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In present work, we describe and investigate torsion theoretic versions of δ-supplemented modules via a hereditary torsion
theory τ. With this aim, frst, we defne δτ-small submodules. On this basis, the concepts of δτ-lifting modules, δτ-supplemented
modules, and amply δτ-supplemented modules and their fundamental properties are given, respectively. Furthermore, we present
δτ-semiperfect modules and give a characterization for them via (amply) δτ-supplemented modules. Even we supply binary
relations between these new module classes.

1. Introduction

Along this work, an associative ring with a unit is denoted by
R, a unitary left R-module is denoted by W, and R-Mod is
the category of unitary left R-modules. Te symbols “≤ and
≤ ⊕ ” will denote a submodule and a direct summand of
a module, respectively.

Let us point a community of modules with ζ.Te reject of
ζ in W is described by RejW(ζ) � ∩ Ker(h) | h: W{

⟶ U for someU ∈ ζ}. Te module homomorphism
h: W⟶ U satisfes h(RejW(ζ))≤RejU(ζ). Whenever
h: W⟶ U is onto and Ker(h)⊆RejW(ζ), h(RejW (ζ)) �

RejU(ζ) is confrmed [1].
A submodule X of W is called small in W (denoted by

X⊲
�

W) if W≠X + P for every proper submodule P of W. A
submodule X of W is called essential in W (denoted by
X⊲

�
W) if the intersection of X with each submodule of W is

nonzero excluding 0. Te community of elements of W

whose annihilators are essential in RR is described as the
singular submodule of W (denoted by Z(W)). W is said to be
singular (nonsingular) whenever Z(W) � W (Z(W) � 0)

[2]. A form of small submodules via singularity was con-
tributed to the literature in [3] by Zhou. For a module W,
X≤W is said to be δ-small in W (denoted by X≪ δ W) in

case X + T � W with W/T singular implies that T � W. Let
Ω be the community of whole singular simple modules. As it
is indicated in [3], δ(W) � RejW(Ω) � ∩ X≤{

W | W/X ∈ Ω} � 􏽐 X≤W | X≪ δ W􏼈 􏼉. For X≤W, a δ-sup-
plement submodule S of X provides W � X + S and
X∩ S≪ δ S. A δ-supplemented module W is a module in
which each submodule of W is of a δ-supplement. Besides,
X≤W is said to have ample δ-supplements in W if every
submodule S of W with W � X + S involves a δ-supplement
of X in W. An amply δ-supplementedmodule W is a module
in which each submodule of W is of ample δ-supplements.
Even W is called δ-lifting if for each X≤W, there exists
a decomposition of W such that W � A⊕B with A≤X and
X∩B≪ δB. W is called distributive if for X, S, Z≤W, the
statement (X∩ S) + (X∩Z) � X∩ (S + Z) is verifed. If for
each h ∈ End(W), h(X)⊆X, we say X is a fully invariant
submodule of W. We refer the interested readers to [4–6] for
concepts given here.

Now, we give place to fundamental concepts of torsion
theory. Let τ � (T, F) be a torsion theory on R-Mod, where T

denotes the community of all modules which are τ-torsion and
F denotes the community of all modules which are free of
τ-torsion, that is, T � W ∈ R − Mod | τ(W) � W{ } and F �

W ∈ R − Mod | τ(W) � 0{ } such that τ(W) �
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􏽐 X | X≤W, X ∈ T{ }. Ordinarily, T is preserved under ho-
momorphic images, extensions, and direct sums. In response to
this, F is preserved by isomorphisms, submodules, extensions,
and direct products. If T is preserved by submodules (injective
hulls), then T is called a hereditary (stable) torsion theory. In the
present study, we will accept that τ is a hereditary torsion theory
unless otherwise specifed. A submodule X of W is defned as
τ-dense (τ-pure) ifW/X is τ-torsion (τ-torsion free), denoted by
X≤ τ−d W (X≤ τ−p W). For further properties associated with
the torsion theory, we refer to [7].

In recent years, it is a lifting trend for algebraists to get
torsion theoretic forms of known concepts or theories from
ring and module theory. In [8], the authors handled lifting
modules according to a (hereditary) torsion theory. In 1985,
Pardo defned τ-essential submodules [9]. By using this fact,
in 2017, the authors investigated singular and nonsingular
modules according to a hereditary torsion theory to de-
termine the structure of τ-extending modules [10], frst
defned in [11] according to Bland’s τ-essential submodules.

