artifcial Intelligence Department, Faculty of Computers and Artifcial Intelligence, Benha University, Banha, Egypt
3Computer Science Department, College of Science and Humanities, Imam Abdulrahman Bin Faisal University, P.O. Box 31961,
Jubail, Saudi Arabia

Correspondence should be addressed to Elsayed Badr; badrgraph@gmail.com

Received 23 January 2023; Revised 23 April 2023; Accepted 26 April 2023; Published 9 May 2023

Academic Editor: Mohammad W. Alomari

Copyright © 2023 Elsayed Badr et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Efcient time complexities for partial ordered sets or posets are well-researched feld. Hopcroft and Karp introduced an algorithm
that solves the minimal chain decomposition in O (n2.5) time. Felsner et al. proposed an algorithm that reduces the time
complexity toO (kn2) such that n is the number of elements of the poset and k is its width.Temain goal of this paper is proposing
an efcient algorithm to compute the width of a given partially ordered set P according to Dilworth’s theorem. It is an efcient and
simple algorithm.Te time complexity of this algorithm isO (kn), such that n is the number of elements of the partially ordered set
P and k is the width of P. Te computational results show that the proposed algorithm outperforms other related algorithms.

1. Introduction

A partially-ordered set (poset) P� (X, ≺) is a set of elements
X, along with a binary relation, ≺, having the property that ≺
is transitive and antisymmetric for all elements in Ƥ. Te
scheduling problem can be formulated as a partially ordered
set. In the scheduling problem, there are some jobs that are
parallel (can be executed simultaneously) and some that are
nonparallel (cannot be executed simultaneously). Finding
the largest number of nonparallel jobs is equivalent to
fnding the width of the partially ordered set. Accordingly,
there are a very large number of applications in various felds
based on the diferent applications of the scheduling
problem. Te width of a poset is the largest antichain
cardinality.

Two elements ai and aj are comparable if ai ≺ aj oth-
erwise are in comparable if ai ≺ aj. A nonempty subset C�

{a1, a2, . . ., ak} ⊆X is called a chain in P if a1 ≺ a2 ≺ . . . ≺ak. An
antichain is a nonempty set in which there are no compa-
rable pairs of elements. It is always feasible to divide the
elements of X into disjoint chains since every single element
in X is a chain in and of itself. Such a partition is referred to

as a decomposition, and the minimum decomposition is one
that has the fewest possible disjoint chains. Te size of
a minimum decomposition is equivalent to the size of
a maximum antichain, according to Dilworth [1].

In 1973, Hopcroft and Karp [2] proposed the algorithm
that takes O (mn2) time complexity to determine the width
of a given poset such that n is the number of elements in P
and m is the comparable pairs in P. Tey proved that the
O(mn2) time complexity equals O (n5/2). In 2003, Felsner
et al. [3] demonstrated that determining whether an order
has width k can be done in O (kn2) time, such that n is the
number of components in P and k is the width of P. For
special cases of the posets, In 1979, Papadimitriou and
Yannakakis [4] introduced a linear time complexityO (n) for
determine the width of an interval partially ordered set with
n elements. In 1980, Golumbic [5] proved that the width of
a 2-dimensional poset can be computed in O (n log n) time
such that n is the elements of P. In 1992, Garg [6] suggested
a novel approach that requires O (n2m) comparisons, where
n represents the number of chains and m is the maximum
number of elements in any chain. Tey demonstrate that the
temporal complexity of this approach for a chain poset is O

Hindawi
Journal of Mathematics
Volume 2023, Article ID 9920700, 11 pages
https://doi.org/10.1155/2023/9920700

https://orcid.org/0000-0002-7666-1169
https://orcid.org/0000-0002-3738-6731
mailto:badrgraph@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9920700

(m n log n). In 2022, Badr et al. [7] introduced the integer
linear programming model (ILPM), which determines the
width of a given poset. ILPM is distinguished from the
previous mathematical models by its efciency. For more
details about the poset decomposition, the reader can refer to
[1, 8–13]. Te reader can refer to [14–17] for formulating the
mathematical models that related to the poset
decomposition.

