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We study the expected discounted penalty at ruin under a stochastic discount rate for the compound Poisson risk model with
a threshold dividend strategy.Te discount rate is modeled by a Poisson process and a standard Brownianmotion. By applying the
diferentiation method and total expectation formula, we obtain an integrodiferential equation for the expected discounted
penalty function. From this integrodiferential equation, a renewal equation and an asymptotic formula satisfed by the expected
discounted penalty function are derived. In order to solve the integrodiferential equation, we use a physics-informed neural
network (PINN) for the frst time in risk theory and obtain the numerical solutions of the expected discounted penalty function in
some special cases of the penalty at ruin.

1. Introduction

For the frst time in actuarial science, Gerber and Shiu [1]
introduced the expected discounted penalty function which
is also referred to as the Gerber–Shiu function. Since the
seminal paper by [1], the Gerber–Shiu function has been
widely studied and has become one of the most represen-
tative research directions in risk theory (see [2–4]). For the
Gerber–Shiu function, the main goal is to consider three
important random variables once at a time, namely, the time
of ruin, the surplus immediately before ruin, and the defcit
at ruin. Usually, the Gerber–Shiu function is used to evaluate
the overall fnancial performance of an insurance company
before going bankrupt. Te special issue in volume 46, 2010,
of the journal Insurance: Mathematics and Economics
contains a selection of papers focused on the Gerber–Shiu
function, with many further references therein.Te expected
discounted penalty function has attracted the interest of
many actuaries since its inception. Ramsden and
Papaioannou [5] considered a Markov-modulated risk
model and derived an integrodiferential equation for the
expected discounted penalty function, the asymptotic

behavior of which was investigated in terms of Laplace
transforms. Under a Lévy insurance risk process, the joint
Laplace transform of ruin-time and ruin-position was
presented by [6], and this Laplace transform can be used to
compute the expected discounted penalty function via
Laplace inversion. Preischl and Tonhauser [7] minimized
expected discounted penalty functions in a Cramér–Lund-
berg model by choosing optimal reinsurance, showed the
existence and uniqueness of the solution found by this
method, and provided numerical examples involving light-
and heavy-tailed claims. Martin–González and Kolkovska
[8] studied a generalization of the expected discounted
penalty function for a class of two-sided jump Lévy processes
having positive jumps with a rational Laplace transform and
provided an explicit expression for the generalized function
in terms of functions depending only on the parameters of
the Lévy process. Te expected discounted penalty function
provides a unifed framework for the evaluation of various
risk quantities. For a systematic study of the Gerber–Shiu
theory, one can refer to references [1–3, 7–12].

In recent years, with the rapid advancement of artifcial
intelligence and machine learning theory, a number of
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papers have focused on the numerical solution of diferential
equations and proposed novel learningmachines to solve the
diferential equations (see [13–22]). Zhou et al. [13] con-
structed a neural network model, in which trigonometric
function served as the activation function, added the initial
condition of the integrodiferential equation satisfed by the
ruin probability to the solver model, and obtained the
numerical solutions to it. Ma et al. [14, 15] proposed an
initial condition extreme learning machine and a novel
structure automatic-determined Fourier extreme learning
machine to realize numerical solutions of the partial dif-
ferential equations, respectively. In particular, Raissi et al.
[16] introduced physics-informed neural network (PINN),
which was trained to solve supervised learning tasks while
respecting any given laws of physics described by general
nonlinear partial diferential equations, and solved the
problem of data-driven solutions to partial diferential
equations. Wu et al. [19] proposed a new physics-informed
neural network (PINN) for solving the Hausdorf derivative
Poisson equations on irregular domains by using the con-
cept of Hausdorf fractal derivative and transformed the
numerical solution of the partial diferential equation into an
optimization problem including governing equation and
boundary conditions. In Zhang et al. [20], a novel deep
learning technique, called multidomain physics-informed
neural network (MDPINN), was presented to solve forward
and inverse problems of steady-state heat conduction in
multilayer media. Zhang et al. [21] numerically resolved
linear and nonlinear transient heat conduction problems in
multilayer composite materials using multidomain physics-
informed neural networks. Compared to other existing
approaches, the PINN is simple, straightforward, and easy-
to-program, and it has been successfully applied in diferent
felds recently. Numerical experiments indicate that the
PINNmethodology is accurate and efective, which provides
a new idea for solving certain diferential equations (see
[16, 19–22]).

Although the expected discounted penalty function was
proposed more than two decades ago and continues to play
an important role in actuarial science research, there are still
many unsolved problems such as the two here for gener-
alizing the discount rate in this function from a constant to
a random variable for the nonclassical risk model and
looking for an efective numerical scheme for this function
with no explicit solution (see [3, 5–12]).

Te main goal of this paper is to partially address both of
the above issues. Te rest of this paper is organized as
follows: In the latter part of the introduction section, the risk
model of interest with a threshold dividend strategy is in-
troduced together with the expected discounted penalty
function with a random discount factor. Te important
technical analysis is carried out in Section 2, where the
integrodiferential equation for the expected discounted
penalty function is ultimately derived. In Section 3, in the
case of a relatively large initial surplus, we obtain a renewal
equation and, further, an asymptotic formula for the ex-
pected discounted penalty function. In Section 4, we give
basic information about the structure of the neural network,
the way the neural network is trained, and other basic details

of the physics-informed neural networkmethodology to fnd
numerical solutions of the integrodiferential equation in
Section 2, and, by numerical examples, illustrate the efec-
tiveness of the physics-informed neural network method.