Tey defned the setZτ(W) � x ∈W | Ix⊆ τ(W),∃I⊲
� τR

R􏼚 􏼛.

Te submodule Zτ(W) is called a τ-singular submodule of
W. W is called a τ-singular module provided W � Zτ(W),
and W is called a non-τ-singular module provided
0 � Zτ(W). Furthermore, in [12], τ-complement sub-
modules of a module are defned as a torsion theoretic
version of complement submodules. Dually, supplemented
modules, some generalizations, and characterizations of
them are handled from this aspect by various authors [13].

In the present study, the structure of δ-supplemented
modules is researched by using the concept of τ-singularity
of a submodule according to Pardo’s τ-essential submodules.
Motivated by this idea, we handle the special form of lifting
modules given in [8] with respect to τ-singularity. To obtain
this, frst, we defne δτ-small submodules and give funda-
mental properties similar to δ-small submodules. In the light
of this fact, we introduce δτ-lifting, δτ-supplemented, and
amply δτ-supplemented modules. We also interested in
binary relations between these modules. Moreover,
δτ-semiperfect modules are presented, and characterizations
of a δτ-semiperfect module are given in view of being
(amply) δτ-supplemented under special conditions.

2. δτ-Small Submodules

Defnition 1. Let W be a module and X≤W. If X + S≠W

whenever W/S is τ-singular for any S≤W, then X is said to
be δτ-small in W. Te notation X≪ δτ W is prefered to point
that X is a δτ-small submodule of W.

Explicitly, each small submodule of a module is δτ-small.
Also, note that as τ-singular module classes are diferent
from singular ones, there is not a certain relation between
δτ-small submodules and δ-small submodules. But if RR and
W are free of τ-torsion, then these concepts coincide.

Following lemma is given for a submodule of a module
to be δτ-small.

Lemma 2. For amodule W, the listed statements taking place
below are equivalent:

(1) X≪ δτ W

(2) If X + S � W, then W � Z⊕ S for a non-τ-singular
submodule Z with Z⊆X

Proof

(1)⇒ (2) Let X + S � W. In this case, there subsists a sub-
module Z of X maximal according to the feature
S∩Z⊆ τ(W). Tus, we obtain that S + Z⊲

�
τW by [12],

Proposition 2.9. Following we have W/(S + Z) is τ-singular
by [10], Teorem 3.7. Since X≪ δτ W and X + (S⊕Z) � W,
we have W � S⊕Z. Let D≤Z. Ten, X + D + A � W. Ap-
plying the same way as above by replacing X with X + D, we
get X + D � X⊕D≤ ⊕W. Tus, D≤ ⊕Z that verifes W is
semisample. So, we can write Z � Zτ(Z)⊕Zn, where Zn is
non-τ-singular. Ten, W/(S⊕Zn) � (S⊕Z)/(S⊕Zn) � Zτ
(Z) is τ-singular. Since X≪ δτ W and W � X + (S + Zn), we
have S⊕Zn � W. Tis shows that Zτ(Z) � 0; that is, Z is
non-τ-singular.

(2)⇒ (1): let X + S � W for a submodule S of W with
W/S τ-singular. By hypothesis, there subsists Z≤X with Z �

W/S is non-τ-singular. Tis shows that S � W.
Now, we list the main features of δτ-small submodules in

the lemma mentioned as follows. □

Lemma 3. Te following statements given hold for
a module W.

(1) For submodules X, S, and Z of W with S⊆X, we have

(a) X≪ δτ W⇔ S≪ δτ W and X/S≪ δτ W/S
(b) X + Z≪ δτ W⇔X≪ δτ W and Z≪ δτ W

(2) If X≪ δτ W and h: W⟶ N is a homomorphism,
then h(X)≪ δτN. Most particularly, if X≪ δτ W⊆N,
then X≪ δτN.

(3) Let X1 ⊆W1 ⊆W, X2 ⊆W2 ⊆W, and W � W1 ⊕W2.
Ten, X1 ⊕X2≪ δτ W1 ⊕W2⇔X1≪ δτ W1 and
X2≪ δτ W2.

Proof. Te proofs can be repeated by a similar approach
given for small submodules in ([1], 19.3). □

Defnition 4. Let ϑ be the community of whole τ-singular
simple modules. For a module W, let RejW(ϑ) � δτ(W) �

∩ X≤W | W/X ∈ ϑ{ } be the reject of ϑ in W. If W does not
have any submodule with this type, then we denote
δτ(W) � W.

It is an easy fact that δτ(W/δτ(W)) � 0.

