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In this paper, a new approach is proposed to construct willow tree (WT) for generalized hyperbolic (GH) Lévy processes.Tere are
two advantages of our proposed approach compared to the classical WTmethods. Firstly, it avoids the moments matching from
Johnson curve in the knownWTconstruction. Secondly, the error of European option pricing is only determined by time partition
∆t under some conditions. Since the moments of Lévy measure are removed from this algorithm, our approach improves the
stability and accuracy of WT in option pricing. Numerical experiments support our claims. Moreover, the new approach can be
extended to other Lévy processes if their characteristic functions are expressed by explicit forms.

1. Introduction

To provide more modeling tools on jump types, the Lévy
process is a generalization of the difusion processes by
allowing infnite jump activity. Te standard form of the
Lévy process assumes stationary increments, hence resulting
in nice analytic tractability. Te assumption of Lévy pro-
cesses makes it a good choice for pricing equity derivatives.
Generalized hyperbolic (GH, see [1]) process is a class of
Lévy processes with wide application in fnancial feld.
Variance gamma (VG, see [2, 3]) and normal inverse gamma
(NIG, see [4–7]) processes are two special cases of the GH
model. VG and NIG models can be obtained from a ran-
domized time-changed clock. Te time-changed processes
and general Lévy processes exhibit stochastic volatility such
that they become capable of capturing volatility smile, smile
skew, and term structure of the smile. Also, the hyperbolic
(HYP) distribution and the Gauss normal (GN) distribution
are viewed as subclasses of the GH model.

Currently, there are fve popular numerical methods to
price options under Lévy processes, binomial tree methods
(BTMs, see [3, 8, 9]), fnite diference methods (FDMs, see
[10–13]), Monte Carlo methods (MCM, see [14]), FFT-
based transformation methods (see [15–18]), and cosine-

willow tree methods (see [19]). For BTMs and WTMs,
computing transition probabilities (TPs) is an in-
surmountable barrier. Although a few literature studies
discuss BTMs and WTMs for Lévy processes, the accuracy
and computational efciency of them are needed to be
enhanced. To use FDMs to valuate options, corresponding
partial integral-diferential equations (PIDEs) should be
established. Generally, PIDEs governed by Lévy processes
are very complicated such that PIDEs are limited in several
options. Te Monte Carlo method is straightforward, but it
is quite time-consuming to generate random samples for
the Lévy process. Te FFT-based transformation method is
the most popular one in option pricing, such as the COS
method (see [16]) and PROJ method (see [17]). Te COS
method employs a cosine series expansion on the risk-
neutral return density and estimates the European option
price based on the numerical integration on (− ∞, +∞).
However, it is hard to determine a proper fnite interval
[a, b] to truncate (− ∞, +∞) for the integration (see
[15, 18, 20]) and is hard to be extended to path-dependent
options. Te PROJ method overcomes these shortcomings
and is extendable to Asian options, variance swaps, and
American options but its extendability is still limited
compared to the Cosine-willow tree method.
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Te key of the WT method for option pricing is to
construct willow tree structure (see [13]). In this paper, we
propose WT algorithms for GH Lévy processes. Te main
contributions of this paper are fourfolds.

(1) An numerical algorithm is proposed to compute the
probability density functions (PDFs) and cumulative
distribution probabilities (CDPs) from the charac-
teristic functions (CDs) of GH processes. Tis al-
gorithm is unifed and suitable for all GH subclass
models.

(2) In FFT-based transformation methods (see
[15, 18, 20, 21]), it is hard to fnd a proper fnite
interval [a, b] to truncate the integration over
(− ∞, +∞). While in theWTmethod, we propose an
adaptive integration method in which the appro-
priate integral interval [a, b] is automatically found.
In determining [a, b], the WT algorithm does not
consume too much extra computational efort.

(3) By setting appropriate m discrete stock prices at each
time tn and calculating transform probabilities p

(n)
ij

from tn to tn+1, WT structure is constructed. Unlike
Ma et al. [19], it is not needed to estimate the k-order
moments of the GH Lévy model when selecting m

nodes at each time tn. Te determination of m nodes
at each time tn only relies on PDFs or CDFs of GH
processes, which makes our WT programming run
fast than those developed by Ma et al. (see [19]).

(4) Te convergence rate O(∆t) of European option on
the WT structure is proved. Numerical experiments
show that American options computed by our WT
algorithm are also convergent for time partition ∆t

and the underlying partition number m.

Te remaining parts of this paper are arranged as follows.
Basic conceptions are reviewed in Section 2. Calculation of

PDFs and CDFs is illustrated in Section 3. Te convergence
analysis for European options is discussed in Section 4.
Numerical examples of GH Lévy processes are carried out in
Section 5. Some conclusions and remarks are given in the
fnal section.

2. GH Lévy Processes

In option pricing with non-Gaussian processes, the asset
price process St is defned as an exponential Lévy process Xt,
i.e.,

St � S0e
r+ωGH( )t+Xt , (1)

where r is the risk-free interest rate and ωGH is a martingal
adjustment parameter under risk-neutral measureQ. Under
the GH Lévy processes (1), option pricing becomes more
complicated than the classical BS model. For FDMs, partial
integral-diferential equations (PIDEs) are needed, and then
numerical schemes should be designed to solve these PIDEs.
For BTMs and WTMs, calculating transform probabilities
(TPs) cannot be avoided. Formulating PIDEs, designing
numerical schemes for PIDEs, and calculating TPs for BTMs
and WTMs are not easy tasks.

