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Tis work discusses a ternary 4-point approximation subdivision technique with two properties, namely, convexity and
monotonicity preservation. Te fundamental contribution of this research article is to extract the conditions that assure the
suggested subdivision scheme’s convexity and monotonicity. Te methodology for extracting these conditions is explained in two
theorems. Tese theorems prove that if the initial data is strictly convex and monotone and the derived conditions are satisfed,
then the limiting curve generated by the proposed subdivision scheme will also be convex and monotone. To show the graphical
simulations of results, 2D graphs are plotted. Curvature plots are also drawn to fully comprehend the derived conditions. Te
entire discourse is backed up by convincing examples.

1. Introduction

Te subdivision schemes (SSs) are very indispensable in
many felds of science to generate curves and surfaces.
Mainly, the SSs are accustomed to computer-aided geo-
metric design such as computer-aided design (CAD),
computer-aided manufacturing (CAM), and other inter-
connected felds. For modeling curves and surfaces, SSs are
highly regarded in felds such as computer science, image
processing, medical sciences, and surgical simulation.

Te credibility of SSs can be estimated by their shape-
preserving properties. Positivity, monotonicity, and con-
vexity preservations are the three main properties of shape
preservation. In this paper, two properties such as convexity
and monotonicity preservation of the SSs in equation (1) are
analyzed. In curve and surface modeling, convexity and
monotonicity play a vital role. Te SSs do not preserve
convexity and monotonicity for each type of polygon. If

there is no limitation on the initial polygon, then the SSs will
not retain shape-preserving properties. For convexity and
monotonicity preservation of the limit curve generated by
the SS, the initial set of control points is considered convex
and monotonic. To sustain convexity and monotonicity, we
encounter some conditions on parameters involved in the
SS. Te particular conditions are derived from the param-
eters involved in the SS to preserve convexity and
monotonicity.

Te convexity preservation and monotonicity preserva-
tion of SSs have been the subject of many research papers over
the last few decades. In 1987, Dyn et al. [1] constructed
a 4-point binary interpolating SS.Te convexity of this SS was
discussed by Cai [2] in 1995. For any convex set of discrete
points with no three-point collinearity, Cai concluded that the
convex limiting curve can be obtained by 4-point in-
terpolating SS. In 1999, Dyn et al. [3] presented some con-
ditions on the parameter depending upon the initial data,
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which ensures the convexity preservation of the 4-point SS
analyzed in [1]. In a result, this SS generates the C1 limit
function with a second approximation order. In 2022, Yang
and Yoon formulated a shape-preserving nonlinear SS, which
generalized the B-spline of degree 3 [4]. Monotonicity- and
convexity-preserving conditions of this SS were extracted,
providing an improved approximation order of four while
maintaining the same smoothness as the B-spline of degree 3.
In 2002, a class of shape-preserving four-point subdivision
schemes was developed by Kuijt and Damme [5]. Tese
schemes are stationary and allow interpolation of nonuniform
univariate data. Additional conditions were introduced to
ensure convergence to a C1 limit function. As a result, explicit
rational convexity-preserving subdivision schemes were de-
rived, and continuously diferentiable limit functions can be
generated from initial convex data. In 2009, Cai [6] examined
convexity preservation conditions of 4-point C2 ternary in-
terpolating SS developed by Hassan et al. [7]. Hassan et al.
concluded that, in order to maintain convexity in SSs, there
should be some restrictions on the initial data points. A 5-
point binary SS was developed by Tan et al. [8] for the
convexity preservation of this SS. Te Hölder exponent and
generating polynomial method are used to investigate the
uniform convergence. Te value of k varies based on the
choice of the parameter μ. A new technique was developed by
Amat et al. [9] for convexity preservation of interpolating SS.
Convexity-preserving properties for interpolatory subdivision
schemes are introduced through a new approach. Te ap-
proach is based on the relationship between subdivision
schemes and prediction operators within Harten’s multi-
resolution framework. Certain convexity properties of the
reconstruction operator associated with prediction play a key
role in this approach. Hao et al. [10] examined the convexity
preservation of C6 approximating SS developed by Siddiqi
and Ahmed [11]. Tis SS with support [− 5,6] was proved to
have simple and elegant properties. Siddiqi and Noreen [12]
examined the convexity preservation of six-point ternary SS
with parameter ω. Te condition on the tension parameter is
determined within the range of (7/92)<ω< (11/1215). Te
condition applies when the initial data is strictly convex. Its
purpose is to ensure the range of C2 continuous limit curves.
A binary 4-point interpolating SS was developed by Beccari
et al. [13] which generates C1 continuous curve.

Recently, many researchers worked on the construc-
tions, shape-preserving properties, and applications of SSs.
Zhao et al. [14] extracted the conditions for the concavity of
functions involving the generalized elliptic integral of the
frst kind. Zhao et al. [15] determined the particular con-
ditions for convexity- and monotonicity-preserving prop-
erties of functions involving the generalized elliptic integral
of the frst kind. Zhao et al. [16] obtained the conditions for
preserving convexity and concavity for Bessel functions of
the frst kind. By introducing local pushback operation,
a brand-new interproximate subdivision framework is
established which bridges the gap between interpolating
schemes and approximating ones [17]. Convexity preser-
vation of the ternary 6-point interpolating subdivision
scheme has been presented in [18].

Te aim of this paper is to determine the convexity and
monotonicity preservation of C3 ternary four-point sta-
tionary SS developed by Siddiqi and Rehan [19]. In Section 2,
the ternary approximating SS is introduced, and the
monotonicity-preserving property of the scheme in equation
(1) is analyzed in Section 2.1. In Section 2.2, the convexity
preservation of scheme [19] has been analyzed. In both
sections, the signifcance of convexity- and monotonicity-
preserving properties is illustrated through examples. In
Section 2.3, the curvature plots of the proposed SS are
presented. Te whole manuscript is concluded in Section 3.