We give a relation between δτ-radical of a module and its
δτ-small submodules in the following lemma.

Lemma 5. Let W be amodule.Ten we have, for anymodule,
W holds δτ(W) � 􏽐 X≤W | X≪ δτ W􏽮 􏽯.

Proof. LetX≪ δτ W.Wewill show thatX is contained in every
maximal submoduleT ofW withW/T τ-singular. Assume that
X⊈T for a maximal submodule of W with W/T τ-singular.
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Ten, since T is maximal, X + T � W. Ten, T � W, which is
a contradiction to the fact that T is maximal in W. Hence,

􏽐X≪δτ WX⊆ δτ(W). For any x ∈ δτ(W), clearly x is the ele-

ment of all maximal submodules P of W with W/P being
τ-singular. Now, we claim that Rx≪ δτ W. Assume that Rx is
not δτ-small in W and η � T≤W | x ∉{ T, W/T τ−

singular andRx + T � W}. It is clear that η≠∅, sinceRx is not
δτ-small in W. By the Zorn Lemma, there exists a maximal
element K in η. Accordingly, x ∉ K and so we have the
contradiction x ∉ δτ(W). Hence, δτ(W) � 􏽐X≪δτ WX.

Now, we give some facts about δτ-radical of
a module. □

Lemma 6

(1) If h: W⟶ N is a homomorphism, then
h(δτ(W))⊆ δτ(N). So δτ(W)≤W is fully invariant.

(2) If W � ⊕ i∈IWi, then δτ(W) � ⊕ i∈Iδτ(Wi).
(3) δτ(W) is the unique largest δτ-small submodule of W

if every submodule of W is contained in a maximal
submodule of W.

Proof. Te proof can be repeated alike given in [1]. □

Corollary 7. If τ is a stable torsion theory or RR is free of
τ-torsion, each δ-small submodule is δτ-small in W by ([10],
Lemma 3.1).

As it is understood from the defnitions, δ-small sub-
modules need not be δτ-small and the converse is also. Tey
are only specialized versions of each other.

3. δτ-Lifting Modules

In this department of the article, we introduce δτ-lifting
modules and present fundamental properties of them. First,
we give matching conditions for a module W to be δτ-lifting,
and afterwards, we handle the other structure theorems for
homomorphic images, direct summands, direct sums, etc.

Defnition 8. A module W is called δτ-lifting if for N≤W

there exists a decomposition W � X⊕ S such that X≤N and
N∩ S ≪ δτ W.

If RR is τ-torsion free or τ is a stable torsion theory, then
the case of being δ-lifting satisfes the case of being δτ-lifting
for a module W since Z(W)⊆Zτ(W). Even these new
concepts coincide for τ-torsion free modules over τ -torsion
free rings since Z(W) � Zτ(W).

In the following theorem, we list the equivalent condi-
tions for a module to be δτ-lifting.

Theorem 9

(1) Te following statements given are equivalent for
a module W:

(a) W is δτ-lifting
(b) For each N≤W, there exists submodules X, S≤N

providing N � X⊕ S, X≤ ⊕W, and S≪ δτ W

(c) For each N≤W, there exists X≤ ⊕W, providing
X≤N and N/X≪ δτW/X

(2) Every direct summand of a δτ-lifting module inherits
the property.

Proof

(1) (1a ⇒ 1b) It is obvious. (1b⇒ 1c) Let N≤W. By
hypothesis, there exists a decomposition of N pro-
viding N � X⊕ S with X≤ ⊕W and Y≪ δτ W. For
the natural epimorphism π: W⟶M/X, we have
π(S) � S + X/X � N/X≪ δτW/X, since S≪ δτ W.
(1c⇒ 1a) Let W be any submodule of W. By (1c),
there exists a decomposition of W, providing W �

X⊕ S with X≤N and N/X≪ δτW/X. Terefore,
W � N + S and N � X⊕ (S∩N). Since W/X � S

and N/X � N∩ S, then we get N∩ S≪ δτS. Hence, W
is a δτ-lifting module.

(2) Let W be δτ-lifting and N≤ ⊕W. In that case, there
exists T≤W with W � N⊕T. For any X≤N≤W,
since W is δτ-lifting, there exists a decomposition of
W providing W � Z⊕ S with Z≤X and X∩ S≪ δτS.
Terefore, it is obtained that N � Z⊕ (N∩ S) pro-
viding N∩ (X∩ S) � X∩ (N∩ S) � X∩ S≪ δτ W

and so X∩ S≪ δτN as N≤ ⊕W. Hence,
X∩ S≪ δτN∩ S because N∩ S≤ ⊕N.