Te discipline of space-efcient data structures for
partially ordered sets or posets has been intensively studied.
A poset with n elements can be represented in n2/4 + o (n2)
bits [18] or in (1 + ϵ) n log n+ 2nk+ o(nk) bits [19], where k is
the width of the poset. Yanagita et al. [20] made the latter
data structure occupy 2n (k− 1) + o (nk) bits by considering
topological labeling on the elements of posets.

Te best algorithm for this problem up to now need O
(kn2) time, where n is the number of elements of a poset P.
In this paper, we propose an efcient algorithm to
compute the width of a given partially ordered set P
according to Dilworth’s theorem. It is an efcient and
simple algorithm.Te time complexity of this algorithm is
O (kn), such that n is the number of elements of the
partially ordered set P and k is the width of P. Te
computational results show that the proposed algorithm
outperforms other related algorithms.

Te remaining of this paper is organized as follows: Te
proposed algorithm description is introduced in Section 2.
In Section 3, the experimental results analysis of the pro-
posed algorithm on diferent benchmark posets are pro-
vided. In Section 4, conclusions are made.

2. The Proposed Algorithm Description

In this section, we propose an efcient algorithm for de-
termining the width of a poset P with n elements in O (kn)
time, such that n is the number of components in P and k is
the width of P. On the other hand, the numerical example is
introduced for explaining the mechanism of the proposed
algorithm. Finally, we introduce a proposition that proves
the proposed algorithm has the time complexity of O (kn).

Tere are three basic parameters that afect the time
complexity of fnding the width of a given poset P. Tese
parameters are n, k, andm the elements of P, the width of P,
and the number of comparable pairs in P, respectively.
Table 1 shows six diferent datasets of standard posets
evaluate the proposed algorithm. On the other hand, it

compares between the proposed algorithm (Algorithm 1)
and Felsner et al.’ algorithm [3].

Here, we describe the mechanism of the proposed al-
gorithm. Te algorithm works as follows: It reads the in-
cidence matrix A of a poset P. It sums up all the rows and
columns of A. It adds the sum of each row with the sum of
the corresponding column. We choose the lowest sum (the
lowest vertex connected to the others). We remove the
selected vertex and the connected vertices with it from the
matrix A. It repeats the above statements until the size of
A� 0.

Example 1. Let the poset P be the crown poset C3 as shown
in Figure 1.

We put an initial value for the width of P: width = 0.

Iteration 1
Generate the incidence matrix A for the crown poset
C3:

A �

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0
0

0

0

0

0

0

0

0

0

0 0 0

0 0 0

0 0 0

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

. (1)

It sums up all the rows and columns of A. It adds the
sum of each row with the sum of the corresponding
column. Sum_cr [i] = column [i] + row [i]

A �

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0
0

0

0

0

0

0

0

0

0

0 0 0

0 0 0

0 0 0

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

,

Sum cr � [2, 2, 2, 2, 2, 2].

(2)

We choose the lowest sum of sum_cr (min (sum_cr)) = 2
with index= 6 (break the tie by choosing the minimum
value arbitrary).

2 Journal of Mathematics

We determine all the vertices that link to the current
vertex x6 which are x1 and x2.

A �

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0
0

0

0

0

0

0

0

0

0

0 0 0

0 0 0

0 0 0

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

. (3)

We remove the current vertex x6 and the vertices that
linked with it.

A �

0 1 1

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

width � width + 1.

(4)

Iteration 2

Table 1: Six diferent datasets of standard posets evaluate the proposed algorithm.

No. Poset Width Case
Felsner et al.