In the classical compound Poisson risk model, the in-
surance company is assumed to collect premiums at
a constant rate c> 0, whereas claims arrive successively
according to the times of a Poisson process, henceforth
denoted by Nt; t≥ 0  with Poisson parameter λ> 0. Tese
successive individual claim amounts denoted by
X1, X2, · · · , independent of Nt; t≥ 0 , are independent
and identically distributed (i.i.d.) positive random variables
with a common cumulative distribution function (c.d.f.)
F(x) that has a positive fnite mean μ and a continuous
probability density function f(x) � F′(x). Consequently,
the i.i.d. interclaim time random variables T1, T2, · · · , in-
dependent of X1, X2, · · · , have an exponential distribution
with mean 1/λ. Te aggregate claims process is defned by
St � 

Nt

i�1Xi; t≥ 0 , where St � 0 if Nt � 0. Tus, the in-
surer’s surplus process Ut; t≥ 0  is given byUt � u + ct − St,
where u � U0 ≥ 0 is the initial surplus. For more on the
classical compound Poisson risk model, see [23, 24] which
serve as encyclopedic references for all matters concerning
ruin theory.

We now enrich the classical model. We assume that the
insurance company is a stock company, and dividends are
paid to the shareholders according to a threshold dividend
strategy. Let b> 0 denote the constant barrier level, and
c1 > 0 be the annual premium rate if the surplus Ut is below
the barrier level b. Let c∗, 0< c∗ ≤ c1, be the annual dividend
rate, i.e., when the insurer’s surplus is above the barrier b,
dividends are paid at rate c∗. Tus, the net premium rate
after dividend payments is c2 � c1 − c∗. As usual, we assume
the security loading condition, that is, the condition c2 −

λμ> 0 is fulflled. Under such a strategy, the surplus process
Ut; t≥ 0  can be expressed as follows:

Ut �
u + c1t − St, 0≤Ut ≤ b,

u + c2t − St, Ut > b.
 (1)

See [25, 26] and references therein for this type of risk
model with threshold dividend strategy, and Figure 1 shows
a graphical representation of a sample path of the surplus
process.

Defne the time of ruin as T � inf t|Ut < 0 , where T �

∞ if Ut ≥ 0 for all 0≤ t<∞. Ten, UT− denotes the surplus
immediately before ruin and |UT| denotes the defcit at ruin.
Let w(x1, x2), 0<x1, x2 <∞, be a bivariate nonnegative
function which satisfes some mild integrable conditions.
We now introduce the expected discounted penalty function

m(u) � Ε e
− RT w UT− , UT


 I(T<∞)|U0 � u , u≥ 0,

(2)

where I(A) is the indicator function of an event A and
Rt, t≥ 0, is interpreted as the accumulated interest force
function. We assume that Rt � δt + αPt + βBt, where δ, α, β
all are the nonnegative constants, Pt; t≥ 0  is a Poisson
process with Poisson parameter λ∗ > 0, Bt; t≥ 0  is a stan-
dard Brownian motion, and Pt; t≥ 0 , Bt; t≥ 0 , and
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Ut; t≥ 0  are assumed to be mutually independent (see
[27, 28]). Since stochastic fuctuation of interest cannot be
large in reality, and for simplicity, we might as well assume
that δ ≥ λ∗(e− α − 1) + β2/2.

In the setting of surplus processes without dividend
strategy, [28–30] and the references therein generalized the
known results on the expected discounted penalty function
with constant discount rate in [1]. Li et al. [30] provided the
frst systematic numerical study on, via the popular Fourier-
cosine method, fnite-time expected discounted penalty
functions with the risk process being driven by a generic
Lévy subordinator.

Te expected discounted penalty function m(u) is
a function of the initial surplus U0 � u≥ 0. Many recent
research studies on ruin-related quantities can be rooted to
the expected discounted penalty function with constant
discount rate, i.e., RT � δT. For example, by setting
w(x1, x2) ≡ 1 and δ � 0, the expected discounted penalty
function m(u) reduces to the ruin probability as follows:

ϕ(u) � Ε I(T<∞) |U0 � u  � Pr T<∞| U0 � u . (3)

Particularly, the frst-step analysis for the expected
discounted penalty function was adopted in [1] to derive
a defective renewal equation, from which explicit solutions
could be obtained. In the classical compound Poisson risk
model without dividend strategy, Gerber and Shiu [1] gave
the integrodiferential equation, the renewal equation, and
the asymptotic formula for the expected discounted penalty
function in the setting that δ ≥ 0, α � 0, β � 0, i.e., Rt � δt,
andWang and Ling [28] gave these results in the setting that
δ ≥ 0, α≥ 0, β≥ 0, i.e., Rt � δt + αPt + βBt. In this paper, we
derive the integrodiferential equation and the renewal
equation for the expected discounted penalty function m(u)

of (2) under the risk model (1) with a threshold dividend
strategy and a random discount factor e− Rt , where
Rt � δt + αPt + βBt, δ ≥ 0, α≥ 0, β≥ 0, and also give a remark
on the asymptotic. In order to efciently obtain numerical
results, physics-informed neural network (PINN) is used to
give the numerical solutions of the expected discounted
penalty function in some special cases of the penalty at ruin
for the frst time in risk theory.