2. Ternary Four-Point Approximating
Subdivision Scheme

Siddiqi and Rehan [19] developed 2N-point Lagrange SS.
Tese 2N-Point SSs are extracted by Lagrange polynomial
basis functions. Te derivative continuity analysis and
Laurent polynomial method have been employed. Basically,
these are improvements of the ternary 2N-point SS de-
veloped by Dubuc–Deslauriers. A parameter is involved in
fk+1
3i , which helps in enhancing the smoothness of the

limiting curve.
Te proposed four-point ternary SS is acquired forN � 2

from 2N-point SS [19]. To defne the ternary four-point SS,
initial control points of the form f0

j � fj: j ∈ Z are con-
sidered, and for each iteration κ � 0,1,2, . . .{ }, control points
are defned as follows:
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(1)

Siddiqi and Rehan [19] proved that equation (1) gen-
erates the converging curve having continuityC3 but notCm,
m> 3. Further, it is also analyzed in [19] that the support and
approximation order of equation (1) are [− 3, 3] and 4, re-
spectively. Tis article answers the question of whether the
generating curves from equation (1) preserve monotonicity
and convexity or not. In the following section, the
monotonicity-preserving condition for SS in equation (1) is
discussed in detail.

2.1. Monotonicity Preservation. Since the control points are
strictly monotonically increasing if their frst divided dif-
ference Dκ

i � (fκ
i+1 − fκ

i )> 0 where i ∈ Z. Terefore, the frst
divided diference of equation (1) is evaluated and assumed
that the initial control points are strictly monotone in-
creasing, i.e., D0

i > 0, where i ∈ Z.
Te frst-order divided diference of SS in equation (1)

can be written as
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To derive the monotonicity-preserving condition, the
following theorem is proved.

Remark 1. Denote

q
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D
κ
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D
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,
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� max
i

, ∀κ ∈ 0{ }∪Z+
.

(5)

Te defnition of qκi and equation (7) give
1
λ
<Q

0 < λ. (6)

Since (4/243)< θ < (7/405), it is obtained that θ, λ> 1.
Tis is necessary for inequality equation (6). Simultaneously,
it is noted that λ< (27/4), i.e., Q0 < (27/4). Terefore, such
conditions should be satisfed by initial control points; the
diference of the frst-order divided diference between every
two neighboring initial control points cannot be too large.
Tis can be easily seen from the examples at the end of the
theorem. If the diference of the frst-order divided

diference is too large, whatever the parameter is, the scheme
may not preserve monotonicity.

Theorem 2. If the initial control points are all monotonically
increasing, i.e., D0

i > 0, i ∈ Z, furthermore, the parameter θ
for (4/243)< θ< (7/405) satisfes

Q
0 <

5 + 243θ
81θ

� λ. (7)

Ten, Dκ
i > 0, Qκ < λ, ∀κ ∈ Z, i.e., the four-point ternary

SS in equation (1) preserves monotonicity.

Proof. In order to prove that Dκ
i > 0 and (1/λ)<Qκ < λ, the

mathematical induction is used.
It is obvious that when κ � 0, then D0

i � f0
i+1 − f0

i > 0
and (1/λ)<Q0 < λ hold.

By inductive part, suppose Dκ
i > 0 and (1/λ)<Qκ < λ for

some κ≥ 0. It will be shown that it also holds for κ + 1, and
equation (2) is considered as follows:
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From equation (3), we get
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Tus, Dκ+1
i > 0,∀κ≥ 0, κ ∈ Z.

Hence, by induction, Dκ
i > 0,∀κ ∈ 0{ }∪Z+.

To prove (1/λ)<Qκ < λ, it is sufcient to show that qκi < λ
and (1/qκi )< λ, ∀κ≥ 0 and ∀κ ∈ Z,∀i ∈ Z.
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q
κ+1
3i �

D
κ+1
3i+1

D
κ+1
3i

�
− D

κ
i− 1/81( 􏼁 + 29D

κ
i /81( 􏼁 − D

κ
i+1/81( 􏼁

− θD
κ
i− 2 +(243θ + 5/81)D

κ
i− 1 +(26 − 243θ/81)D

κ
i +(81θ − 4/81)D

κ
i+1

, (11)

4 Journal of Mathematics



therefore,

q
κ+1
3i − λ �

N

D
, (12)

where

N �
81θλ
q
κ
i− 2

+[29 − (26 − 243θ)λ]q
κ
i− 1 − 1 − (243θ + 5)λ − [1 +(81θ − 4)λ]q

κ
i q

κ
i− 1,

D � −
81θ
q
κ
i− 2

+ 243θ + 5 +(26 − 243θ)q
κ
i− 1 +(81θ − 4)q

κ
i q

κ
i− 1.

(13)

It can be seen that D � (81Dκ+1
3i /Dκ

i− 1)> 0, and thus, to
prove N< 0, it is considered that

N � − 1 +
81θλ
q
κ
i− 2

+[29 − (26 − 243θ)λ]q
κ
i− 1 − (243θ + 5)λ − [1 +(81θ − 4)λ]q

κ
i q

κ
i− 1

< 81θλ2 − (243θ + 5)λ − 1 +[29 − (26 − 243θ)λ]q
κ
i− 1 − λ +(81θ − 4)λ2􏽨 􏽩q

κ
i− 1

< 81θλ2 − (243θ + 5)λ − 1 + (4 − 81θ)λ2 +(243θ − 27)λ + 29􏽨 􏽩q
κ
i− 1.