We consider the generalized hyperbolic (GH)model (see
[1, 22, 23]) whose characteristic function with fve param-
eters (α, β, δ, μ, λ) is defned by the following equation:

ϕGH
(u) � e

iμu α2 − β2

α2 − (β + iu)2
 

λ/2Kλ δ
�����������

α2 − (β + iu)
2



 

Kλ δ
������

α2 − β2


 

,

(2)

where Kλ(·) is the λthorder-modifed Bessel function of the
second kind. Te density function of the GH model ρGH(x)

can be derived as follows:

ρGH(x) �
α2 − β2 

λ/2
δ2 +(x − μ)

2
 

λ/2− 1/4

���
2π

√
(αδ)

λ− 1/2δ1/2Kλ δ
������

α2 − β2


 

e
β(x− μ)

Kλ− 1/2 α
�����������

δ2 +(x − μ)
2



 . (3)

In CFs (2), μ ∈ R and the other parameters satisfy the
following constraints:

δ ≥ 0, α> 0, |β|< α if λ> 0,

δ > 0, α> 0, |β|< α if λ � 0,

δ > 0, α≥ 0, |β|≤ α if λ< 0.

⎧⎪⎪⎨

⎪⎪⎩
(4)

TeGH distribution embeds various distributions under
special choices of the parameters. Te parameter λ de-
termines the subclass of the GH distribution. When λ � 1,
the GH distribution reduces to the hyperbolic distribution
(HYP) whose logarithm of density is a hyperbolic. In ad-
dition, when δ⟶∞ and δ/α⟶ σ2, the GH distribution

reduces to the Gauss normal (GN) distribution. Further-
more, when δ � 0 and μ � 0, the GH distribution becomes
the variance gamma (VG) distribution; when λ � − 1/2, it
becomes the normal inverse Gaussian (NIG) distribution.
Table 1 gives the four diferent categories of the GH model.

Figure 1 plots the graphs of ρGH(x) with diferent values
of parameters. From the Figure, we see the shape of tail,
skewness, and kurtosis of the GH distribution which are
controlled by α, β, and δ, respectively.

Because the GH law is infnitely divisible, one can
construct a GH Lévy process Xt whose distribution at fxed
time t has characteristic function ϕXt

. Te characteristic
function is described by the following equation (see [22]):
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ϕXt
(u) � E e

iuXt 

� 
∞

− ∞
e

iuxρGHt (x)dx

� ϕGH
(u) 

t
:

� e
iμut ϕGH

(u) 
t

.

(5)

where i �
���
− 1

√
, ρGHt (x) is the density function of GH

process at time t, and ϕGH(u) is defned as (2). Te
function ϕGH

(u) � ϕGH(u)e− iμu is the part in which the
oscillating factor eiμu is removed. Te characteristic expo-
nent of GH process is as follows:

ψX(u) �
1
t
logϕXt

(u)

� log ϕGH
(u).

(6)

Since a Lévy process is an infnitely divisible distribution,
the Lévy-Khintchine theorem (see Teorem 8.1 in [24]) for
an infnitely divisible distribution can be applied to establish
the characteristic exponent ψX(u) of a Lévy process Xt.
ψX(u) admits the Lévy–Khintchine representation, i.e.,

ψX(u) � iμu −
σ2u2

2
− 

R/ 0{ }
1 − e

iux
+ iux1|x|<1 Π(dx). (7)

Te Lévy measure Π(dx) is defned on the real domain
excluding zero with Π( 0{ }) � 0. Te triplet (μ, σ2,Π) is
called the Lévy characteristic of Xt, where μ ∈ R is the
constant drift, σ > 0 is the constant volatility of the con-
tinuous component, and Π is the Lévy measure that
represents the expected number of jumps per unit time. In
GH model (1), the parameter σ is set as zero. Te Lévy
measure of the GH model has no explicit analytic form
and it can be expressed only in terms of integrals (see
[25]). To satisfy the martingale condition EQ[St|S0] � S0 in
SDE (1), the adjustment parameter is chosen as
ωGH � − ψX(− i).

Te density function ρGHt (x) can be restored from
characteristic function ϕXt

(u) by numerical inverse integral.
Once the characteristic function (5) is given, the density
function ρGHt (x) is expressed as

ρGHt (x) �
1
2π


∞

− ∞
e

− iuxϕXt
(u)du

�
1
2π


∞

− ∞
e

− iu(x− μt) ϕX(u) 
t
du,

(8)

with defnition ϕX(u) in (5). We note that the integral factor
e− iu(x− μt) is the part with high frequency oscillation, whereas
ϕX(u) is decaying quickly as |u|⟶∞. Tis observation is
very important for computing the density function ρGHt (x),
numerically.

3. Willow Tree Algorithm

3.1.WillowTree Structure. Awillow tree for the GHmodel is
represented by Xn

i , Sn
i , p

(n)
ij , where Xn

i is discrete nodes of
Lévy processes Xt at time tn, Sn

i � S0e
(r+ωGH)t+Xn

i is un-
derlying prices, and p

(n)
ij is the transition probability. As

shown in Figure 2, there are two main stages to construct
a willow tree: (i) selecting the discrete tree nodes, Xn

i

(i � 1, 2, 3, · · · , m and n � 1, 2, · · · , N), for Xt at each time tn

and (ii) determining the transition probability, p(n)
ij , from Xn

i

at tn to Xn+1
j at tn+1 on a discrete time points

0 � t0 < t1 < t2 < · · · < tN � T with tn � n∆t and ∆t � T/N,
n � 1, 2, · · · , N.

Firstly, the discrete pairs (Xn
i , qi) (i � 1, 2, · · · , m; n �

1, 2, . . . , N) are selected to approximate the distribution of
Xt at time tn. Te cumulative distribution functions (CDFs)
of Xt � Xn

i at tn are computed by

F
n

X
n
i(  � 

Xn
i

− ∞
ρGHtn (x)dx ≔ qi, i � 1, 2, . . . , m; n � 1, 2, . . . , N.

(9)

After setting discrete probabilities,

qi �
(i − 0.5)

m
, i � 1, 2, · · · , m, (10)

we can numerically determine Xn
i by solving equation (9) if

the integral can be computed efciently and accurately. Very
diferent from the classical WT method (see [19]), the de-
termination of nodes Xn

i avoids computing k-order mo-
ments of Xt. Tis modifcation makes our algorithms more
easily and widely available for Lévy processes.