2. Integrodifferential Equation for the Expected
Discounted Penalty Function

In this section, we derive an integrodiferential equation for
the expected discounted penalty function m(u) by utilizing
the strong Markov property of the Poisson process at claim
instants.

Clearly, the expected discounted penalty function m(u)

behaves diferently, depending on whether the initial surplus
u is below or above the barrier level b. Hence, we write

m(u) �
m1(u), 0≤ u≤ b,

m2(u), u> b.
 (4)

Proposition 1. Te expected discounted penalty function
m(u) satisfes the following integrodiferential equation for
0≤ u<∞:

m1′(u) �
λ + δ − λ∗ e

− α
− 1(  − β2/2

c1
m1(u) −

λ
c1


u

0
m1(u − x)f(x)dx

−
λ
c1


∞

u
w(u, x − u)f(x)dx, 0≤ u≤ b,

(5)

m2′(u) �
λ + δ − λ∗ e

− α
− 1(  − β2/2

c2
m2(u) −

λ
c2


u

0
m(u − x)f(x)dx

−
λ
c2


∞

u
w(u, x − u)f(x)dx, u> b,

(6)

where

Ut

b

u UT−

t

0 T

UT

rate c1 rate c2

Figure 1: A graphical representation of a sample path of the
surplus process.

Journal of Mathematics 3




u

0
m(u − x)f(x)dx � 

u− b

0
m2(u − x)f(x)dx

+ 
u

u− b
m1(u − x)f(x)dx, u> b.

(7)

Proof. For 0≤ u≤ b, we condition on the time T1 and the
amount X1 of the frst claim. Contingent on this time T1 of
the frst claim, there are two options: the frst claim occurs
before the time t0 � (b − u)/c1 when the surplus has attained
the barrier level, i.e., u + c1t0 � b or it occurs after attaining
the barrier. When we consider the amount X1 of the frst
claim, there are two possibilities as well: after it, the surplus

process Ut; t≥ 0  starts all over again with new initial
surplus or the frst claim leads to ruin.

It needs to distinguish between two cases. First,
0≤T1 ≤ t0 � (b − u)/c1 and the surplus has not yet reached
the barrier b. In this case, the surplus immediately before the
time T1 is u + c1T1. Second, T1 > t0 � (b − u)/c1 that is no
claim occurs before the surplus exceeds the barrier b. In this
case, the surplus immediately before time T1 is UT1

� b +

c2(T1 − t0) and there are three possibilities at time T1 for the
amount X1 of the frst claim, that is more than
UT1

� b + c2(T1 − t0), less than UT1
− b � c2(T1 − t0), or

between UT1
− b and UT1

.
In view of the strong Markov property of the surplus

process Ut; t≥ 0  at claim instants and total expectation
formula, for 0≤ u≤ b, we obtain

m(u) � m1(u) � 
t0

0
Ε e

− Rt  
u+c1t

0
m1 u + c1t − x( dF(x) + 

∞

u+c1t
w u + c1t, x − u − c1t( dF(x) λe

− λtdt

+ 
∞

t0

Ε e
− Rt  

c2 t− t0( )

0
m2 b + c2 t − t0(  − x( dF(x) λe

− λtdt

+ 
∞

t0

Ε e
− Rt  

b+c2 t− t0( )

c2 t− t0( )
m1 b + c2 t − t0(  − x( dF(x) λe

− λtdt

+ 
∞

t0

Ε e
− Rt  

∞

b+c2 t− t0( )
w b + c2 t − t0( , x − b − c2 t − t0( ( dF(x) λe

− λtdt,

(8)

where

t0 �
b − u

c1
,

Ε e
− Rt  � e

− δtΕ e
− αPt Ε e

− βBt  � e
− δt

e
λ∗t e− α− 1( )

e
β2t/2

.

(9)

Letting k(t) � e− (λ+δ− λ∗(e− α− 1)− β2/2)t leads to

m1(u) � λ
t0

0
k(t) 

u+c1t

0
m u + c1t − x( dF(x) + 

∞

u+c1t
w u + c1t, x − u − c1t( dF(x) dt

+ λ
∞

t0

k(t) 
b+c2 t− t0( )

0
m b + c2 t − t0(  − x( dF(x) dt

+ λ
∞

t0

k(t) 
∞

b+c2 t− t0( )
w b + c2 t − t0( , x − b − c2 t − t0( ( dF(x) dt.

(10)

We then get
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m1(u) � λ
t0

0
k(t) g u + c1t(  + h u + c1t( ( dt

+ λ
∞

t0

k(t) g b + c2 t − t0( (  + h b + c2 t − t0( ( ( dt, 0≤ u≤ b,

(11)

where

g(y) � 
y

0
m(y − x)f(x)dx,

h(y) � 
∞

y
w(y, x − y)f(x)dx,

(12)

where h(y) is a function which is independent of b

and m(u).
We write the constant number λ + δ − λ∗ (e− α − 1) −

β2/2 as τ. Changing variables in (11) by s � u + c1t and s �

b + c2(t − t0) results in

m1(u) �
λ
c1

e
τu/c1 

b

u
e

− τs/c1(g(s) + h(s))ds

+
λ
c2

e
τu/c1 

∞

b
e

− τ s/c2− b/c2+b/c1( )(g(s)

+ h(s))ds, 0≤ u≤ b.