[3], O
(mn2)�O (kn2)

Algorithm 1, O (kn)

1 Chain poset 1 best case O (n2) O (n)
2 K-tower 2 best case O (n2) O (n)
3 Divisor poset ≈ log n Average case O (n2 log n) O (n log n)
4 Crown poset n/2 worst case O (n3) O (n2)
5 2n-cycle poset n/2 worst case O (n3) O (n2)
6 Antichain poset n− 1 worst case O (n3) O (n2)

Input:
n: the number of elements of a poset P
An×n: the incidence matrix of a poset P

Output: the length of its largest antichain width (P)
Begin
width� 0
while length of matrix A!� 0 do
sum_column� sum(A, axis� 0)
sum_row� sum(A, axis� 1)
sum_cr� 􏽐

n
i�0sum columni + sum rowi

M� inf
for j� 1 to n
if (sum_cr [j]≤M):
M� sum_cr [j]
Index� j

end
end
Index_row� []
Index_column� []
for j� 1 to n
if (A[j, Index]�� 1):
Index_row.append(j)

end
if (A[Index, j]�� 1):
Index_column.append (j)

end
end
Delete all columns and row when value� 1 in (rows� Index_row [:],
columns� Index_column [:] and column� Index)
width +�1

end
return the best population found (the width of its largest antichain)

End

ALGORITHM 1: Find the width of a poset.

Journal of Mathematics 3

It sums up all the rows and columns of A. It adds the
sum of each row with the sum of the corresponding
column. Sum_cr [i] = column [i] + row [i]

A �

0 1 1

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Sum cr � [2, 1, 1].

(5)

We choose the lowest sum of sum_cr (min (sum_cr))
= 1 with index = 3 (break the tie by choosing the
minimum value arbitrary).
We determine all the vertices that link to the current
vertex x3 which are x1.
We remove the current vertex x3 and the vertices that
linked with it x1.

A �

0 1 1

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

width � width + 1.

(6)

Iteration 3

Sum cr � [0]. (7)

We eliminate the fnal element (singleton): A � []

width � width + 1. (8)

Te algorithm must now terminate. Te fnal width
equals three iterations.

Proposition 1. Te algorithm 1 requires O (kn) comparisons
at most.

Proof. Suppose comp (k) denotes the number of compari-
sons required in the kth iteration of the while loop. Suppose T
denotes the total number of iterations of the while loop.
Terefore, 􏽐

k�T
k�1 comp(k) represents the total number of

comparisons. Let α denotes the total number of iterations of
for loop to get the minimum index, β denotes the total
number of iterations of for loop to select vertices to con-
nected with selected vertex and c denote the number of
deleted columns and rows. Terefore, 􏽐

k�T
k�1 comp (k) �

T∗ (α + β + c). We note that T� k because every iteration
the width increases by one until the size of the matrix� 0. It
is clear that α� n because it searches for the minimum value
in an array with size n. It is clear that β� n because β is
related to α (for every value of α there is a vertex in thematrix
A). It is clear that, c is less than or equal to n. Terefore,

􏽘
k�T

k�1
comp(k) � k∗ (c + β + c) � O(k∗ (n + n + n)) � O(3kn) � O(kn). (9)

Te time complexity of the proposed algorithm is
O (kn). □

3. Datasets

Te time complexity of the proposed approach clearly de-
pends on the width of the poset. We assess the proposed
algorithm with a dataset of standard posets which have
diferent width. Six diferent datasets of standard posets
evaluate the proposed algorithm, as shown in Table 1.

Te frst dataset is the chain posets. A poset P is called
chain if all elements of P are comparable. Te second dataset
is the p-tower posets. It is obtained by substituting p anti-
chains (stables) of cardinality 2 in a total order on p vertices.
Te third dataset is the divisor posets. For any natural
number n, the collection X of all of the natural numbers that
divide n represents the divisor posets. For any two elements
in X, a, b, write a< b A � [0]a|b and a� b, that is if a divides
b and a� b. Te fourth dataset is the crown poset. Te poset
with 2n-elements a1, . . . , an; b1, . . . , bn is called crown poset

1

6 5 4

32

Figure 1: Te crown poset C3.

4 Journal of Mathematics

Table 2: A comparison between ILPM and the proposed algorithm on 2n-cycle.