Secondly, the transition probability between two con-
secutive discrete times tn and tn+1 is computed as

p
(n)
ij � P ∆(down)

n,ij ≤X
n+1

− X
n
i ≤∆

(up)
n,ij 

� 
∆(up)

n,ij

∆(do wn)

n,ij

ρGH∆t (x)dx,
(11)

with increments of Lévy processes. Increments ∆(down)
n,ij and

∆(up)
n,ij are defned as

∆(down)
n,ij �

1
2

X
n+1
j− 1 + X

n+1
j  − X

n
i ,

∆(up)
n,ij �

1
2

X
n+1
j + X

n+1
j+1  − X

n
i .

(12)

In computation (11), n � 0, 1, . . . , N − 1 and
i, j � 1, 2, . . . , m, and an exception is that X0

i ≡ 0 with i ≡ 1.

Table 1: Special cases of GH distribution.

Parameters Type of distribution
λ � 1 HYP: hyperbolic distribution

λ � − 1/2 NIG: normal inverse Gaussian
distribution

δ/α⟶ σ2 and δ⟶∞ GN: Gaussian normal distribution
δ⟶ 0, μ⟶ 0 VG: variance gamma distribution
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Tere are two most important aspects in willow tree
construction. One is to calculate PDF ρGHtn (x) and then
generate willow tree nodes Xn

i  and another is to compute
transition probability p

(n)
ij via ρGH∆t (x) for given ∆t. Once

the PDFs ρGHtn (x) and ρGH∆t (x) are computed, the willow
tree algorithm can be applied in some types of option
pricing, such as European, American, Asian options, and
so on.

3.2.NumericalComputingofPDFsandCDFs forGHProcesses.
Firstly, we numerically compute the PDFs ρGHt (x) defned
by (8). Tere is a challenge for the high frequency oscillation
of integral kernel e− iu(x− μt) when the value of (x − μt) is
large. We consider the following truncation:

ρGHt (x) �
1
2π


∞

− ∞
e

− iu(x− μt) ϕX(u) 
t
du ≈

1
2π


B

A
e

− iu(x− μt) ϕX(u) 
t
du. (13)

In the above expression, A is a sufciently large negative
number and B is a large enough positive constant. Let
partition nodes uk � A + k∆u for k � 0, 1, · · · , M with
∆u � (B − A)/M. Ten, ρGHt (x) can be numerically in-
tegrated (NI), i.e.,

NI: ≈
1
2π


M− 1

k�0
θt

k 
uk+1

uk

e
− iu(x− μt)

du �
1

2πi(μt − x)


M− 1

k�0
θt

kC
t
k

≔ ρGHt (x),

(14)
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Figure 1: Density function ρGH(x) with parameters λ � − 1/2, α � 4.5, β � 0.15, μ � − 0.1, and δ � 0.2: (a) density functions with diferent
α, (b) density functions with diferent β, and (c) density functions with diferent δ.

t0 t1 t2 t3 t4

Figure 2: Graphical depiction of the willow tree lattice with 5 possible asset prices and 4 discrete times.
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with notation

θt
k �

1
2

ϕX uk ( 
t

+ ϕX uk+1 ( 
t

 ,

C
t
k � i(μt − x) 

uk+1

uk

e
− i(x− μt)u

du � e
− i(x− μt)u

|
u�uk+1
u�uk

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

Remark 1. Te numerical formula (14) plays a key role for
both t � tn and t � ∆t. (i) Let t � tn, we can calculate CDFs
Fn(Xn

i ) at each time tn. (ii) Nodes Xn
i  can be determined by

solving Ftn (Xn
i ) � qi for i � 1, 2, · · · , m (see expression (9)).

(iii) Transition probabilities p
(n)
ij (see formula (11) can be

calculated by numerical approximation with t � ∆t. (iv)
Using formula (14), we can expand the range of [A,B] until
the result ρGHt (x) does not change much, which can be seen
as an adaptive algorithm.

Remark 2. Since the absolute values of characteristic
function ϕX(u) are decreasing to zero as u tends to ±∞, the
nodes uk  can be selected as nonuniform, for example,

uk � B
k

M
 

κ

and uk � A
k

M
 

κ

, (16)

with κ> 1 for k � 1, 2, · · · , M. Using nonuniform nodes uk ,
we can achieve more accurate ρGHt (x) with less nodes.

Next, we compute transition probabilities p
(n)
ij with

defnition (11). Taking discrete values
− ∞< x0 <x1 < · · · < xi � Xn

i with sufciently large negative
number x0 and sufciently small
∆x ≔ � max1≤j≤i[xj − xj− 1], CDFs Fn(Xn

i ) are approxi-
mated by

F
n

X
n
i(  ≈

1
2



i

j�1
ρGHtn xj− 1  + ρGHtn xj   xj − xj− 1 , (17)

for i � 1, 2, · · · , m and n � 1, 2, · · · , N. Te transition prob-
ability p

(n)
ij is approximated by

p
(n)
ij � F

n�1 ∆(up)
n,ij  − F

n�1 ∆(down)
n,ij , (18)

with ∆(up)
n,ij and ∆(down)

n,ij being denoted by expression (12).
Using (9) and (14)–(18), Algorithm 1 describes the details of
constructing willow tree Xn

i , Sn
i , p

(n)
ij  for GH Lévy

processes.

3.3. European and American Options. After the willow tree
Xn

i , Sn
i , p

(n)
ij  is constructed, European and American op-

tions can be valued on WT backward. Other options (Asian,
Lookback, and so on) also can be computed fromWTand we
omit the details.