(13)

By diferentiating both sides of the equation (13) with
respect to u, we obtain

m1′(u) �
λτ
c
2
1
e
τu/c1 

b

u
e

− τs/c1(g(s) + h(s))ds −
λ
c1

(g(u) + h(u))

+
λτ

c1c2
e
τu/c1 

∞

b
e

− τ s/c2− b/c2+b/c1( )(g(s) + h(s))ds

�
λ + δ − λ∗ e

− α
− 1(  − β2/2

c1
m1(u) −

λ
c1

g(u) −
λ
c1

h(u), 0≤ u≤ b.

(14)

So, equation (5) is correct.
For u> b, the surplus immediately before time T1 of the

frst claim is UT1
� u + c2T1, and at time T1, the surplus may

be less than 0, more than b, or between 0 and b. In the same
way as deriving (5), it is obvious that

m(u) � m2(u) � 
∞

0
Ε e

− Rt  
u+c2t− b

0
m2 u + c2t − x( dF(x) λe

− λtdt

+ 
∞

0
Ε e

− Rt  
u+c2t

u+c2t− b
m1 u + c2t − x( dF(x) λe

− λtdt

+ 
∞

0
Ε e

− Rt  
∞

u+c2t
w u + c2t, x − u − c2t( dF(x) λe

− λtdt

� λ
∞

0
e

− λ+δ− λ∗ e− α− 1( )− β2/2( )t


u+c2t− b

0
m2 u + c2t − x( dF(x) dt

+ λ
∞

0
e

− λ+δ− λ∗ e− α− 1( )− β2/2( )t


u+c2t

u+c2t− b
m1 u + c2t − x( dF(x) dt

+ λ
∞

0
e

− λ+δ− λ∗ e− α− 1( )− β2/2( )t

∞

u+c2t
w u + c2t, x − u − c2t( dF(x) dt, u> b.

(15)

We then get
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m2(u) � λ
∞

0
e

− λ+δ− λ∗ e− α− 1( )− β2/2( )t
g u + c2t(  + h u + c2t( ( dt, u> b, (16)

where

g(y) � 
y

0
m(y − x)f(x)dx,

h(y) � 
∞

y
w(y, x − y)f(x)dx.

(17)

Note that τ � λ + δ − λ∗(e− α − 1) − β2/2. Substituting
u + c2t with s in (16) yields

m2(u) �
λ
c2

e
τu/c2 

∞

u
e

− τs/c2(g(s) + h(s))ds, u> b, (18)

and then diferentiating both sides of the equation (18) with
respect to u yields the integrodiferential equation (6).

m2′(u) �
λ + δ − λ∗ e

− α
− 1(  − β2/2

c2
m2(u)

−
λ
c2

g(u) −
λ
c2

h(u), u> b,

(19)

where

g(u) � 
u

0
m(u − x)f(x)dx � 

u− b

0
m2(u − x)f(x)dx

+ 
u

u− b
m1(u − x)f(x)dx, u> b,

(20)

by which the proof is concluded. □

2.1. Remarks

(1) Te integrodiferential equation (5) for m1(u) does
not involve m2(u) but the integrodiferential equa-
tion (6) for m2(u) incorporates m1(u).

(2) Equations (13) and (18) show that m(u) is contin-
uous, and especially, for u � b, m1(b) � m2(b+), i.e.,
m1(b) � limu⟶b+ m2(u).

(3) We examine m′(u) when u � b. However, the same
is not true for m′(u) at u � b. To see this, let u⟶ b+

in (6) and employ the integrodiferential form of
m1(u) in (5) afterwards. We then have

m2′(b+) � lim
u⟶b+

m2′(u) �
λ + δ − λ∗ e

− α
− 1(  − β2/2

c2
m2(b+) −

λ
c2


b

0
m1(b − x)f(x)dx −

λ
c2

h(b)

�
λ + δ − λ∗ e

− α
− 1(  − β2/2

c2
m1(b) +

c1

c2
m1′(b− ) −

λ + δ − λ∗ e
− α

− 1(  − β2/2
c1

m1(b) .

(21)

Tis results in c1m1′(b− ) � c2m2′(b+), where m1′(b− ) is
a left-derivative and m2′(b+) is a right-derivative. Tus, the
expected discounted penalty function m(u) at u � b is
continuous but not diferentiable.

3. Renewal Equation for the Expected
Discounted Penalty Function

In this section, we frst obtain a renewal equation for m2(u),
u> b. Finally, the asymptotic formula for m(u) is derived by
virtue of this renewal equation.

Let
mρ(u) � e

− ρu
m(u),

mρ,1(u) � e
− ρu

m1(u),

mρ,2(u) � e
− ρu

m2(u),

(22)

where ρ is the unique nonnegative solution to the Lundberg
equation of ξ:

− c2ξ + λ + δ − λ∗ e
− α

− 1(  −
β2

2
� λ
∞

0
e

− ξx
f(x)dx.

(23)

From

d

dξ

∞

0
e

− ξx
f(x)dx � − 

∞

0
e

− ξx
xf(x)dx< 0,

d
2

dξ2

∞

0
e

− ξx
f(x)dx � 

∞

0
e

− ξx
x
2
f(x)dx > 0,

(24)

it is clear that equation (23) has a unique nonnegative root
and a unique negative root which are denoted as ρ≥ 0 and
− R< 0, respectively, because of δ ≥ λ∗(e− α − 1) + β2/2. See
[28] and Figure 2 for the solutions to equation (23) which
will be used later on.