N� 2n Comparable pairs, N Standard w (P)
ILPM Proposed algorithm

w (P) CPU time w (P) CPU time
50 50 25 25 0.089045 25 0.002301
100 100 50 50 0.106691 50 0.0043507
150 150 75 75 0.165378 75 0.0081102
200 200 100 100 0.239956 100 0.0108141
250 250 125 125 0.431634 125 0.016587
300 300 150 150 0.474245 150 0.0246753
350 350 175 175 0.622573 175 0.0349737
400 400 200 200 0.756483 200 0.0705701
450 450 225 225 0.948467 225 0.0999672
500 500 250 250 1.216359 250 0.1508073

200 300 400 500100
number of vertices

ILP
New Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ex
ec

ut
io

n
tim

e

Figure 2: A comparison between ILPM and the proposed algorithm on 2n-cycle.

Table 3: A comparison between ILPM and the proposed algorithm on crown posets.

N� 2n Comparable pairs,
N (N− 1) Standard w (P)

ILPM [7] Proposed algorithm
w (P) CPU time w (P) CPU time

50 600 25 25 0.235665 25 0.0017501
100 2450 50 50 1.215363 50 0.0036623
150 5550 75 75 3.590369 75 0.0067241
200 9900 100 100 9.038238 100 0.0075052
250 15500 125 125 16.18856 125 0.010577
300 22350 150 150 27.90345 150 0.0135506
350 30450 175 175 43.35807 175 0.0184247
400 39800 200 200 69.64655 200 0.027318
450 50400 225 225 96.15276 225 0.0280215
500 62250 250 250 136.2815 250 0.0457993

Journal of Mathematics 5

if every element ai is comparable with every element bj
excluding the case when i� j. Te ffth dataset is the alter-
nating 2n-cycle poset. An ordered set (x1, y1, x2, y2, . . ., xn,
yn) of size 2n, n≥ 2, with these comparabilities, and no
others, is called an alternating 2n-cycle, or more briefy, a 2n-
cycle. Te sixth dataset is the antichain poset. A poset P is
called antichain if all elements of P are incomparable.

Table 1 shows the superiority of the proposed algorithm
on the algorithm that was proposed in [3] for three cases.

4. Computational Study

Here, we evaluate the proposed algorithm by We evaluate
the proposed algorithm with a dataset of standard partially
ordered sets which have diferent width. Six diferent
datasets of standard posets evaluate the proposed algorithm,
as shown in Table 1. All of these are compatible with a PC
having a Core i7 CPU@2.8GHz, 8GB of RAM, and a 64 bit

operating system. Tey were all written in Python. Te
values of diferent algorithm-specifc parameters are prop-
erly set to achieve their optimal performance, as shown in
Table 1.

Table 2 and Figure 2 demonstrate that the proposed
algorithm is superior to the mathematical model ILPM [7] in
terms of the execution time required to determine the width
of the 2n-cycle poset. Tis superiority is due to the fact that
the width is the primary parameter of the proposed algo-
rithm, while the number of comparable pairs and the
number of elements in the 2n-cycle poset are secondary
parameters. Alternatively, the mathematical model ILPM
relies on the number of comparable pairs as its primary
parameter, while the width and number of elements in the
2n-cycle poset are secondary parameters. Figure 1 illustrates
the execution time advantage of the proposed algorithm over
the mathematical model for the 2n-cycle poset. Te second
and ffth columns indicate that the running time of ILPM

200 300 400 500100
number of vertices

ILP
New Algorithm

0

20

40

60

80

100

140

120

ex
ec

ut
io

n
tim

e

Figure 3: A comparison between ILPM and the proposed algorithm on crown posets.

Table 4: A comparison between ILPM and the proposed algorithm on divisor posets.