Defne by Vn
i the option values at time tn with underlying

Sn
i � S0e

(r+ωGH)tn+Xn
i . Option values V at t � 0 with param-

eters (S0, K, T, r) can be computed from willow tree as
follows:

V
N
i � f S

N
i , for i � 1, 2, . . . , m,

V
n
i � e

− r∆t


m

j�1
p

(n)
ij V

n+1
j , for n � N − 1, N − 2, . . . , 1,

V S0, K, T, r(  � e
− r∆t



m

j�1
p

(0)
1j V

1
j ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where payof function f(ξ) � (ξ − K)+ for call options,
whereas f(x) � (K − ξ)+ for put options.

American option value V at time zero with parameters
(S0, K, T, r) can be determined backward on willow tree.

V
N
i � f S

N
i , for i � 1, 2, . . . , m;

V
n
i � max e

− r∆t


m

j�1
p

(n)
ij V

n+1
j , f S

n
i( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, for n � N − 1, N − 2, . . . , 1;

V S0, K, T, r(  � max e
− r∆t



m

j�1
p

(0)
1j V

1
j , f S0( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

American options via willow tree are described in
Algorithm 2.

3.4. A Simple Method to Determine m Nodes at Each Time tn.
To generate m nodes Xn

i at each time tn, it is much time-
consuming according to Step 6 in Algorithm 1. We give
a simple algorithm to generate m nodes only depending on

CDFs Fn(·) (see (17)). Assume Xn
i  as given, the nodes Xn+1

i

are generated as follows. Find Xn+1
i such that



m

j�1
F

n�1 ∆i,j
n X  � (i − 0.5) ≔ mqi,with∆

i,j
n X � X

n+1
i − X

n
j ,

(21)
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for i � 1, 2, · · · , m, where Fn�1(·) is the CDFs of the GH
model (defned in (17)) and qi � (i − 0.5)/m. If the discrete
probability distribution F, x{ } is given with probabilities F �

[F1, F2, · · · , FL]′ and corresponding increments
x � [x1, x2, · · · , xL]′, then Xn+1

i can be obtained by
interpolation:

X
n+1
i � interp F, x, mqi(  + X

n
i , i � 1, 2, · · · , m. (22)

Now, we describe the method of generating nodes
Xn

i , Sn
i  as in Algorithm 3. Compared with the method

proposed by this algorithm avoids to compute the k-mo-
ments of Xt. Te modifcation of our algorithm saves much
CPU time in willow tree construction.

4. Convergence Analysis

Errors of option pricing from willow tree have two aspects:
the errors ε(ρ) � ρGHt (x) − ρGHt (x) (see (14)) coming from
the calculation for PDFs (or CDFs) and the errors from

backward computation on willow tree (see (19) and (20)).
We give some detailed analysis in this section.

4.1. Errors of PDFs and CDFs. We know that the absolute
value of characteristic function ϕX(u) is decreasing to zero
as u tends to ±∞. So, the error ε(ρ) can be estimated as
follows.

Theorem 3. Assume that the characteristic function satisfes
|ϕX(u)|≤ ϵ/2 for u ∉ (A, B), then

ε(ρ) � ρGHt (x) − ρGHt (x)


≤
1

2π|μt − x|
ϵ + O

1
M

2  , x≠ μt,

(23)

where PDFs ρGHt (x) and estimated PDFs ρGHt (x) are defned
by (14) and M is the number of nodes uk .

Proof. It is obvious that

%% Input parameters
Step 1. Set GH-model parameters (α, β, μ, δ, λ, T).
%% Compute probability density function
Step 2. Set willow tree parameters (N, m) and computational parameters M. N represents the number of time discretization and m

represents the number of X-nodes at each time tn. M is the number in NI formula (14) for PDFs ρGHt (x).
%% Compute probability density function for t � tn and t � Δt.
Step 3. Set discrete space nodes uk � A + kΔu with Δu � (B − A)/M for k � 1, 2, · · · , M.
Step 4. Compute θt

k and Ct
k for k � 0, 1, · · · , M − 1 using formulas (15);

Step 5. According to (14), compute PDFs ρGHt (x) on given points xi i�1: m.
%% Generate WT nodes and compute transition probabilities.

Step 6. According to (17), compute Fn(Xn
i ) at each time t � tn. By solving (3.1), determine nodes Xn

i for n � 1, 2, · · · , N and
i � 1, 2, · · · , m.
Step 7. Compute discrete underlying Sn

i � S0e
(r+ωGH)tn+Xn

i for n � 1, · · · , N and i � 1, 2, · · · , m.
Step 8. Based on (18), compute transition probability p

(n)
ij for n � 0, 1, · · · , N − 1 and i, j � 1, 2, · · · , m.

Step 9. Willow tree Xn
i , Sn

i , p
(n)
ij  for the GH model is constructed.

ALGORITHM 1: Willow tree construction.

%% Input parameters and prepare willow tree
Step 1. Set willow tree parameters (N, m) and computational parameters M. N represents the number of time discretization and m

represents the number of X-nodes at each time tn. M is the number in NI formula (14) for PDF ρGHt (x).
Step 2. Generate willow tree Xn

i , Sni , p(n)
ij  by Algorithm 1.

%% Compute options backward from time tN to t1

Step 3. Compute payof function at time T, i.e., VN
i � f(SN

i ) for i � 1, 2, · · · , m, where f(ξ) � (ξ − K)+ for call options, whereas
f(x) � (K − ξ)+ for put options.
Step 4. For n � N − 1 to 1
—— Compute European values Vn

i (E) � e− r∆t
m
j�1p

(n)
ij Vn+1

j for i � 1, 2, · · · , m

—— Compute exercise values Vn
i (A) � f(Sn

i ) for i � 1, 2, · · · , m

—— Take American values Vn
i � max Vn

i (E), Vn
i (A)  for i � 1, 2, · · · , m

EndFor
%% Output American option V(S0, K, T, r)

Step 5. Calculate option value V(S0, K, T, r) � max e− rΔt
m
j�1p

(0)
1j V1

j , f(S0) .