Te following example includes a δτ-lifting module. □

Example 1. Let R be a matrix ring in which elements are
upper triangular matrices with the form 2 × 2 and com-

ponents coming from the feld F, RW �
0 F

F F
􏼢 􏼣 and

X �
F F

0 0􏼢 􏼣, which is an idempotent ideal of R. Here, τx is

a hereditary torsion theory with the torsion part
T � N ∈ R{ -Mod|IN � 0}. Let us list the all proper sub-

modules of W as follows: N1 �
0 F

0 F
􏼢 􏼣 � τX(W),

N2 �
0 F

0 0􏼢 􏼣 � τX(N2), N3 �
0 0
0 F

􏼢 􏼣 � τX(N3), and

N4 �
0 0
F F

􏼢 􏼣. Since N2 ≤ ⊕W, N3 is δτ-small in W and

N1 � N2 ⊕N3, and then, W is a δτ-lifting module by
Teorem 38.

Now, we investigate when the factormodule of a δτ-lifting
module is δτ-lifting.

Proposition  0. Let W be a δτ-lifting module. For any
X≤W, the module W/X is δτ-lifting if one of the following
statements is provided:

(1) For any N≤ ⊕W, (N + X)/X≤ ⊕W/X.

Journal of Mathematics 3



(2) W is a distributive module.
(3) h(X)⊆X for any idempotent h � h2 ∈ End(W). Most

particularly, X≤W is fully invariant.

Proof

(1) Let K/X≤W/X. Since K≤W and W is δτ-lifting,
there exists D≤ ⊕W with D≤K and K/D≪ δτW/D.
It is clear to verify that (D + X)/X≤ ⊕W/X and
(D + X)/X≤K/X≤W/X. Since K/D≪ δτW/D, then
K/D + X≪ δτW/D + X by Lemma 3. Hence, W/X is
δτ-lifting.

(2) Tis condition will be proved by using (1). Let
W � S⊕Z. We have W/X � (S + X)/X+ (Z + X)/X,
and by hypothesis, (S + X)/X∩ (Z + X)/X �

(S∩Z) + X/X � 0W/X. Hence, (S + X)/X≤ ⊕W/X
and so W/X is δτ-lifting.

(3) Let W � A⊕B. By (1), we will show that
A + X/X≤ ⊕W/X. Let π: A⊕B⟶ A be the pro-
jection map where Ker(π) � (1 − π)W � B. Ten,
π2 � π ∈ End(W) and π(W) � A. By assumption,
π(X)≤X and (1 − π)(X)≤X. So we have π(X) �

X∩A and (1 − π)(X) � X∩B. Terefore,
X � π(X)⊕ (1 − π)(X) � (X∩A)⊕ (X∩B). From
here, it is clear to see that (A + X)/X � (A⊕
(X∩B))/X and B + X/X � B⊕ (X∩A)/X. Tis
implies W/X � (A⊕ (X∩B))/X + (B⊕ (X∩A))/X.
In addition, since [A⊕ (X∩B)]∩ [B⊕ (X∩A)] �

[A⊕ (X∩B)] ∩B⊕ (X∩A) � (X∩B)⊕ (A∩B)⊕
(X∩A) � (X∩B)⊕ (X∩A) � X, we have
(A + X)/X≤ ⊕ W/X. Hence, M is δτ-lifting by (1).

In Lemma 15, we proved that each direct summand of
a δτ-lifting module is δτ-lifting. But the contrast idea is
not true generally. By Teorem 12, we present a way
verifying this claim by adding suitable conditions. But
frst, we give the following useful lemma see ([6], 41.14)
for completeness. □

Lemma   . Let W � X⊕ S. Ten, the following conditions
listed are equivalent:

(1) X is S-projective
(2) For each N≤W with W � T + S, there exists T′ ≤T

providing W � T′ ⊕ S

Theorem  2. Let W � X⊕ S be a module such that X is both
W-projective and S-projective. If X and S are δτ-lifting
modules, then so is W.