N Comparable pairs <N Standard w (P)
ILPM [7] Proposed algorithm

w (P) CPU time w (P) CPU time
50 12 2 2 0.043329 2 0.0002642
100 27 3 3 0.047882 3 0.0003259
150 42 4 4 0.054162 4 0.0003274
200 48 3 3 0.059799 3 0.0002829
250 22 2 2 0.055196 2 0.0002299
300 90 5 5 0.070541 5 0.0004843
350 42 4 4 0.054761 4 0.0006213
400 75 3 3 0.065461 3 0.0002782
450 90 5 5 0.070376 5 0.0004512
500 48 3 3 0.05527 3 0.0002953

6 Journal of Mathematics

increases with the number of comparable pairs, whereas the
sixth and seventh columns indicate that the running time of
the proposed algorithm increases with the width of the 2n-
cycle poset. We conclude from the preceding that the width
of a poset P is an important and infuential parameter for the
proposed algorithm, whereas the number of comparable
pairs is an important and infuential parameter for the
mathematical model ILPM.

Table 3 and Figure 3 demonstrate that the width is the
most important parameter of the proposed algorithm,
followed by the number of comparable pairs and the
number of elements in the poset P. Alternatively, the
primary parameter of the mathematical model ILPM is the
number of comparable pairs, while the width and number
of elements in the poset P are secondary parameters.
Table 3’s second and ffth columns demonstrate that as the
number of comparable pairs increases, so does the exe-
cution time of the mathematical model ILPM. For

instance, when N � 200, the execution time for the crown
group is 9.038238 seconds, and when N � 500, it is
136.2815 seconds.

On the divisor poset, Table 4 and Figure 4 demonstrate
the superiority of the proposed algorithm over the mathe-
matical model ILPM [7]. Table 4’s second column depicts the
fuctuation of the number of comparable pairs between
increases and decreases, but maintains that a longer exe-
cution time corresponds to a greater number of comparable
pairs in the mathematical model ILPM.

Table 5 and Figure 5 demonstrate that the proposed
algorithm is preferable to the ILPM [7] mathematical model
of the k-tower poset. From the sixth and seventh columns of
Table 5, it can be observed that the execution time of the
proposed algorithm increases slightly as the number of
comparable pairs and the number of elements of the k-tower
poset increase, confrming that the number of comparable
pairs and the number of elements are secondary parameters

Table 5: A comparison between ILPM and the proposed algorithm on k-tower posets.

N Comparable
pairs N (N− 2)/2 Standard w (P)

ILPM [7] Proposed algorithm
w (P) CPU time w (P) CPU time

50 1200 2 2 4.095658 2 0.000384
100 4900 2 2 30.97442 2 0.000446
150 11100 2 2 61.27756 2 0.000363
200 19800 2 2 150.0762 2 0.000415
250 31000 2 2 140.8486 2 0.000642
300 44700 2 2 283.7612 2 0.000654
350 60900 2 2 415.9408 2 0.000629
400 79600 2 2 399.5216 2 0.000634
450 100800 2 2 2568.489 2 0.000843
500 124500 2 2 2789.078 2 0.000850

200 300 400 500100
number of vertices

ILP
New Algorithm

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ex
ec

ut
io

n
tim

e

Figure 4: A comparison between ILPM and the proposed algorithm on divisor posets.

Journal of Mathematics 7

of the proposed algorithm. In contrast, we fnd that the
execution time of the mathematical model ILPM increases
signifcantly as the number of comparable pairs of the k-
tower poset increases, confrming that the number of
comparable pairs is a fundamental and infuential parameter
for the mathematical model ILPM.

Table 6 and Figure 6 show that the proposed algorithm is
superior to the ILPM [7] mathematical model of chain
posets. It can be seen in the sixth and seventh columns of
Table 6 that the execution time of the proposed algorithm
increases slightly as the number of comparable pairs and the

number of elements of the chain posets increase, confrming
that the number of comparable pairs and the number of
elements are secondary parameters of the proposed algo-
rithm. In contrast, we discover that the execution time of the
mathematical model ILPM increases considerably as the
number of comparable pairs of the chain posets increases,
confrming that the number of comparable pairs is an es-
sential and infuential parameter for the mathematical
model ILPM.