(14)

Since

(4 − 81θ)λ2 +(243θ − 27)λ + 29 � − 31 −
20(− 5 + 162θ)

6561θ2
< 0,

(15)

then

N< 81θλ2 − (243θ + 5)λ +
(4 − 81θ)λ2 +(243θ − 27)λ + 29

λ
− 1

�
1
λ

81θλ3 − (1 + 324θ)λ2 +(243θ − 28)λ + 29􏽨 􏽩

�
20
81θ

−
3(35 + 918θ)

5 + 243θ

< 0.

(16)

Tus, qκ+1
3i − λ � (N/D)< 0, i.e.,

q
κ+1
3i < λ. (17)

Since

q
κ+1
3i+1 �

(− (4/81) + θ)D
κ
i− 1 +((26/81) − 3θ)D

κ
i +((5/81) + 3θ)D

κ
i+1 − θD

κ
i+2

− D
κ
i− 1/81( 􏼁 + 29D

κ
i /81( 􏼁 − D

κ
i+1/81( 􏼁

, (18)

Journal of Mathematics 5



therefore,

q
κ+1
3i+1 − λ �

N

D
, (19)

where

N �
81θ − 4 + λ

q
κ
i− 1

+ 26 − 243θ − 29λ +(5 + 243θ + λ)q
κ
i − 81θq

κ
i q

κ
i+1,

D � −
1

q
κ
i− 1

+ 29 − q
κ
i .

(20)

It can be seen that D � (81Dκ+1
3i+1/D

κ
i )> 0, and thus, to

prove N< 0, it is considered that

N �
81θ − 4 + λ

q
κ
i− 1

+ 26 − 243θ − 29λ +(5 + 243θ + λ)q
κ
i − 81θq

κ
i q

κ
i+1

<(81θ − 4 + λ)λ + 26 − 243θ − 29λ +(5 + 243θ + λ)q
κ
i −

81θq
κ
i

λ

< λ2 +(81θ − 33)λ + 26 − 243θ +
λ2 +(5 + 243θ)λ − 81θ

λ
􏼢 􏼣q

κ
i .

(21)

Since

λ2 +(5 + 243θ)λ − 81θ � 39 +
25

6561θ2
+

55
81θ

+ 648θ> 0,

(22)

therefore,

N< λ2 +(81θ − 33)λ + 26 − 243θ + λ2 +(5 + 243θ)λ − 81θ

� 2λ2 +(324θ − 28)λ + 26 − 324θ

� − 10 +
5
81θ

+ 162θ

< 0.

(23)

Tus, qκ+1
3i+1 − λ � (N/D)< 0, i.e.,

q
κ+1
3i+1 < λ. (24)

Since

q
κ+1
3i+2 �

− θD
κ
i− 1 +(3θ +(5/81))D

κ
i +((26/81) − 3θ)D

κ
i+1 +(θ − (4/81))D

κ
i+2

(− (4/81) + θ)D
κ
i− 1 +((26/81) − 3θ)D

κ
i +((5/81) + 3θ)D

κ
i+1 − θD

κ
i+2

, (25)

6 Journal of Mathematics



therefore,

q
κ+1
3i+2 − λ �

N

D
, (26)

where

N �
− 81θ − (81θ − 4)λ

q
κ
i− 1q

κ
i

+
5 + 243θ − (26 − 243θ)λ

q
κ
i

+ 26 − 243θ − (5 + 243θ)λ

+(81θ − 4 + 81θλ)q
κ
i+1

D �
81θ − 4
q
κ
i− 1q

κ
i

+
(26 − 243θ)

q
κ
i

+ 5 + 243θ − 81θq
κ
i+1.

(27)

It can be seen that D � (81Dκ+1
3i+2/D

κ
i+1)> 0, and thus, to

prove N< 0, it is considered that

N �
− 81θ − (81θ − 4)λ

q
κ
i− 1q

κ
i

+
5 + 243θ − (26 − 243θ)λ

q
κ
i

+ 26 − 243θ − (5 + 243θ)λ +(81θ − 4 + 81θλ)q
κ
i+1

<
(4 − 81θ)λ2 +(162θ − 26)λ + 243θ + 5

q
κ
i

+ 81θλ2 − (9 + 162θ)λ + 26 − 243θ.

(28)

Since

(4 − 81θ)λ2 +(162θ − 26)λ + 243θ + 5

� − 57 −
5(− 20 + 567θ)

6561θ2
< 0,

(29)

therefore,

N<
(4 − 81θ)λ2 +(162θ − 26)λ + 243θ + 5

λ
+ 81θλ2 − (9 + 162θ)λ + 26 − 243θ

�
1
λ

81θλ3 − (5 + 243θ)λ2 − 81θλ + 243θ + 5􏽨 􏽩

�
1
λ

(λ − 1)(λ + 1) λ −
5 + 243θ
81θ

􏼠 􏼡

� 0.

(30)

Tus, qκ+1
3i+2 − λ � (N/D)< 0, i.e.,

q
κ+1
3i+2 < λ. (31)

Combining equations (17), (24), and (31), it can be
observed that

q
κ+1
i < λ,∀κ ∈ 0{ }∪Z+

. (32)

Hence, by induction,

q
κ
i < λ, ∀κ ∈ 0{ }∪Z+

. (33)

To prove (1/qκi )< λ, it is considered that

1
q
κ+1
3i

�
D

κ+1
3i

D
κ+1
3i+1

�
− θD

κ
i− 2 +(3θ +(5/81))D

κ
i− 1 +((26/81) − 3θ)D

κ
i +(θ − (4/81))D

κ
i+1

− D
κ
i− 1/81( 􏼁 + 29D

κ
i /81( 􏼁 − D

κ
i+1/81( 􏼁

. (34)

Journal of Mathematics 7



Tis implies that
1

q
κ+1
3i

− λ �
N

D
, (35)

where

N �
− 81θ

q
κ
i− 1q

κ
i− 2

+
(243θ + 5 + λ)

q
κ
i− 1

+ 26 − 243θ − 29λ +(81θ − 4 + λ)q
κ
i ,

D � −
1

q
κ
i− 1

+ 29 − q
κ
i .