Proof. Let N≤W. In that case, as X is δτ-lifting
X∩ (N + S)≤W, there exist direct summands D, D′ of X

with D≤X∩ (N + S) and X∩ (N + S)∩D′ � (N + S)∩D′

≪ δτX. So we have W � X⊕ S � D⊕D′ ⊕ S � N + (D′ ⊕ S).
Since X is self and S-projective it is clear to say that X is
W-projective. By taking into account the exact sequence
D⟶ D⊕ (D′ ⊕ S)⟶ D′ ⊕ S, it can be seen that D is

D′ ⊕ S-projective [[6], 18.1/18.2]. Terefore, by Lemma 18,
there exists N′ ≤N providing W � N′ ⊕ (D′ ⊕ S). Following
this, we can say N∩ (W + D′) � W∩ (N + D′) for any
W≤ S. In addition, since S is δτ-lifting, there exists
Y1 ≤ S∩ (N + D′) � N∩ (S + D′) such that S � Y1 ⊕Y2 and
N∩ (Y2 + D′) � Y2 ∩ (N + D′)≪ δτY2 for any Y2 ≤ S.
Terefore, the fact that W � N′ ⊕ (D′ ⊕ S) � N′ ⊕
(D′ ⊕Y1 ⊕Y2) � (N′ ⊕Y1)⊕ (Y2 ⊕D′) can be seen easily.
Since N′ ≤N and X≤N∩ (D′ ⊕ S)≤N, we have
N′ ⊕Y1 ≤N and so W � N + (D′ ⊕ S). In addition,
N∩ (Y2 ⊕D′) � Y2 ∩ (N⊕D′)≪ δτY2 ≤Y2 ⊕D′.

Recall that the family of relatively projective modules is
defned as a family of modules Pi􏼈 􏼉i∈I where Pi is Pj-pro-
jective for each distinct i, j ∈ I. □

Corollary  3. Let X be a semisimple module and S be
a δτ-lifting module which are relatively projective with
X, then W � X⊕ S is δτ-lifting.

In the next proposition, we verify that the direct sum of
two δτ-lifting modules is δτ-lifting for a duo module (whose
submodules are all fully invariant).

Proposition  4. Let W � X⊕ S be a duo module. If X and S

are δτ-lifting modules, then so is W.

Proof. Let N≤W. Since W is a duo module, it can be written
that N � (N∩X)⊕ (N∩ S). By assumption, for the sub-
modulesN∩X≤X andN∩ S≤ S, there exist submodulesX1,
X2 ≤X and S1, S2 ≤ S, respectively, such that X � X1 ⊕X2,
X1 ≤N∩X, and N∩X2≪ δτX2 and S � S1 ⊕ S2, S1 ≤N∩ S,
and N∩ S2≪ δτS2. Terefore, W � X⊕ S � (X1 ⊕
X2)⊕ (S1 ⊕ S2) � (X1 ⊕ S1)⊕ (X2 ⊕ S2). So we have
X1 ⊕ S1 ≤ (N∩X)⊕ (N∩ S) � N∩ (X⊕ S) � N∩W � N

and N∩ (X2 ⊕ S2) � (N∩X2)⊕ (N∩ S2) ≪ δτX2 ⊕ S2.

In the following example, a type of a module can be seen
that is δ -lifting but not δτ-lifting. □

Example 2. LetR �
F F

0 F
􏼢 􏼣whereF be a feld andW�RR. Let

I � e12R + e22R, where eij is the matrix unit in R. Note that for
the idempotent ideal I, we have a hereditary torsion theory τI

with the torsion part TI � X ∈ R{ -Mod|XI � 0}. Let X � e12R.
Note that X is simple, and it is not a direct summand of W as
X⊲

�
e11R which is a direct summand. Also, X is not τI-torsion

as XI � e12R. Tus, X does not involve any direct summand S

of W such that X/S is τI-torsion. Hence, W is not δτ-lifting.
However, W is a lifting and so a δ-lifting module by [14].

4. δτ-Supplemented Modules

In this part of the study, we defne δτ-supplementedmodules
and present basic properties of this type of modules.

Lemma  5. Let X, S≤W. Ten, the statements given below
are equivalent:

(1) W � X + S and X∩ S≪ δτS
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(2) W � X + S, for any proper T≤ S with S/T being
τ-singular, W≠X + T

Proof

(1)⇒ (2) If W � X + T, where T≤ S and S/T is τ-singular,
then S � (X + T)∩ S � T + (X∩ S). Hence, we have T � S

since X∩ S≪ δτS.
(2)⇒ (1) If S � T + (X∩ S), where T≤ S and S/T is

τ-singular, then W � X + S � X + (X∩ S) + T � X + T. By
(2), T � S. So X∩ S≪ δτS. □

Defnition 16. S≤W is said to be a δτ-supplement sub-
module of X in W if X and S provide one of the equivalent
conditions given in Lemma 19. By the way, W is called
δτ-supplemented if each submodule of W has a δτ-sup-
plement in W.