Recall that the width of a poset P is dependent on three
fundamental parameters: the number of elements in P, its

200 300 400 500100
number of vertices

ILP
New Algorithm

0

500

1000

1500

2000

2500

ex
ec

ut
io

n
tim

e

Figure 5: A comparison between ILPM and the proposed algorithm on k-tower posets.

Table 6: A comparison between ILPM and the proposed algorithm on chain posets.

N Comparable pairs,
N (N− 1)/2 Standard w (P)

ILPM [7] Proposed algorithm
w (P) CPU time w (P) CPU time

50 1225 1 1 5.407565 1 0.000338
100 4950 1 1 17.2817 1 0.000384
150 11175 1 1 57.52828 1 0.000414
200 19900 1 1 58.09319 1 0.00046
250 31125 1 1 91.68824 1 0.000555
300 44850 1 1 146.893 1 0.000559
350 61075 1 1 209.748 1 0.000653
400 79800 1 1 301.1966 1 0.000845
450 101025 1 1 2956.88 1 0.005727
500 124750 1 1 3591.351 1 0.007079

8 Journal of Mathematics

width, and the number of comparable pairs in P. Table 7 and
Figure 7 demonstrate that after 300, the proposed algorithm
increases sharply. Te weights of the aforementioned three
parameters explain this signifcant increase. Te execution
time of the proposed algorithm increases relative to the

execution time of the mathematical model as the poset size
increases.

In terms of execution time for fve posets (chain poset, k-
tower, divisor poset, crown poset, and 2n-cycle poset) versus
one poset (antichain poset) for ILPM [7], Tables 2–7 and

Table 7: A comparison between ILPM and the proposed algorithm on antichain posets.

N Comparable pairs Standard w (P)
ILPM [7] Proposed algorithm

w (P) CPU time w (P) CPU time
50 0 50 50 0.050901 50 0.003775
100 0 100 100 0.053883 100 0.009561
150 0 150 150 0.071736 150 0.015508
200 0 200 200 0.062894 200 0.024025
250 0 250 250 0.071185 250 0.04499
300 0 300 300 0.074197 300 0.063899
350 0 350 350 0.082339 350 0.089227
400 0 400 400 0.085237 400 0.158079
450 0 450 450 0.090219 450 0.257679
500 0 500 500 0.162822 500 0.388347

200 300 400 500100
number of vertices

ILP
New Algorithm

0

500

1000

1500

2500

2000

3500

3000

ex
ec

ut
io

n
tim

e

Figure 6: A comparison between ILPM and the proposed algorithm on chain posets.

Journal of Mathematics 9

Figures 1–7 indicate that the proposed algorithm is superior
to the mathematical model ILPM.

5. Conclusions

Te main goal of this paper was proposing an efcient al-
gorithm to compute the width of a given partially ordered set
P according to Dilworth’s theorem. It is an efcient and
simple algorithm.Te time complexity of this algorithm is O
(kn), such that n is the number of elements of the partially
ordered set P and k is the width of P. Te computational
results show that the proposed algorithm outperforms other
related algorithms. In future work, the mathematical relation
among the size of poset P, its width, and the number of
comparable pairs in P is introduced for special posets such as
the chain, antichain, k-tower, divisor, crown, and 2n-cycle
posets.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] R. P. Dilworth, “A decomposition theorem for partially or-
dered sets,” Annals of Mathematics, vol. 51, no. 1, pp. 161–166,
1950.

[2] J. E. Hopcroft and R. M. Karp, “An $n∧{5/2} $ algorithm for
maximum mbg,” SIAM Journal on Computing, vol. 2, no. 4,
pp. 225–231, 1973.

[3] S. Felsner, V. I. J. A. Y. Raghavan, and J. Spinrad, “Recognition
algorithms for orders of small width and graphs of small
Dilworth number,” Order, vol. 20, no. 4, pp. 351–364, 2003.

[4] C. H. Papadimitriou and M. Yannakakis, “Scheduling interval
ordered tasks,” SIAM Journal on Computing, vol. 8, no. 3,
pp. 405–409, 1979.