ALGORITHM 2: American option pricing on willow tree.
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ε(ρ) � ρGHt (x) − ρGHt (x) �
1
2π

× 
A

− ∞
e

− iu(x− μt)
g(u; t)du + 

+∞

B
e

− iu(x− μt)
g(u; t)du + 

B

A
[g(u; t) − g(u; t)]du ,

(24)

where g(u; t) � [ϕX(u)]t and g(u; t) � 1/2
[ϕt

X(uk) + ϕt
X(uk+1)] for u ∈ (uk, uk+1). From error esti-

mation of composite trapezoidal rule (see Richard and
Dougals Faires [26]), we have

|ε(ρ)| � ρGHt (x) − ρGHt (x)


≤
1
2π

×
ϵ
2


A

− ∞
e

− iu(x− μt)
du +
ϵ
2


+∞

B
e

− iu(x− μt)
du + 

B

A
[g(u; t) − g(u; t)]du 

≤
1

2π|μt − x|

ϵ
2

+
ϵ
2

+
B − A

12M
2gu
″(ζ) , ζ ∈ (A, B),

�
1

2π|μt − x|
ϵ + O

1
M

2  , ∀x≠ μt,

(25)

which is the result of (23). □

Remark 4. Given x ∈ R, to ensure the error ε(ρ) be small
enough, |A|, B, and M should be taken as large as enough.
For given ε(ρ), a simple choice is to select |A| and B such that

min
A,B

ϕX(A)


, ϕX(B)


 ≤ πε(ρ)|μt − x|, (26)

and then fnd M such that
B − A

12M
2 max

ξ∈[A,B]
gu
″(ξ, t)


≤ πε(ρ)|μt − x|. (27)

As an example, Table 2 gives the choices of A, B, M for
diferent values of x and fxed ε(ρ) � 10− 6.

4.2. Convergence of Willow Tree for European Option.
Denoted by E

(k)
∆t the conditional kth moments of increment

∆X � Xn+1 − Xn with given Xn � Xn
i , i.e.,

E
(k)
∆t � E X

n+1
− X

n
i 

k
  � 

+∞

− ∞
u

kρGH∆t (u)du, k � 1, 2, . . . ,

(28)

where ρGH∆t (u) is the PDFs of the increment of Xt at tn+1
given Xn � Xn

i . For convenience, we give an assumption as
follows.

Assumption 5. Tere exists a positive number H such that

h ≔ max
n,i,j
∆(up)

n,i,j − ∆(down)
n,i,j



≤
H

m
, (29)

for n � 1, 2, . . . , N and i, j � 1, 2, . . . , m. Here, ∆(up)
n,ij and

∆(down)
n,ij are denoted by expression (12).

Lemma  . Assume Xt as a GH Lévy process, then E[Xt] and
Var[Xt] have the following results:

Step 1. Give the frst node X0
1 � 0 and S01 � S0 at time zero.

%% generate CDFs F on nodes x

Step 2. Based on (17), generate discrete distribution Fj � Fn�1(xj) for j � 0, 2, · · · , L. Here, x0 is a sufcient small number, xL is
a sufcient larger number and maxj�1: L|xj − xj− 1| sufcient small.
%% generate Xn+1

i for n � 0, 1, ·, N − 1.
Step 3. For n � 0: N − 1, generate Xn+1

i by interpolation,
Xn+1

i � interp(F, x, mqi) + Xn
i , i � 1, 2, · · · , m.

END
Step 4. Compute discrete underlying Sn

i � S0e
(r+ωGH)tn+Xn

i and then the nodes Xn
i , Sn

i  of willow tree are generated.

ALGORITHM 3: Generate nodes Xn
i , Sn

i .
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E Xt  � μ +
βδ

������

α2 − β2


Kλ+1(ζ)

Kλ(ζ)
,

Var Xt  � δ2
Kλ+1(ζ)

ζKλ(ζ)
+

β2

α2 − β2
Kλ+2(ζ)

Kλ(ζ)
−

Kλ+1(ζ)

Kλ(ζ)
 

2⎧⎨

⎩

⎫⎬

⎭,

(30)

with ζ � δ
������

α2 − β2


.

Proof. Te proof can be seen in Cont and Tankov [27]. □

Lemma 7. Given Xt following GH Lévy processes, the kth

conditional moment of increment ∆X � Xn+1 − Xn
i has esti-

mation E
(k)
∆t � O((∆t)k) for k≥ 1.

Proof. Given the characteristic exponent ψX(u) of Xt and
characteristic function ϕXΔt

(u), it implies that

d
k+1ϕX∆t

(u)

du
k+1 � ∆t

k

l�0

k!

l!(k − l)!

d
lϕX∆t

(u)

du
l

⎡⎢⎣ ⎤⎥⎦
d

k+1− lψX(u)

du
k+1− l

 , k � 0, 1, . . . . (31)

Since E
(l)
∆t � (− i)l[dlϕ∆X(u)/dul]|u�0, we have

E
(k+1)
∆t � ∆t 

k

l�0

k!

l!(k − l)!
ck+1− lE

(l)
∆t , (32)

where ck+1− l � (− i)k+1− l[dk+1− lψX(u)/duk+1− l]|u�0 is the
cumulants of Xt. Tus, we obtain E

(k)
∆t � O((∆t)k) for k≥ 1.

Te following lemma gives an estimation of R
(k)
∆t,m, the

error between kth moments, and their discrete
approximations. □

Lemma 8. Given Xt following GH Lévy processes, under
Assumption 5, i.e., h is bounded by H/m with constant H, the
errors between E

(k)
∆t and its discrete approximations


m
j�1p

(n)
ij (∆Xn

ij)
k with ∆ � Xn+1

j − Xn
i can be estimated by

R
(k)
∆t,m



 ≡ 
m

j�1
p

(n)
ij ∆X

n
ij 

k
− E

(k)
∆t




� O

��
∆t

√

m
 , k≥ 1. (33)

Proof. Using the following integral operator:

I(f) ≔ 
∆(up)

n,ij

∆(down)

n,ij

f(u)du, (34)

the errors for kth moments E
(k)
∆t can be written as

R(k)
∆t,m



 � 

m

j�1
p

n
ij X

n+1
j − X

n
i 

k
− 

+∞

− ∞
u

kρGH∆t (u)du





≤ 

m

j�1
I ∆X

n
ij 

k
− u

k
 ρGH∆t (u) 




� 

k− 1

l�1

k!

l!(k − l)!


m

j�1
I u

l ΔXn
ij − u 

k− l
ρGH∆t (u) 




.