We cannot claim every δ-supplemented module is
δτ-supplemented or the converse statement directly because
of being specialized versions of each other.

It can be seen that in the following proposition, being
δτ-supplemented is preserved by homomorphic images.

Proposition  7. Every homomorphic image of a δτ-sup-
plemented module is δτ-supplemented.

Proof. Let W be a δτ-supplemented module, f: W⟶ G be
an epimorphism and S be a submodule of G. By assumption,
there exists X≤W providing f− 1(S) + X � W and
f− 1(S)∩X≪ δτX. In that case, f(f− 1(S) + X) �

f(f− 1(S)) + f(X) � [S∩f(W)] + f(X) � S + f(X) � G

and f(f− 1(S)∩X) � S∩f(X)≪ δτf(X) by Lemma 5.
Tus, f(X) is a δτ-supplement of S in G. Hence, G is
δτ-supplemented. □

Lemma  8. Let W be a module and X, S, Z≤W. If X is
a δτ-supplement of S in W and S is a δτ-supplement of Z inW,
then S is a δτ-supplement of X in W.

Proof. Because X is a δτ-supplement of S in W, we get
S + X � W, S∩X≪ δτX, and S is a δτ-supplement of Z in W;
we have Z + S � W, Z∩ S≪ δτS. It is enough to show that
X∩ S≪ δτS. Let T≤W with X∩ S + T � S and S/T be τ-sin-
gular. Ten, W � Z + S � Z + [(X∩ S) + T] � (X∩ S) + Z+

T. Since S∩X≪ δτ W, W � W⊕ (Z + T) for a non-τ-singular
submodule W with W⊆X∩ S⊆ S by Lemma 3. Hence, S �

[(W⊕ (Z + T)]∩ S � W⊕ [(Z + T) ∩ S] � (W⊕T)+

(Z∩ S) by the modular law. Since S/W⊕T is τ-singular and
Z∩ S≪ δτS, we have S � W⊕T. Tus, W � 0 as S/T is both
τ-singular and non-τ-singular. Finally, S � T is obtained. □

Lemma  9. For a δτ-supplemented module W, W/δτ(W) is
a semisimple module.

Proof. Let δτ(W)≤X≤W. Tere exists S≤W providing
W � X + S and X∩ S≪ δτS. So X∩ S≪ δτ W. Tus,
W/δτ(W) � X/δτ(W) + (S + δτ(W))/δτ(W) and X∩ (S +

δτ(W))/δτ(W) � (X∩ S) + δτ(W)/δτ(W) � 0W/δτ(W)􏽮 􏽯. So
we have W/δτ(W) � X/δτ(W)⊕ (S + δτ(W))/δτ(W).

Clearly, each δτ-lifting module is δτ-supplemented. Te
converse might be provided under additional conditions as
in the following proposition. □

Proposition 20. A projective δτ-supplemented module W is
δτ-lifting whenever each δτ-supplement submodule of W is
a direct summand.

Proof. Let X≤W. By hypothesis, there exists S≤W with X +

S � W and X∩ S≪ δτS. Since S≤ ⊕W, W � S⊕D for some
D≤W. Following that, we have D⊆X as W is projective and
� S + X. Hence, we obtain a decomposition of W such that
W � D⊕ S with D⊆X and X∩ S≪ δτS; that is, W is δτ-lifting.

Let W be an R-module and RR and W be τ-torsion free
modules. If W is δ-supplemented, then W is also δτ -sup-
plemented and vice versa.

Let τ be a stable torsion theory (as Goldie torsion theory)
or RR is τ-torsion free (as ZZ). Ten, every δ-supplemented
module is also δτ-supplemented.

Let R be τ-torsion and nonsingular ring. Ten, a left
R-module W is δ-supplemented module if and only if W is
δτ-supplemented.

Before giving the fnite sum of δτ-supplemented
modules which is also δτ-supplemented, we need the
following lemma. □

Lemma 2 . Let X, U≤W, and X be a δτ-supplemented
module. If X + U has a δτ-supplement in W, then so does U.