(36)

It can be seen that D � (81Dκ+1
3i+1/D

κ
i )> 0, and thus, to

prove N< 0, it is considered that

N �
− 81θ

q
κ
i− 1q

κ
i− 2

+
(243θ + 5 + λ)

q
κ
i− 1

+ 26 − 243θ − 29λ +(81θ − 4 + λ)q
κ
i

<
λ2 +(243θ + 5)λ − 81θ

λ
􏼢 􏼣

1
q
κ
i− 1

+ 26 − 243θ − 29λ +(81θ − 4 + λ)q
κ
i

< λ2 +(243θ + 5)λ − 81θ + 26 − 243θ − 29λ +(81θ − 4 + λ)q
κ
i .

(37)

Since

81θ − 4 + λ � − 1 +
5
81θ

+ 81θ> 0, (38)

therefore,

N< λ2 +(243θ − 24)λ − 324θ + 26 +(81θ − 4 + λ)λ

� 2λ2 +(324θ − 28)λ − 324θ + 26

� − 10 +
5
81θ

+ 162θ

< 0.

(39)

Tus, (1/qκ+1
3i ) − λ � (N/D)< 0, i.e.,

1
q
κ+1
3i

< λ. (40)

Since

1
q
κ+1
3i+1

�
− D

κ
i− 1/81( 􏼁 + 29D

κ
i /81( 􏼁 − D

κ
i+1/81( 􏼁

(θ − (4/81))D
κ
i− 1 +((26/81) − 3θ)D

κ
i +((5/81) + 3θ)D

κ
i+1 − θD

κ
i+2

, (41)

therefore,
1

q
κ+1
3i+1

− λ �
N

D
, (42)

where

N �
− 1 − (81θ − 4)λ

q
κ
i− 1

+ 29 − (26 − 243θ)λ +[− 1 − (5 + 243θ)λ]q
κ
i + 81θλq

κ
i q

κ
i+1,

D �
81θ − 4

q
κ
i− 1

+ 26 − 243θ +(5 + 243θ)q
κ
i − 81θq

κ
i q

κ
i+1.

(43)
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It can be seen that D � (81Dκ+1
3i+2/D

κ
i )> 0, and thus, to

prove N< 0, it is considered that

N �
− 1 − (81θ − 4)λ

q
κ
i− 1

+ 29 − (26 − 243θ)λ +[− 1 − (5 + 243θ)λ]q
κ
i + 81θλq

κ
i q

κ
i+1

<
− 1 − (81θ − 4)λ

q
κ
i− 1

+ 29 − (26 − 243θ)λ + 81θλ2 − (5 + 243θ)λ − 1􏽨 􏽩q
κ
i

<
− 1 − (81θ − 4)λ

q
κ
i− 1

+
81θλ2 − (5 + 243θ)λ − 1

λ
− (26 − 243θ)λ + 29

<
− 1 − (81θ − 4)λ

q
κ
i− 1

+
(324θ − 26)λ2 − (243θ − 24)λ − 1

λ
.

(44)

Since

− 1 − λ(81θ − 4) � 6 +
20
81θ

− 243θ> 0. (45)

It follows that

N<[− 1 − (81θ − 4)λ]λ +
(324θ − 26)λ2 − (243θ − 24)λ − 1

λ

�
1
λ

(4 − 81θ)λ3 +(324θ − 27)λ2 +(24 − 243θ)λ − 1􏽨 􏽩

� −
94
3

−
20(− 5 + 162θ)

6561θ2
+

5
15 + 729θ

< 0.

(46)

Tus, (1/qκ+1
3i+1) − λ � (N/D) < 0, i.e.,

1
q
κ+1
3i+1
< λ. (47)

Since

1
q
κ+1
3i+2

�
(− (4/81) + θ)D

κ
i− 1 +((26/81) − 3θ)D

κ
i +((5/81) + 3θ)D

κ
i+1 − θD

κ
i+2

− θD
κ
i− 1 +((5/81) + 3θ)D

κ
i +((26/81) − 3θ)D

κ
i+1 +(− (4/81) + θ)D

κ
i+2

, (48)

therefore,
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1
q
κ+1
3i+2

− λ �
N

D
, (49)

where

N �
81θ − 4 + 81θλ

q
κ
i− 1

+ 26 − 243θ − (5 + 243θ)λ +(5 + 243θ − (26 − 243θ)λ)q
κ
i

+[− 81θ − (81θ − 4)λ]q
κ
i q

κ
i+2

D � −
81θ
q
κ
i− 1

+ 5 + 243θ +(26 − 243θ)q
κ
i +(− 4 + 81θ)q

κ
i q

κ
i+1.

(50)

It can be seen that D � (81Dκ+1
3i+3/D

κ
i )> 0, and thus, to

prove N< 0, consider

N �
81θ − 4 + 81θλ

q
κ
i− 1

+ 26 − 243θ − (5 + 243θ)λ +[5 + 243θ − (26 − 243θ)λ]q
κ
i +[− 81θ − (81θ − 4)λ]q

κ
i q

κ
i+1. (51)

Since

81θ − 4 + 81θλ � 1 + 324θ> 0,

− 81θ − (81θ − 4)λ � 7 +
20
81θ

− 324θ > 0,

(52)

therefore,

N<(81θ − 4 + 81θλ)λ + 26 − 243θ − (5 + 243θ)λ +[5 + 243θ − (26 − 243θ)λ]q
κ
i

+[− 81θ − (81θ − 4)λ]λq
κ
i

< 81θλ2 − (9 + 162θ)λ + 26 − 243θ + (4 − 81θ)λ2 +(162θ − 26)λ + 5 + 243θ􏽨 􏽩q
κ
i .