[5] M. C. Golumbic, Algorithmic Graph Teory and Perfect
Graphs, Academic Press, New York, NY, USA, 1980.

[6] V. K. Garg, “Some optimal algorithms for decomposed
partially ordered sets,” Information Processing Letters, vol. 44,
no. 1, pp. 39–43, 1992.

[7] E. Badr, I. M. Selim, H. Mostafa, and H. Attiya, “An integer
linear programming model for partially ordered sets,” Journal
of Mathematics, vol. 2022, Article ID 7660174, 9 pages, 2022.

[8] G. B. Dantzig and D. R. Fulkerson, “Minimizing the number
of tankers to meet a fxed schedule,” Naval Research Logistics
Quarterly, vol. 1, no. 3, pp. 217–222, 1954.

[9] G. B. Dantzig and A. J. Hofman, “Dilworth’s theorem on
partially ordered sets,” Linear Inequalities and Related Sys-
tems, pp. 207–214, Princeton University Press, Princeton, NJ,
USA, 1956.

[10] R. P. Dilworth, Some Combinatorial Problems on Partially
Ordered Sets Combinatorial Analysis,” Book: Te Dilworth
Teorems: Selected Papers of Robert P, Dil Worth, Springer
Science + Business Media, Berlin, Germany, 1990.

[11] D. R. Fulkerson, “Note on Dilworth’s decomposition theorem
for partially ordered sets,” Proceedings of the American
Mathematical Society, vol. 7, no. 4, pp. 701-702, 1956.

[12] P. C. Fishburn, Interval Graphs and Interval Orders, Wiley,
New York, NY, USA, 1985.

[13] E. Badr and M. Moussa, “On jump-critical ordered sets with
jump number four,” Journal of Advances in Applied and
Computational Mathematics, vol. 1, pp. 8–13, 2014.

[14] E. M. Badr and H. elgendy, “A Hybrid water cycle - particle
swarm optimization for solving the fuzzy underground water

400 600 800 1000200
number of vertices

ILP
New Algorithm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ex
ec

ut
io

n
tim

e

Figure 7: A comparison between ILPM and the proposed algorithm on antichain posets.

10 Journal of Mathematics

confned steady fow,” Indonesian Journal of Electrical Engi-
neering and Computer Science, vol. 19, no. 1, p. 492, 2020.

[15] E. M. Badr, Mustafa Abdul Salam, and H. Ahmed, Optimizing
Support Vector Machine Using Gray Wolf Optimizer Algo-
rithm for Breast Cancer Detection, in Proceedings of the 1st
international conference on information technology (IEEE/
ITMUSTCONF), Cairo, Egypt, April 2019.

[16] D. Salama AbdELminaam, A. M. Almansori, M. Taha, and
E. Badr, “A deep facial recognition system using computa-
tional intelligent algorithms,” PLoS One, vol. 15, no. 12, Article
ID e0242269, 2020.

[17] E. Badr, M. Abdul Salam, S. Almotairi, and H. Ahmed, “From
linear programming approach to metaheuristic approach:
scaling techniques,”Complexity, vol. 2021, Article ID 9384318,
10 pages, 2021.

[18] J. I. Munro and P. K. Nicholson, “Succinct posets,” Algo-
rithmica, vol. 76, no. 2, pp. 445–473, 2016.

[19] A. Farzan and J. Fischer, “Compact representation of posets,”
in Proceedings of the 22nd International Conference On Al-
gorithms And Computation (ISAAC), pp. 302–311, Springer-
Verlag, Berlin, Heidelberg, January 2011.

[20] T. Yanagita, S. Chakraborty, K. Sadakane, and S. Rao Satti,
“Space-Efcient Data Structure for Posets with Applications,”
in Proceedings of the 18th Scandinavian Symposium and
Workshops on Algorithm Teory (SWAT), New York,
NY, USA, August 2022.

Journal of Mathematics 11

