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In this paper, we study an approximate bifatness of l1(S), where S is a Cliford semigroup. Indeed, we show that a Cliford
semigroup algebra l1(S) is approximately bifat if and only if every maximal subgroup of S is amenable, E(S) is locally fnite, and
l1(S) has an approximate identity in c00(S). Moreover, we prove that l1(S) is approximately bifat if and only if each maximal
subgroup of S is amenable for an inverse semigroup S such that E(S), the set of its idempotent elements, is totally ordered and
locally fnite.

1. Introduction and Preliminaries

Te homological properties of a Banach algebra such as
bifatness and biprojectivity were introduced by Helemskii
in [1]. For every semilattice semigroup S, Choi in [2] proved
that l1(S) is bifat if and only if S is uniformly locally fnite.
He also showed that l1(S) is bifat, where S is a Cliford
semigroup if and only if E(S) is uniformly locally fnite and
each maximal subgroup of S is amenable. Tis result was
extended for every inverse semigroup S by Ramsden in [3].
Indeed, he proved that l1(S) is bifat if and only if S is
a uniformly locally fnite semigroup and the maximal
subgroup of S at p ∈ E(S) is amenable. Note that, in the
presence of a bounded approximate identity, a Banach al-
gebra A is bifat if and only if A is amenable, that is, there
exists a bounded net (mα) in A⊗ pA such that

a · mα − mα · a⟶ 0,

πA mα( 􏼁a⟶ a(∀a ∈ A),
(1)

where πA: A⊗ pA⟶ A is the product morphism defned
by πA(a⊗ b) � ab, where a⊗ b ∈ A⊗ pA. Te projective

tensor product A⊗ pA for a Banach algebra A is a Banach
A-bimodule with the following actions:

a · (b⊗ c) � ab⊗ c,

(b⊗ c) · a � b⊗ ca(a, b, c ∈ A).
(2)

Extending homological notions of Banach homology in
the terms of “approximation” gave outstanding results in
abstract harmonic analysis. Samei et al. introduced a concept
of approximately bifat for Banach algebras. A Banach al-
gebra A is approximately bifat, if there is a net of bounded
A-bimodule morphisms θλ: (A⊗ pA)∗ ⟶ A∗ such that

W
∗
OT − lim

λ
θλ°π
∗
A � idA∗ , (3)

where W∗OT is the weak∗ operator topology on B(A∗) [4].
Tey proved that if an approximately bifat Banach algebra A

has an approximate identity, then A is pseudoamenable. In
fact A is pseudoamenable, if there exists a net (mα)⊆A⊗ pA

such that a · mα − mα · a⟶ 0 and πA(mα)a − a⟶ 0 for
all a ∈ A [5].

Te module cohomological properties for Banach al-
gebras, namely, module (approximate) biprojectivity and
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module (approximate) bifatness for Banach algebras which
are generalization of the classical cases, were introduced in
[6, 7]. In these papers, the authors found necessary and
sufcient conditions for l1(S) to be module approximately
biprojective and module approximately bifat, where S is an
inverse semigroup.

In this paper, for a Cliford semigroup S, we study ap-
proximate bifatness of l1(S). Indeed, for a Cliford semi-
group S, we obtain necessary and sufcient condition for
l1(S) to be approximately bifat. We also show that for an
inverse semigroup S with some mild assumptions, l1(S) is
approximately bifat if and only if each maximal subgroup of
S is amenable.

Some concepts in the semigroup theory are given here.
For more details about semigroups, see [8]. Let S be
a semigroup and letE(S) be the collection of its idempotents.
Ten, a partial order on E(S) is defned by

i≤ j⇔i � ij

� ji(i, j ∈ E(S)).
(4)

If i � j whenever i≤ j, then i ∈ E(S) is called maximal. A
commutative semigroup S is called semilattice if E(S) � S.
Te natural numbers N with the semigroup operations
m∗1n � min m, n{ } or m∗2n � max m, n{ } becomes
a semilattice.

Suppose that S is a discrete semigroup. If for each s ∈ S

there is a unique element s∗ ∈ S such that s � ss∗s and
s∗ � s∗ss∗, then S is called an inverse semigroup. For an
inverse semigroup S, there is a partial order on S defned by
s1 ≤ s2⇔s1 � s1s1

∗s2, where s1, s2 ∈ S. We set
(s] � t ∈ S: t≤ s{ }, where s ∈ S. We remind that S is called
locally fnite, if |(s]| is fnite, for all s ∈ S.

Let S be an inverse semigroup. Ten,
Gp � s ∈ S: ss∗ � s∗s � p􏼈 􏼉 is called the maximal subgroup
of S at p. An inverse semigroup S is called a Cliford
semigroup if we have ss∗ � s∗s for every s ∈ S.

2. Approximately Biflat Property of Some
Inverse Semigroup Algebras

In this section, we study approximate bifatness of some
semigroup algebras.

Defnition 1. Let A be a Banach algebra and let B be a closed
subalgebra of A. Ten, B is a retract of A if there is a con-
tinuous homomorphism T: A⟶ B such that its restriction
to B is the identity map on B.