Proposition 2. Te expected discounted penalty function
m2(u) satisfes the following renewal equation for u> b:
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c2m2(u) � λ
b

0

∞

u− y
e
ρ(u− x− y)

f(x)dx m1(y)dy

+ λ
u

b

∞

u− y
e
ρ(u− x− y)

f(x)dx m2(y)dy + λ
∞

u
e
ρ(u− x)

h(x)dx,

(25)

where h(x) � 
∞
x

w(x, y − x)f(y)dy. Proof. For u> b, multiplying both sides of (6) with e− ρu and
applying the product rule for diferentiation, we get

c2mρ,2′(u) � − c2ρ + λ + δ − λ∗ e
− α

− 1(  −
β2

2
 mρ,2(u) − λ

u− b

0
mρ,2(u − x)e

− ρx
f(x)dx

− λ
u

u− b
mρ,1(u − x)e

− ρx
f(x)dx − λe

− ρu
h(u),

(26)

where h(u) � 
∞
u

w(u, x − u)f(x)dx. By (23), then equation (26) reduces to

c2
λ

mρ,2′(u) � mρ,2(u) 
∞

0
e

− ρx
f(x)dx − 

u− b

0
mρ,2(u − x)e

− ρx
f(x)dx

− 
u

u− b
mρ,1(u − x)e

− ρx
f(x)dx − e

− ρu
h(u)

� mρ,2(u) 
∞

0
e

− ρx
f(x)dx − 

u

b
mρ,2(x)e

− ρ(u− x)
f(u − x)dx

− 
b

0
mρ,1(x)e

− ρ(u− x)
f(u − x)dx − e

− ρu
h(u).

(27)

For s≥ b, we integrate both sides of the equation (27)
from u � b to u � s, and then have

λ∫∞
0 e−ξx f (x) dx

λ

−R 0 ρ ξ

–c2
 ξ + λ + δ – λ* (e–α –1) – β2/2

λ + δ – λ* (e–α –1) – β2/2

Figure 2: Te two roots of equation (23).
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c2

λ
mρ,2(s) − mρ,2(b)  � 

s

b

∞

0
e

− ρx
f(x)dx mρ,2(u)du − 

s

b


u

b
mρ,2(x)e

− ρ(u− x)
f(u − x)dx du

− 
s

b


b

0
mρ,1(x)e

− ρ(u− x)
f(u − x)dx du − 

s

b
e

− ρu
h(u)du

� 
s

b

∞

0
e

− ρx
f(x)dx mρ,2(u)du − 

s

b


s

x
e

− ρ(u− x)
f(u − x)du mρ,2(x)dx

− 
b

0


s

b
e

− ρ(u− x)
f(u − x)du mρ,1(x)dx − 

s

b
e

− ρu
h(u)du

� 
s

b

∞

0
e

− ρx
f(x)dx mρ,2(u)du − 

s

b


s− u

0
e

− ρx
f(x)dx mρ,2(u)du

− 
b

0


s− u

b− u
e

− ρx
f(x)dx mρ,1(u)du − 

s

b
e

− ρu
h(u)du.

(28)

It follows that

c2

λ
mρ,2(s) − mρ,2(b)  � 

s

b

∞

s− u
e

− ρx
f(x)dx mρ,2(u)du

− 
b

0


s− u

b− u
e

− ρx
f(x)dx mρ,1(u)du − 

s

b
e

− ρu
h(u)du.

(29)

By letting s⟶∞, the frst term on both sides of (29)
vanishes. Tus, we have

c2

λ
mρ,2(b) � 

b

0

∞

b− u
e

− ρx
f(x)dx mρ,1(u)du

+ 
∞

b
e

− ρu
h(u)du.

(30)

By (29) and (30), we obtain
c2

λ
mρ,2(s) � 

s

b

∞

s− u
e

− ρx
f(x)dx mρ,2(u)du

+ 
b

0

∞

s− u
e

− ρx
f(x)dx mρ,1(u)du

+ 
∞

s
e

− ρu
h(u)du.

(31)

Applying
mρ,1(s) � e

− ρs
m1(s),

mρ,2(s) � e
− ρs

m2(s),
(32)

and multiplying (31) with eρs, it follows that
c2

λ
m2(s) � 

s

b

∞

s− u
e
ρ(s− x− u)

f(x)dx mρ(u)du

+ 
b

0

∞

s− u
e
ρ(s− x− u)

f(x)dx mρ(u)du

+ 
∞

s
e
ρ(s− u)

h(u)du.