(35)

Tanks to Cauchy–Schwarz inequality and Lemma 6, we
have

Table 2: Choices of A, B, M for diferent values of x, fxed ∆t � 0.2
and fxed ε(ρ) � 10− 6.

x A B M x A B M
− 1.00 − 234 234 26056 1.00 − 239 239 30318
− 0.10 − 260 260 59858 0.10 − 291 291 55116
− 0.01 − 271 271 83034 0.01 − 271 271 83034
Parameters of the GH model are set as
λ � − 2, α � 15, β � 8, δ � 0.3, and μ � 0.7.
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R
(k)
∆t,m



≤ 
k− 1

l�1

k!

l!(k − l)!


m

j�1
I u

l ∆X
n
ij − u 

k− l
ρGH∆t (u) 





≤ 
k− 1

l�1

k!

l!(k − l)!


m

j�1
I u

2lρGH∆t (u) 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

1/2



m

j�1
I ∆X

n
ij − u 

2(k− l)
ρGH∆t (u) 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

1/2

≤ 
k− 1

l�1

k!

l!(k − l)!
E

(2l)
∆X 

1/2


m

j�1
h
2(k− l)
j I ρGH∆t (u) 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

1/2

≤ 
k− 1

l�1

k!

l!(k − l)!
E

(2l)
∆X 

1/2 H

m
 

k− l

� O

��
∆t

√

m
 , k≥ 1,

(36)

which is the result of (33). □

Te following theorem gives the error estimation of the
willow tree algorithm for European options.

Theorem 9. Given the asset price St governed by the expo-
nential Lévy model St � S0e

(r+ωGH)t+Xt , on discrete times 0 �

t0 < t1 < t2 < · · · < tN � T with ∆t � T/N and m discrete
values Xn

i being generated by (9). If h satisfes conditions in

Assumption 5, the error between the true value V(x, t) of the
European option and the computed value V(x, t) by the
backward induction (19) in the willow tree is
O(Δt) � O(1/N) when m is in O(∆t− 3/2) � O(N3/2).

Proof. It is known that the European option V(y, t) with
y � log S(t) is the solution of the following partial inte-
grodiferential equation (PIDE):

Vt(y, t) + r + ωGH( Vy(y, t) − rV(y, t) + 
∞

− ∞
[V(y + θ, t) − V(y, t)]Π(dθ) � 0, (37)

with the terminal condition V(y, T) � f(y),
(f(y) � (ey − K)+ for call option or f(y) � (K − ey)+ for
put option), and Π(dθ) being the Lévy measure (see Lévy
representation Teorem 2.7 in [7]). Given willow tree, the
European option V(yn

i , tn) with yn
i � logSn

i � (r + ωGH)tn +

Xn
i is computed by the backward induction as in (19), i.e.,

V y
n
i , tn(  � e

− r∆t


m

j�1
p

(n)
ij V y

n+1
j , tn+1 . (38)

Expanding V(yn+1
j , tn+1) at (yn

i , tn) by the Taylor series,
we have

V y
n+1
j , tn+1  � V y

n
i , tn(  + Vt y

n
i , tn( ∆t + Vy y

n
i , tn( ∆Y

n
ij +

1
2
Vyy y

n
i , tn(  ∆Y

n
ij 

2

+
1
6

z
3
V ξ, tn( 

zy
3 ∆Y

n
ij 

3
+ O (∆t)

2
  + O ∆Y

n
ij∆t ,

(39)

where ∆Yn
ij � yn+1

j − yn
i and ξ ∈ (yn

i , yn
i + ∆Yn

ij). Tus, the
backward induction (38) can be written as
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V y
n
i , tn(  � e

− rΔt


m

j�1
p

(n)
ij V y

n+1
j , tn+1 

� (1 − r∆t) 
m

j�1
p

(n)
ij V y

n
i , tn(  + Vt y

n
i , tn( ∆t + Vy y

n
i , tn( ∆Y

n
ij 

+(1 − r∆t) 
m

j�1
p

(n)
ij

1
2
Vyy y

n
i , tn(  ∆Y

n
ij 

2
+
1
6

z
3
V ξ, tn( 

zy
3 ∆Y

n
ij 

3
 

+ O (∆t)
2

  + O 
m

j�1
p

(n)
ij ∆Y

n
ij∆t⎛⎝ ⎞⎠.

(40)

From Lemma 8, the discrete approximation of the frst-
and second-order moments of the GH process can be es-
timated as



m

j�1
p

(n)
ij ∆Y

n
ij � E

(1)
∆t + O

��
∆t

√

m
 

� r + ωGH( ∆t + ∆tE Xt 

+ O

��
∆t

√

m
 ,

(41)



m

j�1
p

(n)
ij ∆Y

n
ij 

2
� E

(2)
Δt + O

��
∆t

√

m
 

� ∆tVar Xt  + O

��
∆t

√

m
 ,

(42)



m

j�1
p

(n)
ij ∆Y

n
ij 

k
� E

(k)
∆t + O

��
∆t

√

m
 , k≥ 3. (43)

From (40)–(43), we have

Vt y
n
i , tn(  + r + ωGH(  +

1
∆t

E
(1)
∆t Vy y

n
i , tn(  − rV y

n
i , tn(  +

1
2∆t

E
(2)
∆t Vyy y

n
i , tn( 

+
1
6∆t

E
(3)
∆t

z
3
V ξ, tn( 

zy
3 + O(∆t) + O

��
∆t

√

m
  � 0withξ ∈ y

n
i , y

n
i + ∆Y

n
ij .