Proof. Since X + U has a δτ-supplement in W, there exists
S≤W providing (X + U) + S � W and (X + U)∩ S≪ δτS.
Also, there exists Z≤X providing [(S + U)∩X] + Z � X

and [(S + U)∩X]∩Z � (S + U)∩Z≪ δτZ. Tus, we
have W � (X + U) + S � [(S + U)∩X]+ Z + U + S � (U

+ S) + Z and (U + S)∩Z≪ δτZ; that is, Z is a δτ-supplement
of U + S in W. Now, we claim that S + Z is a δτ-supplement
of U in W. It is evident that (S + Z) + U � W and (S +

Z)∩U≤ S∩ (Z + U) + Z∩ (S + U)≪ δτS + Z since S∩ (Z +

U)≤ S∩ (X + U)≪ δτS and (S + U)∩Z≪ δτZ. □

Proposition 22. Let X and S be δτ-supplemented modules. If
W � X + S, then W is a δτ-supplemented module.

Proof. Let Z≤W. Since X + S + Z � W has a trivial
δτ-supplement 0 in W and X is δτ-supplemented, S + Z has
a δτ-supplement in W by Lemma 21. Tus, Z has a δτ
-supplement in W as S is δτ-supplemented by Lemma 21. So,
W is δτ-supplemented.

Recall that for a module W a module G is called fnitely
W-generated if there exists an epimorphism from the sum of
fnitely many copies of W to G.

As an immediate consequence of the fnite sum and
homomorphic image property, we give the following
proposition. □
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Proposition 23. If W is a δτ-supplemented module, then
every fnitely W-generated module is δτ-supplemented.

Proof. Let W be a δτ-supplemented module and G be a f-
nitely W-generated module. Ten, there exists an epi-
morphism h from W(Λ) (Λ is a fnite index set) to G. Since W

is δτ-supplemented, then h(W(Λ)) � G is a δτ-supplemented
module by Propositions 17 and 22. □

5. Amply δτ-Supplemented Module

In this part of the study, we defne amply δτ-supplemented
modules and give basic properties of them. Also, we present
relations between these modules and the modules in-
troduced in previous sections.

Defnition 24. Amodule W is called amply δτ-supplemented if
for any submodules X, S of W with W � X + S, there exists
a δτ-supplement T of X in W contained in S.

Clearly, every δτ-lifting module is amply δτ-supplemented,
and every amply δτ-supplemented module is δτ-supplemented.

Proposition 25. Every homomorphic image of an amply
δτ-supplemented module is amply δτ-supplemented.

Proof. Let W be an amply δτ-supplemented module and f

be a homomorphism from W to G. We claim that h(W) is
amply δτ-supplemented. Let h(W) � X + S. Ten,
W � h−1(X) + h−1(S). Tus, there exists a submodule T of
W contained in h−1(S) with h−1(X) + T � W,
h−1(X)∩T≪ δτT. Following that, we have X + h(T) � h(W)

and X∩f(T) � f(f−1(X)∩T)≪ δτf(T)≤ S. □

Proposition 26. Let W be a module. If every submodule of
W is δτ-supplemented, then W is an amply δτ-supplemented
module.

Proof. Let W � X + S for X, S≤W. By hypothesis, there
exists T≤ S providing (X∩ S) + T � S and (X∩ S)∩
T � X∩T≪ δτT. Tus, we have W � X + S � X +

(X∩ S) + T � X + T. Hence, W is an amply δτ-supple-
mented module. □

Corollary 27. Te following listed statements given are
equivalent for a ring R:

(1) Every R-module is amply δτ-supplemented
(2) Every R-module is δτ-supplemented

Recall that we say a module is π-projective if there exists
a homomorphism h ∈ End(W) such that h(W)⊆X and
(IW − h)(W)⊆ S for every submodule X, S≤W which sat-
isfes W � X + S.

In general, every projective module is π-projective [1].

Theorem 28. Let W be a π-projective δτ-supplemented
module, then W is an amply δτ-supplemented module.

Proof. For any submodule X of W, let W � X + S for S≤W.
As W is π -projective, there exists an endomorphism h of W

providing h(W)≤X and (1 − h)(W)≤ S. Let T be a δτ-
supplement of X in W. Ten, W � h(W) + (1 − h)(W) �

h(W) + (1 − h)(X + T)≤X + (1 − h)(T)≤W, so we have
W � X + (1 − h)(T) with (1 − h)(T)≤B. Also, X∩ (1−

h)(T) � (1 − h)(X∩T)≪ δτ(1 − h)(T). Hence, (1 − h)(T)

is a δτ-supplement of X in W contained in S. □

Corollary 29. If W is a projective and δτ-supplemented
module, then W is an amply δτ-supplemented.