(53)

Since

(4 − 81θ)λ2 +(162θ − 26)λ + 5 + 243θ

� − 57 −
5(− 20 + 567θ)

6561θ2
< 0,

(54)

therefore,

N< 81θλ2 − (9 + 162θ)λ +
(4 − 81θ)λ2 +(162θ − 26)λ + 5 + 243θ

λ
+ 26 − 243θ

�
1
λ

81θλ3 − (5 + 243θ)λ2 − 81θλ + 5 + 243θ􏽨 􏽩

�
1
λ

(λ − 1)(λ + 1) λ −
5 + 243θ
81θ

􏼠 􏼡

� 0.

(55)
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Tus, (1/qκ+1
3i+2) − λ � (N/D) < 0, i.e.,

1
q
κ+1
3i+2
< λ. (56)

Combining equations (40), (47), and (56), it can be seen
that (1/qκ+1

i )< λ, ∀κ ∈ 0{ }∪Z+.
Hence, by induction,

1
q
κ
i

< λ,∀κ ∈ 0{ }∪Z+
. (57)

Using equations (33) and (57) gives
1
λ
<Q

κ < λ, (58)

which completes the proof. □

In the following examples, the monotonicity preserva-
tion for 4-point ternary SS in equation (1) has been analyzed.

Example 1. Consider the set of initial control points and the
limit curve which is generated without satisfying the derived
sufcient condition of monotonicity. Figure 1(a) displays the
initial control polygon using the monotonic increasing set
{(1,1.5), (2,2), (3,4), (4,20.5), (5,21), (6,23), (7,36), (8,38),
(9,40)} in which the monotonicity additional condition is
not satisfed. Figure 1(b) displays the limit curve generated
by the scheme in equation (1) for θ � 0.0209 with a blue solid
line. Figure 1(c) displays the limit curve generated by the
scheme in equation (1) for θ � 0.039 with a red solid line. It
can be observed that the limit curves generated by the
scheme in equation (1) are not monotonic, as shown in
Figure 1(d). Te limiting curve after three iterations shows
that the curve is not monotonically increasing for these
initial control points because the limit curve does not satisfy
the derived conditions.

Example 2. To highlight the signifcance of the sufcient
condition of monotonicity, considering a set of initial
control points, the limit curve is generated which preserves
the monotonicity of the initial data. Figure 2(a) displays the
initial control polygon with the set {(1,1.5), (2,2), (3,4), (4,6),
(5,7.5), (6,8.2), (7,10.5), (8,12), (9,14)} in which the control
points are increasing monotonically, but the monotonicity
additional condition is satisfed. Figure 2(b) displays the
limit curve generated by the scheme in equation (1) for θ �

0.0209 with blue solid line. Figure 2(c) displays the limit
curve generated by the scheme in equation (1) for θ � 0.039

with red solid line. It can be observed that the limit curves
generated by the scheme in equation (1) are monotonic, as
shown in Figure 2(d). Te fnal limiting curve after three
iterations shows that the curve is monotonically increasing
for these initial control points.

Te convexity preservation of SS in equation (1) has been
analyzed in the following section.

2.2. Convexity Preservation. In order to maintain convexity,
the initial control points must be convex. Te convexity of
control points is determined by the second-order divided
diference (SODD). Te SODD is represented by dκ

j and
defned by dκ

j � 32κ(fκ
j− 1 − 2fκ

j + fκ
j+1). Suppose initial

control points for ternary four-point SS (1) are convex, i.e.,
d0

j > 0.Te SODD of four-point SS in equation (1) is given as
follows:

d
κ+1
3j �

1
9

(− 4 + 162θ)d
κ
j+1 +(17 − 324θ)d

κ
j +(− 4 + 162θ)d

κ
j− 1􏽨 􏽩,

(59)

d
κ+1
3j+1 �

1
3

(1 − 27θ)d
κ
j+1 +(2 + 54θ)d

κ
j − 27θd

κ
j− 1􏽨 􏽩, (60)

d
κ+1
3j+2 �

1
3

− 27θd
κ
j+2 +(2 + 54θ)d

κ
j+1 +(1 − 27θ)d

κ
j􏽨 􏽩. (61)

Te convexity-preserving condition that gives surety of
generating convex limit curve has been derived in the fol-
lowing theorem.

Theorem  . Consider cκj � dκ
j+1/d

κ
j and Rκ � maxj cκ

j ,􏽮

(1/cκ
j)}, ∀κ, j ∈ Z. If the initial control points are strictly

convex, i.e., d0
j > 0 such that parameter θ satisfes θ ∈ ]

4/243, 7/405[ and R0 < σ, where 1< σ < (324θ − 17/+324θ
− 8), then the ternary approximating SS in equation (1)
preserves convexity.

Proof. To get the result dκ
j > 0 and Rκ < σ, ∀κ ∈ 0{ }∪Z+ and

∀j ∈ Z, mathematical induction is used on κ.

(1) For κ � 0, d0
j > 0∀j ∈ Z, and R0 < σ, it clearly holds.

(2) It is assumed that dκ
j > 0 and Rκ

j < σ, and then, by
defnition of mathematical induction, it follows that
(1/σ)≤Rκ

j < σ ∀ κ ∈ Z and ∀j ∈ Z. Te result is to be
proved for κ + 1.