(44)

On the other hand, using the Taylor expansion of V(yn
i +

θ, tn) at (yn
i , tn), we have

V y
n
i + θ, tn(  − V y

n
i , tn(  � Vy y

n
i , tn( θ +

1
2
Vyy y

n
i , tn( θ2 +

1
6

z
3
V ξ, tn( 

zy
3 θ3, (45)

with ξ ∈ (yn
i , yn

i + ∆Yn
ij). Applying the properties of Lévy

measure, it is obtained that

∞

− ∞
θkΠ(dθ) �

1
Δt

E
(k)
∆t + O (∆t)

k
 , k≥ 1. (46)
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Terefore, using (45) and (46), it is yielded that


∞

− ∞
V y

n
i + θ, tn(  − V y

n
i , tn(  Π(dθ)

�
1
∆t

E
(1)
∆t Vy y

n
i , tn(  +

1
2∆t

E
(2)
∆t Vyy y

n
i , tn(  +

1
6Δt

E
(3)
∆t

z
3
V ξ, tn( 

zy
3 + O(∆t).

(47)

Table 3: Parameters of the GH model for some special cases.

Model λ α β δ μ
GH − 2 15 8 0.3 0.7
HYP 1 15 8 0.3 0.7
NIG − 0.5 15 8 0.3 0.7
VG − 1.5 15 12 0.0001 0.0001
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Figure 3: Density functions under (a) GH, (b) HYP, (c) NIG, and (d) VG models. All parameters of these models are listed in Table 3.
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Combining (44) and (47), we have

Vt y
n
i , tn(  + r + ωGH( Vy y

n
i , tn(  − rV y

n
i , tn( 

+ 
∞

− ∞
V y

n
i + θ, tn(  − V y

n
i , tn(  Π(dθ) + O(∆t) + O

1
m

��
∆t

√  � 0,

(48)

at all nodes (yn
i , tn). Comparing (48) with (37), we see any

European option value V(yn
i , tn) computed by the backward

induction (38) satisfes PIDE (37) with error term
O(∆t) + O(1/m

��
∆t

√
). When m is in O(∆t− 3/2), the error

term O(∆t) + O(1/m
��
∆t

√
) is emerged as

O(∆t) � O(1/N). □

Remark 10. To obtain option values with good accuracy, the
number of m should be taken as O(N3/2). Since European
options are path-independent, the number of N should be
selected as small as possible, whereas the number m should
be taken as large enough since N should be taken as large as
possible for American options.
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Figure 4: Cumulative distribution functions of (a) GHmodel and (b) NIG model with ∆t� 0.25 and diferent number ofM. All parameters
of two models are listed in Table 3.
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Figure 5: Trajectories of Xt and St for the NIG model with m� 10 and N� 30: (a) nodes Xn
t and (b) nodes Sn

t .
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Table 4: Option values calculated by WT method, MC method, and analytical formulas.

K ECWT ECMC ECA ERR K APWT APMC ERR
GH model
2.00 2.6349 2.6352 — 2.50e − 04 10.00 0.4280 0.4365 8.53e − 03
2.50 2.1497 2.1499 — 2.50e − 04 10.50 0.7160 0.7260 9.96e − 03
3.00 1.6645 1.6647 — 2.50e − 04 11.00 1.0796 1.0888 9.19e − 03
3.50 1.1793 1.1795 — 2.50e − 04 11.50 1.5101 1.5159 5.76e − 03
CPU(s) 3.14 32.53 — — — 3.14 311.05 —
HYP model
2.00 1.9754 1.9754 — 4.06e − 06 10.00 0.7461 0.7486 2.47e − 03
2.50 1.4901 1.4901 — 4.06e − 06 10.50 1.0401 1.0424 2.31e − 03
3.00 1.0049 1.0049 — 4.06e − 06 11.00 1.3759 1.3788 2.89e − 03
3.50 0.5198 0.5198 — 9.49e − 06 11.50 1.7479 1.7511 3.16e − 03
CPU(s) 2.78 23.02 — — — 2.90 290.50 —
NIG model
2.00 2.3485 2.3488 2.3487 3.27e − 04 10.00 0.5662 0.5672 9.96e − 04
2.50 1.8632 1.8636 1.8636 3.27e − 04 10.50 0.8566 0.8584 1.87e − 03
3.00 1.3780 1.3783 1.3784 3.27e − 04 11.00 1.2025 1.2059 3.40e − 03
3.50 0.8928 0.8931 0.8932 3.27e − 04 11.50 1.5961 1.6000 3.91e − 03
CPU(s) 0.82 18.48 — — — 9.77 169.23 —
VG model
2.00 8.0583 8.0587 8.0588 4.30e − 04 10.00 0.1033 0.1016 1.73e − 03
2.50 7.5731 7.5735 7.5375 4.30e − 04 10.50 0.5000 0.5000 0.00e+00
3.00 7.0879 7.0883 7.0884 4.30e − 04 11.00 1.0000 1.0000 0.00e+ 00
3.50 6.6026 6.6031 6.6032 4.30e − 04 11.50 1.5000 1.5000 0.00e+ 00
CPU(s) 0.82 18.48 — — — 9.59 169.23 —
European call options byWT, MCmethods, and analytical formula are labeled by “ECWT,” “ECMC,” and “ECA,” respectively. American put options byWT
and MC methods are labeled by “APWT” and “APMC,” respectively. ERRs are the corresponding errors between the WTmethod and Monte Carlo method.
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Figure 6: Continued.
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Figure 6: European call and American put option values under. (a) GH model, (b) HYP model, (c) NIG model, and (d) VG model. All
parameters of these models are listed in Table 3.
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Figure 7: Convergence of willow tree with respect tom. All parameters are listed in Table 3: (a) GHmodel, (b) HYP model, (c) NIG model,
and (d) VG model.
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5. Numerical Examples

To test the performance of the willow tree (WT) method for
option valuating, we consider four classes of choices (GH,
HYP, NIG, and VG models) with parameters being listed in
Table 3. Parameters of risk-free interest, initial stock price,
and maturity time are set as r � 0.03, S0 � 10, T � 1. (N �

1, m � 200) are set in the WT algorithm for European op-
tions, whereas (N � 100, m � 200) for American options. In
Monte Carlo (MC) simulation,
(Nmc � 100, Mmc � 5, 000, 000) are set with Nmc repre-
senting the number of time partition and Mmc represents the
number of simulated paths. In numerical formula (14), we
set numerical partition M � 50, 000 for variable u of
characteristic functions.