(33)

Changing variables in (33) yields

c2

λ
m2(u) � 

u

b

∞

u− y
e
ρ(u− x− y)

f(x)dx m2(y)dy

+ 
b

0

∞

u− y
e
ρ(u− x− y)

f(x)dx m1(y)dy

+ 
∞

u
e
ρ(u− x)

h(x)dx, u> b,

(34)

which is the required result. □
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3.1. Remarks

(1) We know m(u) consists of two parts: m1(u) and
m2(u). To determine m(u), we consider m1(u)

which have been incorporated in equation (25) for
m2(u). It is known from [4] that the general solution
of m1(u) is of the following form:

m1(u) � m∞(u) + ηv(u), 0≤ u≤ b. (35)

Here, η is an arbitrary constant to be determined; the
function m∞(u) is the expected discounted penalty
function with no dividend strategy, that is, the ex-
pected discounted penalty function with barrier level
∞. As shown in [1, 28], the function m∞(u) is the
solution to the following renewal equation and its
applications have been studied extensively,

c1m∞(u) � λ
u

0

∞

u− y
e
ρ(u− x− y)

f(x)dx m∞(y)dy + λ
∞

u
e
ρ(u− x)

h(x)dx. (36)

Here, h(x) � 
∞
x

w(x, y − x)f(y)dy.
Te second function v(u) is a nontrivial solution to
the following homogeneous integrodiferential
equation:

v
′
(u) �

λ + δ − λ∗ e
− α

− 1(  − β2/2
c1

v(u)

−
λ
c1


u

0
(u − x)f(x)vdx,

(37)

with initial condition defned (without loss of gen-
erality) to be v(0) � 1.

Te constant η, which we specify by implementing
equation (35) and returning to (25), satisfy

m∞(b) + ηv(b) � m1(b) � lim
u⟶b+

m2(u)

�
λ
c2


b

0

∞

b− y
e
ρ(b− x− y)

f(x)dx  m∞(y) + ηv(y)( dy +
λ
c2


∞

b
e
ρ(b− x)

h(x)dx.

(38)

Tus,

η �
λ/c2 

b

0 
∞
b− y

e
ρ(b− x− y)

f(x)dx m∞(y)dy + λ/c2 
∞
b

e
ρ(b− x)

h(x)dx − m∞(b)

v(b) − λ/c2 
b

0 
∞
b− y

e
ρ(b− x− y)

f(x)dx v(y)dy
. (39)

(2) Equation (25) may be restated as

c2m(u) � λ
u

0

∞

u− y
e
ρ(u− x− y)

f(x)dx m(y)dy

+ λ
∞

u
e
ρ(u− x)

h(x)dx, u> b.

(40)

Since equation (40) for m2(u) has the exact same form as
equation (3.4) of [28], we may apply the same approach as
far as [28] obtained the asymptotic formula (3.18) of [28],
and then we have an asymptotic formula for the expected
discounted penalty function m(u)

m(u) ∼
λ
∞
0 
∞
0 e

Rx
− e

− ρx
 w(x, y)f(x + y)dx dy

λ
∞
0 e

Rx
xf(x)dx − c2

e
− Ru

, for u⟶∞, (41)
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where ρ and − R are the unique nonnegative root and the
unique negative root of equation (23), respectively, and
the notation φ(u) ∼ ψ(u), for u⟶∞, means
limu⟶∞φ(u)/ψ(u) � 1.

4. Numerical Results

In this section, we use the physics-informed neural network
(PINN) method to fnd numerical solutions of the inte-
grodiferential equation (5) for the expected discounted
penalty function m(u) in three special cases of the penalty at
ruin (see [13–16, 19–21]). In addition, we also give as-
ymptotic numerical solutions of (6) for m(u) by the as-
ymptotic formula (41).

4.1. Introduction to the Algorithm. Let us start by concen-
trating on the calculation of numerical solutions of the
integrodiferential equation:

λ0m(u) + λ1m
′
(u) + λ2m

″
(u)

� 
u

0
m(u − x)f(x)dx + h(u), u≥ 0,

(42)

where m(u) denotes the hidden solution, λ0, λ1, λ2 are the
constants, and both of f(x) and h(u) are the nonnegative
given functions.

Te frst integral on the right-hand side of (42) is the
convolution (m∗f)(u). We assume that m(u) satisfes the
integrodiferential equation (42) with an initial and
boundary condition of m(u) � l(u), where l(u) is a given
function.

We defne the function g(u) as follows:

g(u) � λ0m(u) + λ1m
′
(u) + λ2m

″
(u)

− (m∗f)(u) − h(u), u≥ 0.
(43)

Ten, we chose to jointly approximate the latent function
m(u) and the convolution (m∗f)(u) by a M-layer fully-
connected neural network with N neurons per layer, where
the neural network takes u as an input and has two outputs.
Let m(u; θ) and ( m∗f)(u; θ) be the two outputs of the
neural network that are used to approximate the real so-
lution m(u) of equation (42) and the convolution
(m∗f)(u), respectively, where θ is the random initialized
parameter which represents the weights and biases of the
neural network. Tis prior assumption along with equation
(43) result in a physics-informed neural network (PINN)
that takes u as an input and outputs g(u; θ) which is used to
approximate g(u) by (43). Tis network (PINN) can be
derived by applying the automatic diferentiation technique
for the diferentiating compositions of functions and by
applying the output ( m∗f)(u; θ) for the integral of
functions and has the same parameters θ as the fully-
connected neural network representing m(u) and
(m∗f)(u), albeit with diferent activation functions due to
the action of the integrodiferential operator. Te shared
parameters θ between the two neural networks can be
learned by minimizing the following mean squared error
loss function.

Te mean squared error loss function is defned as
follows:

Loss � Lm + Lg, (44)

where

Lm �
1

Nm



Nm

i�1
m u

i
m  − l

i



2
,

Lg �
1

Ng



Ng

i�1
g u

i
g 




2

�
1

Ng



Ng

i�1
λ0 m u

i
g  + λ1 m

′
u

i
g  + λ2 m

″
u

i
g  − ( m∗f) u

i
g  − h u

i
g 




2
.