From equation (59), it is implies that
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Figure 1: Illustration for Example 1 limit curves after three steps of refnement. (a) Initial control polygon. (b) Limit curve for θ � 0.0209. (c)
Limit curve for θ � 0.039. (d) Limit curves.
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Figure 2: Illustration for Example 2 limit curves after three steps of refnement. (a) Initial control polygon. (b) Limit curve for θ � 0.0209. (c)
Limit curve for θ � 0.039. (d) Limit curves.
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d
κ+1
3j �

1
9

(− 4 + 162θ)d
κ
j− 1 +(17 − 324θ)d

κ
j +(− 4 + 162θ)d

κ
j+1􏽨 􏽩

�
d
κ
j

9
(− 4 + 16θ)

1
c
κ
j− 1

+(17 − 324θ) +(− 4 + 162θ)c
κ
j

⎡⎣ ⎤⎦

>
d
κ
j− 1

9
[(− 4 + 16θ)σ +(17 − 324θ) +(− 4 + 162θ)σ]

�
d
κ
j

9
σ −

17 − 324θ
− 8 + 324θ

􏼠 􏼡

> 0.

(62)

It shows that dκ+1
3j > 0 for 1< σ ≤ (17 − 324θ/8 − 324θ)

(equation. (60))

d
κ+1
3j+1 �

1
3

(− 27θ)d
κ
j− 1 +(2 + 54θ)d

κ
j +(1 − 27θ)d

κ
j+1􏽨 􏽩

�
d
κ
j− 1

3
(− 27θ) +(2 + 54θ)c

κ
j− 1 +(1 − 27θ)c

κ
j− 1c

κ
j􏽨 􏽩

>
d
κ
j− 1

3
− 27θ + (2 + 54θ) +(1 − 27θ)

1
σ

􏼒 􏼓c
κ
j− 1􏼔 􏼕

�
d
κ
j− 1

3σ2
σ −

1 + 27θ +
������
1 + 81θ

√

27θ
􏼠 􏼡 σ −

1 + 27θ +
������
1 + 81θ

√

27θ
􏼠 􏼡

> 0

(63)

which depicts that dκ+1
3j+1 > 0 for 1< σ ≤ (17 − 324θ/8 − 324θ).

Similarly, it can be shown that dκ+1
3j+2 > 0 for 1< σ ≤ (17 −

324θ/8 − 324θ) which results in dκ+1
j > 0, ∀j ∈ Z. Terefore,

by induction, dκ
j > 0∀j, κ ∈ Z.

To show Rκ+1 < σ, it is sufcient to prove (1/σ)< cκ+1
j < σ,

∀j ∈ Z,∀κ ∈ 0{ }∪Z+. Since

c
κ+1
3j �

d
κ+1
3j+1

d
κ+1
3j

,

�
3 (− 27θ)d

κ
j− 1 +(2 + 54θ)d

κ
j +(1 − 27θ)d

κ
j+1􏽨 􏽩

(− 4 + 162θ)d
κ
j− 1 +(17 − 324θ)d

κ
j +(− 4 + 162θ)d

κ
j+1􏽨 􏽩

,

(64)
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therefore,

c
κ+1
3j − σ � (− 4 + 162θ) +(17 − 324θ)c

κ
j− 1 +(− 4 + 162θ)c

κ
j− 1c

κ
j􏽨 􏽩

− 1

· − 81θ − (− 4 + 162θ)σ + c
κ
j− 1(6 + 162θ − 17σ + 324σθ) +(3 − 81θ + 4σ − 162θσ)c

κ
j− 1c

κ
j􏽨 􏽩

�
A

B
,

(65)

where B � (9dκ+1
3j /dκ

j− 1)> 0, To prove A> 0, it is assumed
that

A � − 81θ − (− 4 + 162θ)σ + c
κ
j− 1(6 + 162θ − 17σ + 324σθ) +(3 − 81θ + 4σ − 162θσ)c

κ
j− 1c

κ
j􏽨 􏽩

< − 81θ − (− 4 + 162θ)σ + c
κ
j− 1(6 + 162θ − 17σ + 324σθ) +(3 − 81θ + 4σ − 162θσ)σc

κ
j− 1􏽨 􏽩

� − 81θ − (− 4 + 162θ)σ + 6 − 14σ + 243σθ +(4 − 162θ)σ2􏽨 􏽩c
κ
j− 1􏽨 􏽩

� − 81θ − (− 4 + 162θ)σ + 6 − 14σ + 243σθ +(4 − 162θ)σ2􏽨 􏽩σ􏽨 􏽩

� (σ − 1) − 81θ +(10 − 81θ)σ + 2(− 2 + 81θ)σ2􏼐 􏼑􏽨 􏽩

< 0,

(66)

which proves that A< 0 for 1< σ < (17 − 324θ/8 − 324θ).
Tus, cκ+1

3j − σ � (A/B)< 0, i.e., cκ+1
3j < σ. Since

c
κ+1
3j+1 �

d
κ+1
3j+2

d
κ+1
3j+1

�
(1 − 27θ)d

κ
j +(2 + 54θ)d

κ
j+1 +(− 27θ)d

κ
j+2􏽨 􏽩

(− 27θ)d
κ
j +(2 + 54θ)d

κ
j +(1 − 27θ)d

κ
j+1􏽨 􏽩

,

(67)

therefore,

c
κ+1
3j+1 − σ �

(1 − 27θ) − (2 + 54θ)σ +(2 + 54θ − σ + 27θσ)c
κ
j + 27 θσ/cκj− 1􏼐 􏼑 − 27θc

κ
jc

κ
j+1􏽨 􏽩

(− 27θ) 1/cκj− 1􏼐 􏼑 +(2 + 54θ) +(1 − 27θ)c
κ
j􏽨 􏽩

�
A

B
.