Lemma 2. Suppose that A is a Banach algebra and B is
a retract of A. Ten, B is approximately bifat if A is ap-
proximately bifat

Proof. Since A is approximately bifat, there is a net of
bounded A-bimodule morphism θλ: (A⊗ pA)∗ ⟶ A∗

such that W∗OT − limλθλ°π∗A � idA∗ . By assumption, B is
a retract of A. So, there is a continuous homomorphism
η: A⟶ B such that its restriction to B is identity map on B.
Now, we defne

􏽥θλ: B⊗ pB􏼐 􏼑
∗
⟶ B

∗
, (5)

by 􏽥θλ � (iB)∗°θλ°(η⊗ η)∗, where iB is the inclusionmap from
B into A. Obviously, 􏽥θλ is a net of bounded B-bimodule
morphisms. We show that W∗OT − limλ

􏽥θλ
°π∗B � idB∗ . Let

ψ ∈ B∗ and b ∈ B. Ten, we have

lim
λ
〈b, 􏽥θλ

°π∗B(ψ)〉 � lim
λ
〈b, iB( 􏼁

∗°θλ°(η⊗ η)
∗°π∗B(ψ)〉.

(6)

Since (η⊗ η)∗°π∗B � π∗A, we have

lim
λ
〈b, iB( 􏼁

∗°θλ°(η⊗ η)
∗°π∗B(ψ)〉 � lim

λ
〈b, iB( 􏼁

∗°θλ°π
∗
A(ψ)〉

�〈b, iB( 􏼁
∗°idA∗(ψ)〉

� 〈b,ψ〉.

(7)

Hence, W∗OT − limλ
􏽥θλ
°π∗B � idB∗ , and so, B is ap-

proximately bifat. □

Lemma 3. Let A be an approximately bifat Banach algebra
and let K be a closed ideal of A. Ten, K is approximately
bifat if K has an identity.

Proof. Since A is approximately bifat, there exists a net
θλ: (A⊗ pA)∗ ⟶ A∗ such that W∗OT − limλθλ°π∗A � idA∗ .
For all λ ∈ I, we defne σλ � e · θλ · e, where e denotes the
identity of K. Certainly, (σλ)λ∈I satisfes the defnition of
approximate bifatness of K. □

Theorem 4. Suppose that S � ∪ p∈E(S)Gp is a Cliford

semigroup and E(S) is locally fnite. If l1(S) is approximately
bifat, then Gp is amenable for all p ∈ E(S). Te converse is
true, whenever l1(S) has an approximate identity in c00(S).

Proof. Let l1(S) be approximately bifat. We regard the
l1-graded Banach algebra Bp � l1 − ⊕q∈(p]l

1(Gq) for all
p ∈ E(S) [9]. Obviously,Bp is a closed ideal of l1(S) and by
[9, Proposition 2.1] Bp is unital and so Lemma 3 implies
that Bp is approximately bifat. Since E(S) is locally fnite
and so (p] is fnite, we can imply that l1(Gq) is approxi-
mately bifat for every q ∈ (p]. Tus, by [4, Teorem 4]
follows that l1(Gq) is pseudoamenable for every q ∈ (p] and
therefore by [5, Proposition 4.1], we can deduce that Gq is
amenable for every q ∈ (p]. In particular, Gp is amenable.

Conversely, we let (eα)α∈I be an approximate identity
forl1(S) in c00(S). Ten, there is a fnite subset cα⊆E(S) for
every α ∈ I such that eα ∈Bcα

� l1 − ⊕q∈〈cα〉l
1(Gq), where

〈cα〉 � ∪ p∈cα(p]. By assumption, E(S) is locally fnite and
so by [9, Proposition 2.5] follows that Bcα

is amenable.
Suppose that Mcα

is a vertual diagonal of Bcα
. Tus, [9,

Proposition 2.1] implies that Bcα
has an identity and we

denote this identity by ecα
. Hence, we have π∗∗(Mcα

) � ecα
.

We put Mα � eα · Mcα
for all α ∈ I. Certainly, we have

Mα ∈ (Bcα
⊗ pBcα

)∗∗ . On the other hand, Bcα
is
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a complemented ideal of l1(S). Tus, we can consider
Mα ∈ (l1(S)⊗ pl1(S))∗∗ . Now, we defne ρα: l1(S)⟶
(l1(S)⊗ pl1(S))∗∗ by ρα(a) � a · Mα. It is easy to see that
(ρα)α∈I is a net of bounded l1(S)-bimodule morphism such
that for every a ∈ l1(S), we have

π ∗∗l1(S) a · Mα( 􏼁 � aπ ∗∗l1(S) Mα( 􏼁

� aeαecα

� aeα⟶ a.

(8)

It follows that l1(S) is approximately bifat. □

Remark 5. Suppose that Γ is a totally ordered set and every
nonempty subset of Γ has a least element. Ten, Γ is called
well-ordered.

Proposition  . Let S be an inverse semigroup and E(S) be
totally ordered and locally fnite. Ten, l1(S) is approximately
bifat if and only if every maximal subgroup of S is amenable.

Proof. Let l1(S) be approximately bifat. By assumption,
E(S) is totally ordered semilattice. On the other hand, E(S)

is locally fnite. It follows that E(S) is well-ordered [9,
Remark 2.10]. Now, [8,Teorem 5.5.1 and Proposition 5.5.2]
imply that every inverse semigroup with well-ordered
idempotents set is a Cliford semigroup. Tus, the pre-
vious theorem gives that every maximal subgroup of S is
amenable.

Conversely, let E(S) be locally fnite and every maximal
subgroup of S be amenable.Ten, E(S) is well-ordered by [9,
Remark 2.10]. Since E(S) is totally ordered, [10,Teorem 16]
implies that l1(S) has a bounded approximate identity. Now,
by [9, Remark 2.7 (iii)], this bounded approximate identity
could be chosen to be in c00(E(S)). By [8, Teorem 5.5.1 and
Proposition 5.5.2], we can see that S is a Cliford semigroup.
Hence, the previous theorem implies that l1(S) is approx-
imately bifat. □
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