(45)

Here, ui
g 

Ng

i�1 are the points in the interior of the
computational domain for g(u). ui

m, li 
Nm

i�1 denote the initial
and boundary training data on m(u) and account for both
boundary and initial condition. Calculating Lg requires the
derivatives m′(u), m″(u) of the output m(u) of the fully-
connected neural network and the output ( m∗f)(u).

In the above PINN, an activation function should
be employed to train the fully-connected neural network
in order to fnd the relationship between the input
and output. We use the hyperbolic tangent function

tanh(x) � (ex − e− x)/(ex + e− x) as the activation function.
Te principle for this physics-informed neural network
methodology is minimizing the loss function Loss by training
the neural networks so that the output m(u) of the fully-
connected neural network approaches the real solution of the
equation (42). Once the training is complete, extrapolation is
performed and the numerical solution of equation (42) is
obtained. Te structure of the proposed PINN is illustrated in
Figure 3, and the workfow of realizing a numerical solution of
equation (42) using the PINN is as follows:
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Step 1: Generate the initial and boundary training data
on m(u) and the collocation points in the interior of the
computational domain for g(u). Te total number Nm

of training data is relatively small (a few dozen up to
a few hundred points).
Step 2: Specify the optimizer, the tolerance, the number
of iterations.
Step 3: Construct a fully-connected neural network
with random initialized parameters θ. Te model
trained consists of a series of fully connect operations
with a tan h operation between each one. Specify the
number M of fully connect operations and the number
N of neurons for each fully connect operation. Te frst
fully connect operation has an input channel corre-
sponding to the input u. Te last fully connect oper-
ation has two outputs m(u; θ) and ( m∗f)(u; θ).
Defne the parameters for each of the operations.
Initialize the parameters for the frst fully connect
operation, for each of the remaining intermediate fully
connect operations, and for the fnal fully connect
operation, respectively.
Step 4: Construct a physics-informed neural network
g(u; θ) by substituting m(u; θ) and ( m∗f)(u; θ) into
the governing equation via automatic diferentiation
and arithmetic operations.

Step 5: Create the loss function Loss as shown in
equation (44)
Step 6: Train the fully-connected neural network to fnd
the best parameters θ by minimizing the loss
function Loss.
Step 7: Obtain the numerical solution by substituting
the resultant parameters θ into the neural network
m(u; θ).

Te rest of this section is organized as follows. In the rest
of Section 4.1, we use a numerical example to demonstrate
the efectiveness and accuracy of the proposed PINNmethod
for obtaining the numerical solution of the integrodifer-
ential equation. Section 4.2 presents two numerical examples
of solving equations (5) and (6), respectively, where we again
use the PINN method in the frst numerical example. In
particular, since the integrodiferential equations in these
examples have only initial condition and no boundary
condition, we assume that the boundary condition is m(u) �

e− u for the PINN.
By conditional probability and total probability formula,

Dickson [31] obtained that the ruin probability ϕ(u), in the
Sparre Andersen risk model with a probability density
function k(t) � λ2te− λt of the interclaim time, satisfes the
integrodiferential equation along with initial condition
which is given by

c
2ϕ″(u) − 2λcϕ′(u) + λ2ϕ(u) � λ2 

u

0
ϕ(u − t)f(t)dt + λ2[1 − F(u)], (46)

c
2
s0ϕ(0) � c

2
s0 − 2λc + λ2μ, (47)

where s0 > 0 is the solution of the algebraic equation

u

m̂

Lm

Lg

σ

σ

σ

...

σ

σ

σ

...

m̃ * f

m̂, m̂´, m̂˝

Loss = Lm + LgLoss < ε ?
No

Yes

Updating PINN paramenters

Done

Input Layer Hidden Layers Output Layer

Fully-connected network Physics-informed network

Figure 3: Te PINN framework for solving the integrodiferential equation.
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c
2
s
2

− 2λcs + λ2 � λ2 
+∞

0
e

− sxdF(x), (48)

and F(x) is the individual claim amount distribution
function that has a positive fnite mean μ. In the case of the
exponential distribution F(x) � 1 − e− cx, by equations (46)
and (47), Dickson [31] obtained an explicit solution of the
ruin probability ϕ(u), which is expressed as follows:

ϕ(u) �
2λ2e2λ− cc−

������������
(2λ− cc)2+8cλc− 4λ2

√
/2cu

c
2
c
2

+ 2cλc + cc

��������������������

(2λ − cc)
2

+ 8cλc − 4λ2
 , u≥ 0.

(49)

We take advantage of the package MATLAB R2022b to
examine the efectiveness and accuracy of the PINN
method for obtaining the numerical solution of equation
(46). Suppose λ � 1, c � 1, c � 1.5. By (49), the exact so-
lution of the ruin probability is ϕ(u) � 0.2092e− 0.7908u.
Given the computational domain [0,50] of u, we select 25
equal points to enforce the initial condition ϕ(0) � 0.2092,
select 25 equally spaced points to enforce the boundary
condition m(u) � e− u, and randomly select 10,000 points
across the computational domain to enforce the outputs of
the network to fulfll equation (46). Tis dataset is then
used to train a 9-layer fully-connected neural network with
20 neurons and a hyperbolic tangent activation function
per hidden layer by minimizing the mean square error loss
function Loss of (44) using the L-BFGS optimizer (see
[16]). Ten, we obtain a numerical solution of equation
(46) by the above PINN.