(68)

Since the denominator B � (3dκ+1
3j+1/d

κ
j)> 0, therefore, to

show A< 0, it is considered that
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A � (1 − 27θ) − (2 + 54θ)σ +(2 + 54θ − σ + 27θσ)c
κ
j + 27

θσ
c
κ
j− 1

− 27θc
κ
jc

κ
j+1

⎡⎣ ⎤⎦

< (1 − 27θ) − (2 + 54θ)σ +(2 + 54θ − σ + 27θσ)c
κ
j + 27

θσ
σ

− 27
θ
σ

c
κ
j􏼢 􏼣

� 1 − (2 + 54θ)σ + 2 + 54θ − σ + 27θσ − 27
θ
σ

􏼠 􏼡c
κ
j􏼠􏼢 􏼣

� 1 − (2 + 54θ)σ + 2 + 54θ − σ + 27θσ − 27
θ
σ

􏼠 􏼡σ􏼠􏼢 􏼣

� 1 − 27θ − σ2 + 27θσ􏽨 􏽩

< 0,

(69)

which shows that A< 0 for 1< σ < (324θ − 17/+324θ − 8).
Tus, cκ+1

3j+1 − σ � (A/B)< 0, i.e., cκ+1
3j+1 < σ.

Similarly, it can be proved that cκ+1
3j+2 < σ for 1< σ <

(324θ − 17/+324θ − 8).
Tus,

c
κ
j < σ∀κ≥ 0, κ ∈ Z. (70)

To prove (1/ck
j )< σ, it is considered that

1
c
κ+1
3j

�
d
κ+1
3j

d
κ+1
3j+1

�
(− 4 + 162θ)d

κ
j +(17 − 324θ)d

κ
j+1 +(− 4 + 162θ)d

κ
j+2􏽨 􏽩

3 (− 27θ)d
κ
j− 1 +(2 + 54θ)d

κ
j +(1 − 27θ)d

κ
j+1􏽨 􏽩

,

(71)

which gives

1
c
κ+1
3j

− σ � (− 27θ) +(2 + 54θ)c
κ
j +(1 − 27θ)c

κ
jc

κ
j+1􏽨 􏽩

− 1

× (− 4 + 162θ) + 27θσ +(17 − 324θ − 2σ − 54θσ)c
κ
j− 1(− 4 + 162θ − σ − 27θσ)c

κ
j− 1c

κ
j􏽨 􏽩

�
A

B
.

(72)

Since the denominator of the above equation
(3dκ+1

3j+1/d
κ
j)> 0, therefore, B> 0. To show that A> 0, it is

considered that
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A � (− 4 + 162θ) + 27θσ +(17 − 324θ − 2σ − 54θσ)c
κ
j− 1 +(− 4 + 162θ − σ − 27θσ)c

κ
j− 1c

κ
j􏽨 􏽩

< (− 4 + 162θ) + 27θσ +(17 − 324θ − 2σ − 54θσ)c
κ
j− 1 +(− 4 + 162θ − σ − 27θσ)

1
σ

c
κ
j− 1􏼔 􏼕

� (− 4 + 162θ) + 27θσ + 16 − 351θ − 2σ −
4
σ

+
162θ
σ

− 54θσ􏼠 􏼡c
κ
j− 1􏼢 􏼣

� (− 4 + 162θ) + 27θσ + 16 − 351θ − 2σ −
4
σ

+
162θ
σ

− 54θσ􏼠 􏼡σ􏼢 􏼣

� − 2 − 2 4 − 162θ + σ2(1 + 27θ) + 2σ(− 4 + 81θ)􏼐 􏼑􏼐 􏼑􏽨 􏽩

< 0,

(73)

which shows that A< 0 for 1< σ < (324θ − 17/+324θ − 8).
Tus, (1/cκ+1

3j ) − σ � (A/B)< 0, i.e., (1/cκ+1
3j )< σ. It is con-

sidered that

1
c
κ+1
3j+1

�
d
κ+1
3j+1

d
κ+1
3j+2

�
− 27θd

κ
j− 1 +(2 + 54θ)d

κ
j +(1 − 27θ)d

κ
j+1􏽨 􏽩

(1 − 27θ)d
κ
j +(2 + 54θ)d

κ
j+1 − 27θd

κ
j+2􏽨 􏽩

,

(74)

which gives

1
c
κ+1
3j+1

− σ �
− 27θ 1/cκ

j− 1􏼐 􏼑 +(2 + 54θ) +(1 − 27θ)c
κ
j − (1 − 27θ)σ − (2 + 54θ)c

κ
jσ + 27θσc

κ
jc

κ
j+1􏽨 􏽩

(1 − 27θ) +(2 + 54θ)c
κ
j − 27θc

κ
j+1c

κ
j􏽨 􏽩

�
A

B
.

(75)

Since the denominator of the above equation
B � (dκ+1

3j+2/d
κ
j)> 0, therefore, to show A< 0, it is considered

that

A � − 27θ
1

c
κ
j− 1

+(2 + 54θ) +(1 − 27θ)c
κ
j − (1 − 27θ)σ − (2 + 54θ)c

κ
jσ + 27θσc

κ
jc

κ
j+1

⎡⎣ ⎤⎦

< − 27θσ +(2 + 54θ) +(1 − 27θ)c
κ
j − (1 − 27θ)σ − (2 + 54θ)c

κ
jσ + 27θσ2cκ

j􏽨 􏽩

� 2 + 54θ − σ + 1 − 27θ − 2σ − 54θσ + 27θσ2􏼐 􏼑c
κ
j􏽨 􏽩

� 2 + 54θ − σ + 1 − 27θ − 2σ − 54θσ + 27θσ2􏼐 􏼑σ􏽨 􏽩

� 2 + 54σ − 2σ2 − 27θσ − 54θσ2 + 27θσ3􏽨 􏽩

< 0,

(76)
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which shows that A< 0 for 1< σ < (324θ − 17/+324θ − 8).
Tus, (1/cκ+1