Theorem 30. Let W be an amply δτ-supplemented module
whose δτ-supplements are direct summands of W. Ten, W is
a δτ-lifting module.

Proof. Since W is amply δτ-supplemented, there exists a δτ-
supplement S for every X≤W and there exists a δτ-sup-
plement S′ for S≤W with S′ ≤X, W � S′ ⊕D. Ten, we have
W � S′ + S, and X � S′ + (S∩X) � S′ ⊕ (X∩D) is obtained.
For the projection map π: S′ ⊕D⟶ D, it is true that
π(S∩X) � π(X) � X∩D. Moreover, as S∩X≪ δτS,
π(S∩X) � X∩D≪ δτπ(S)≤D and so X∩D≪ δτD. Hence,
for every X≤W, there exists a decomposition of W pro-
viding W � S′ ⊕D with S′ ≤X and X∩D≪ δτD. □

Corollary 3 . Let W be a projective δτ-supplemented module
whose δτ-supplements are direct summands of W. Ten, W is
a δτ-lifting module.

Proof. It is clear from Teorem 30 and Corollary 31. □

6. δτ-Semiperfect Modules

In this section, frst, we defne the projective δτ-cover of
a module by means of δτ-small submodules to get the
concept of δτ-semiperfect modules. At the end, we give
a characterization theorem between δτ-semiperfect modules
and (amply) δτ-supplemented modules.

Defnition 32. Let E be a (projective) module and
f: E⟶W be an epimorphism with Ker(f)≪ δτE. In this
case, (f, E) is called a (projective) δτ-cover of W.

Defnition 33. A module W is called a δτ-semiperfect
module if any homomorphic image of W has a projective
δτ-cover.

Proposition 34. If h: W⟶ G is an epimorphism with
Ker(h)≤ δτ(W), then h(δτ(W)) � δτ(G).

Proof. It is clear from [[15], Corollary, 8.17]. □

Lemma 35. Let f: W⟶ G and g: G⟶ K be δτ-covers,
then g ∘f: W⟶ K is a δτ-cover.

Proof. Since f and g are δτ-covers, then Ker(f)≪ δτ W and
Ker(g)≪ δτG. Now, we claim that Ker(g ∘f)≪ δτ W. Let
Ker(g ∘f) + X � W with W/X τ-singular. Following that,
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we have Ker(g) + f(X) � G. Hence, f(X) � G is obtained
as Ker(g)≪ δτG, and G/f(X) is τ-singular. Tis implies that
X + Ker(f) � W. Terefore, we have X � W since
W/X is τ-singular and Ker(f)≪ δτ W. □

Lemma 36. Let fi: Ei⟶Mi be δτ-covers for every
i � 1, ..., n. Ten, ⊕ni�1fi : ⊕ni�1Ei→Mi is a δτ-cover.

Proof. It can be proved by the standard way. □

Theorem 37. Let W be a module and X≤W. Ten, the
following listed statements are equivalent:

(1) W/X has a projective δτ-cover.
(2) If W � X + S for S≤W, then X has a δτ-supplement

T≤ S such that T has a projective δτ-cover.
(3) X has a δτ-supplement T which has a projective

δτ-cover.

Proof

(1)⇒ (2) Let f: E⟶W/X be a projective δτ-cover. Since
W � X + S, g: S⟶ S/(X∩ S) � (X + S)/X is an epi-
morphism. Since E is projective, there exists a homomor-
phism h from E to S satisfying g ∘ h � f. Following that, we
have W/X � (h(E) + X)/X and so W � X + h(E), h(E)≤ S.
Also, X∩ h(E) � h(Ker(f))≪ δτh(E), since Ker(f)≪ δτE.
Hence, h(E) is a δτ-supplement of X in W. Tus,
h: P⟶ h(E) is a projective δτ-cover as Ker(h)⊆
Ker(f)≪ δτP.

(2)⇒ (3) It is clear.
(3)⇒ (1) Let f: E⟶ T be a projective δτ-cover. By

hypothesis, X + T � W and X∩T≪ δτT. It follows that the
natural epimorphism g: T⟶ T/(X∩T) � (X + T)/
X � W/X is a δτ-cover. So g ∘f: E⟶W/X is a projective
δτ-cover. □

Theorem 38. Te following listed statements are equivalent
for a module W:

(1) W is δτ-semiperfect
(2) W is amply δτ-supplemented whose δτ-supplements

have projective δτ-covers
(3) W is δτ-supplemented whose δτ-supplements have

projective δτ-covers

Proof. It is evident by Teorem 37. □
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