Te change in the value of the loss function Loss is
shown in Figure 4. Figure 5 displays the results of our
experiment and shows a comparison between of the exact
solution and the numerical solution of equation (46).
Figure 6 and Table 1 give the errors of approximate so-
lution obtained by using the PINN. Te results show that
the numerical solution is in good agreement with the exact
solution when the initial surplus u takes on diferent
values, in particular, when the initial surplus u is greater
than 10.

4.2. Numerical Solutions of the Integrodiferential Equation

Example 1. Suppose c1 � 0.6, c2 � 0.4, λ � 0.5, δ � 0.06,

λ∗ � 0.125, α � 0.01, β � 0.2, and f(x) � e− x. Solving
equation (23) leads to ρ � 0.7310 and − R � − 0.2779. We use
the above PINN method to obtain the numerical solution of
equation (5) for m(u), 0≤ u≤ b, and then get the following
results:

(1) Choose w(x, y) ≡ 1. For this case, the expected
discounted penalty function

m(u) � E e
− δT+αPT+βBT( )I(T<∞) |U0 � u , (50)

is the extension of the Laplace transform of the time of
ruin. By equations (35)–(39), the initial condition of
equation (5) is m(0) � 0.7221. Te change in the loss
function is shown in Figure 7(a), and the numerical
solution of m(u) is shown in Figure 8(a), respectively.

(2) Choose w(x, y) � e0.01x. For this case,
m(0) � 0.7263. Te change in the loss function is
shown in Figure 7(b), and the numerical solution of
m(u) is shown in Figure 8(b), respectively.

(3) Choose w(x, y) � (1 − e1− y)∨0, which was inter-
preted as the payof at exercise of a perpetual
American put option by Gerber and Shiu [1]. For this
case, m(0) � 0.1328. Te change in the loss function
is shown in Figure 7(c), and the numerical solution
of m(u) is shown in Figure 8(c), respectively.

Example 2. Suppose c2 � 0.4, λ � 0.5, δ � 0.06, λ∗ � 0.125,

α � 0.01, β � 0.2 and the individual claim amount distri-
bution is Γ(a, c) with density function

f(x) � F
′
(x) �

c
a
e

− cx
x

a− 1

Γ(a)
, x≥ 0, (51)

where a � c � 0.01 (see Chapter 1, Examples 18 and 19 of
[24]).

Solving equation (23) leads to ρ � 0.136193 and
− R � − 0.00999827. Tese apply to the situation of Propo-
sition 1. Hence,

m(u) � 0.0120055
u

0

∞

u− y
e

− 0.146193x
x

− 0.99dx e
0.136193(u− y)

m(y)dy

+ 0.0120055
∞

u

∞

y
w(y, x − y)e

− 0.01x
x

− 0.99dx e
0.136193(u− y)dy, u> b.

(52)

For the asymptotics of m(u), u> b, we test the following
three cases:

(1) Choose w(x, y) ≡ 1. For this case, it follows from
(41) that
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m(u) ∼ 0.00112992e
− 0.00999827u

. (53)

(2) Choose w(x, y) � e0.0001x. For this case, it follows
from (41) that

m(u) ∼ 0.0455311e
− 0.00999827u

. (54)

(3) Choose w(x, y) � (1 − e1− y)∨0, For this case, it
follows from (41) that

Table 1: Errors of the numerical solution.

u Predicted True Errors
0.0000 0.2392 0.2092 0.0300
1.0000 0.0945 0.0949 0.0004
2.0000 0.0399 0.0430 0.0031
3.0000 0.0199 0.0195 0.0004
4.0000 0.0100 0.0088 0.0012
5.0000 0.0041 0.0040 0.0001
6.0000 0.0006 0.0018 0.0012
7.0000 0.0000 0.0008 0.0008
8.0000 0.0000 0.0004 0.0004
9.0000 0.0000 0.0002 0.0002
10.0000 0.0000 0.0001 0.0001
11.0000 0.0000 0.0000 0.0000
12.0000 0.0000 0.0000 0.0000
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Figure 7: Variation of the loss function Loss with diferent penalties at ruin ((a) w(x, y) ≡ 1, (b) w(x, y) � e0.01x, and (c)
w(x, y) � (1 − e1− y)∨0).
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Figure 8: Numerical solution of m(u) with diferent penalties at ruin ((a) w(x, y) ≡ 1, (b) w(x, y) � e0.01x, and (c) w(x, y) � (1 − e1− y)∨0).
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m(u) ∼ 0.00109989e
− 0.00999827u

. (55)

We take advantage of the package Mathematica 12.0 to
examine the asymptotic formula (41). Te numerical results
of asymptotics of m(u) are copied to Table 2.

5. Conclusion

In this paper, we derive an integrodiferential equation and
a defective renewal equation for the expected discounted
penalty function with threshold dividend strategy and sto-
chastic discount rate and then fnd the solutions of the
equations. We creatively propose the PINN method for
fnding the numerical solution of the integrodiferential
equation. Given initial and boundary conditions, this
method allows fnding the numerical results of the expected
discounted penalty function quickly. Te example in this
paper demonstrates the efectiveness of the PINNmethod in
which the numerical solution is very close to the exact
solution. We hope to apply this method to fnd numerical
solutions of the expected discounted penalty function where
the individual claim amount distribution is arbitrary in the
future.
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