3j+1) − σ � (A/B)< 0, i.e., (1/cκ+1
3j+1)< σ. Similarly,

it can be shown that (1/cκ+1
3j+2)< σ. Tus,

1
c
κ
j

< σ, ∀κ ∈ 0{ }∪Z+
. (77)

Combining equations (28) and (29), it can be written as
(1/σ)< cκ+1

j < σ.
By induction, (1/λ)< cκ

j < λ,∀κ ∈ 0{ }∪Z+ i.e., Rκ < λ.
Tis completes the proof. □

Te productivity of convexity preservation for ternary SS
in Eq. (1) is determined in the following examples. Te
tension parameter (4/243)< θ< (7/405) is involved in ter-
nary SS in equation (1). After three iterations of refnements,
the limit curves are achieved. Each case has a set of strictly
convex initial control points.

Example 3. Assume that the initial control points are
strictly convex (− 3, 0.5), (− 2.5, 1.6319), (− 2, 2.5174),{ (− 1.5,

3.0709), (− 1, 3.3316), (− 0.5, 3.3514), (0, 3.1073), (0.5,2.

5587), (1, 1.7444), (1.5, 0.6798)}. With the control polygon,
the limiting curve looks like in Figure 3(a). Control points
are denoted by ‘‘°″ in the fgure, while newly generated
control points are represented by ‘‘⋆″. Tere are two lines in

this fgure: one representing the initial control polygon and
the other representing the limit curve after three iterations.
Tere is also a separate illustration of the limit curve in
Figure 3(b). Te derived condition R0 < σ is satisfed by a set
of control points for θ � (41/1215). As a result, the limiting
curve is obtained by equation (1), which is preserving the
convexity.

Another set of strictly convex control points (− 3, −{

50.5), (− 2, − 25.5), (− 1, − 7.5), (0, 5), (1, 5.5), (2, 5), (3, − 6.5),

(4, − 24.5), (5, − 49.5)} are considered. Te derived condition
R0 < σ is not satisfed by this set of control points. As a result, the
limiting curve obtained by SS in equation (1) does not preserve
the convexity. Te initial control polygon with the limit curve is
represented in Figure 3(c).Tere are two lines in this fgure: one
representing the initial control polygon and the other repre-
senting the limit curve after three iterations. Tere is also
a separate illustration of the limit curve in Figure 3(d). Te
limiting curve is not preserving the convexity, and it is shown for
θ � (41/1215).

2.3. Curvature Analysis. In this section, the curvature plots
are drawn from limiting curves.

From the above examples, it is concluded that the
limiting curves generated by the convex data points may not
retain the convexity preservation. Terefore, in Teorem 3,
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Figure 3: Limit curves after three steps of refnement. (a) Initial control polygon with limit curve. (b) Limit curve for θ � (41/1215).
(c) Initial control polygon with limit curve. (d) Limit curve for θ � (41/1215).
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Figure 4: Curvature plots of the limit curve in Figure 3(b) (a) and Figure 3(d) (b).
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the additional condition R0 < σ is extracted. If convex data
points satisfy this condition, then the limit curve will cer-
tainly preserve convexity.

Curvature plots are drawn for the limiting curve in
Figures 3(b) and 3(d), which are presented in Figures 4(a)
and 4(b), respectively. Te importance of the derived
condition R0 < σ is depicted by these curvature plots in
Figures 4(a) and 4(b). Two sets of convex initial control
points in Example 3 are given. Te frst set of convex
points satisfes the derived condition; therefore, the
curvature plot, as depicted in Figure 4(a), shows that the
limiting curve does not alter its direction, which gives the
guarantee of not involving infection points. Te second
set of convex control points does not satisfy the extracted
condition R0 < σ. Terefore, the curvature plot in
Figure 4(b) shows that the limiting curve corresponding
to the second set of convex control points is altering its
direction, which depicts that there must be infection
points in the limiting curve. As a result, the limit curve
does not retain convexity preservation.

3. Conclusion

In this paper, two shape-persevering properties such as
monotonicity and convexity preservation of ternary
four-point approximating SS involving tension param-
eter (4/243)< θ< (7/405) are determined. Te additional
conditions for the monotonicity and convexity preser-
vation of four-point ternary SS in equation (1) are
extracted in Teorems 2 and 3, respectively. Initially,
monotonically increasing data does not ensure the ex-
traction of a monotone limiting curve. From Teorem 2,
it has been concluded that if the initial data is mono-
tonically increasing and satisfes the derived condition
from equation (7), then the four-point ternary SS in
equation (1) must preserve the monotonicity. Since
initial convex data may not lead to generating a convex
limiting curve, therefore, an additional condition
1< σ < (324θ − 17/324θ − 8) has been derived. Teorem 3
concludes that, if the initial data is convex and satisfes
the derived additional condition 1< σ < (324θ−

17/324θ − 8), then four-point ternary SS in equation (1)
must preserve the convexity. To demonstrate the im-
portance of deriving conditions, curvature plots are also
drawn, showing that if initial control points do not
satisfy the conditions of convexity, the scheme in
equation (1) may give rise to unwanted twists and in-
fection points in the limit curve.

Te research fndings demonstrate the convexity and
monotonicity preservation of the proposed SS in equation
(1) under specifc conditions, which has signifcant academic
implications and practical applications. However, there
might be some limitations and areas for further exploration
to enhance the scheme’s versatility and robustness in dif-
ferent contexts. For further research, an additional condition
can be further generalized or relaxed while still ensuring the
convexity and monotonicity of the subdivision scheme. Tis
could potentially make the scheme applicable to a broader
range of initial data.
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