All experiments are carried out by MATLAB R2012b
running on a machine with Intel(R) Core (TM) i7-8550U
CPU @ 1.80GHz, 8GB RAM under Windows 10.

Figure 3 plots probability density functions (PDFs) of
GH, HYP, NIG, and VGmodels with t � 1.Te fgure shows
that the PDFs computed from numerical formula (14) are
very close to explicit expression (3). So, we believe that PDFs
ρGHt (x) computed from (14) with time t � ∆t are also ac-
curate enough. Figure 4 plots the shape of cumulative

distribution functions (CDFs) with diferent numbers of M,
from which we see the computed CDFs are convergent as M

becoming larger. Figure 5 plots the trajectories of nodes Xn
t

and Sn
t for the NIG model.

Option values computed from WT algorithms, MC
simulations, and analytical solutions (labeled by “ECA”) are
listed in Table 4. Figure 6 plots values of European and
American options, from which we see WTsolutions are very
close to those obtained by MC simulation. We see that the
errors between WTsolution and analytical solutions (or MC
solutions) are about 10− 3. In European options computa-
tion, the CPU time consumed fromWTis less than 3 seconds
whereas more than 18 s for MC simulation. In American
option computation, the CPU time consumed from WT is
less than 10 s, whereas more than 160 s for the MC method.
Te results in Table 4 illustrate the efectiveness of the
proposed WT method. Te analytical formula of European
options under NIG and VG processes can be seen in lit-
eratures [2, 6, 28, 29]. Tose pricing formulas are also listed
in Appendix A and Appendix B.

To test the convergence of the willow tree method with
respect to the number m of space nodes and time partition
number N, some experiments are carried out. Figure 7 plots
the errors for diferent parameters m with fxed N � 20.
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Figure 8: Convergence of willow tree with respect toNwith fxedm� 50. All parameters are listed in Table 3: (a) GHmodel, (b) HYPmodel,
(c) NIG model, and (d) VG model.
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Figure 8 plots the errors with diferent N and corresponding
m � [N3/2], from which we see the errors are decreasing as
N (and so m) increases. Table 5 lists the numerical con-
vergent rates with respect to the values of N. Tese results in
Figures 7 and 8 and Table 5 support the theoretical con-
clusion in Teorem 9.

6. Conclusions

In this paper, a unifed and robust approach is proposed to
construct the willow tree structure for GH Lévy processes.
Tere are two advantages of our proposed approach com-
pared to that in [19]. First, it avoids the moment matching
failure by the Johnson curve under some circumstances in
the willow tree construction. Second, the error of European
call option pricing is only determined by Δt. Te ffth-
moment term of Lévy measure is removed from the error

bound, so our approach improves the stability and accuracy
of the willow tree in option pricing. Numerical experiments
support our claims.

Moreover, we believe the proposed willow tree method
can be extended to other option models, such as variance
and volatility swaps with stochastic volatility and stochastic
volatility model with regime switching stochastic mean
reversion (see, e.g., [30–33]). We will discuss those models in
the future.

Appendix

A. Analytical Solution under VG Model

When the risk-neutral dynamics of the stock price is given
by the VG process (for risk-neutral parameters σ, ], θ), the
European call option price on a stock is (see page 88 in [2]):

C(S; K, t) � SΨ d

������
1 − C1

]



, (α + s)

������]
1 − C1



,
t

]
  − Ke

− rtΨ d

������
1 − C2

]



, αS

������]
1 − C2



,
t

]
 , (A.1)

where α � ζs,

ζ � −
θ
σ2

,

s �
σ

���������

1 + ](θ/2)
2



/2
,

C1 �
](α + s)

2

2
,

C2 �
]α2

2
,

(A.2)

and Ψ(·, ·, ·) is defned in terms of the modifed Bessel
function of the second kind.

B. Analytical Solution under NIG Model

When the risk-neutral dynamics of the stock price is given
by NIG, the European call option price is (see Teorem 2.1,
Teorem 2.2, and Corollary 2.1 in Ivanov [6])

C � DAC − DCC, (B.1)

with defnitions

Table 5: Convergence rate for time partition N.

N m Err (Eu) Conv. rate Err (Am) Conv. rate
GH model
5 55 0.1147 1.192 0.0302 1.019
10 158 0.0502 1.072 0.0149 1.033
15 290 0.0325 1.151 0.0098 0.976
20 447 0.0233 — 0.0074 —
HYP model
5 55 0.0823 1.009 0.0252 1.095
10 158 0.0409 1.089 0.0118 1.021
15 290 0.0263 1.058 0.0078 1.012
20 447 0.0194 — 0.0058 —
NIG model
5 55 0.0732 1.016 0.0145 0.998
10 158 0.0362 1.097 0.0073 1.062
15 290 0.0232 1.206 0.0047 1.069
20 447 0.0164 — 0.0035 —
VG model
5 55 0.1256 1.012 0.1423 0.985
10 158 0.0623 0.996 0.0719 1.054
15 290 0.0416 1.045 0.0469 1.037
20 447 0.0308 — 0.0348 —
Te corresponding underlying discretization m � [N3/2]. All parameters of these models are listed in Table 3.
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and

DCC � DAC · Ke
− rT− 2A

. (B.3)

In the above formula, Kc(x) is the MacDonald function,
β(x, y) is the beta function, and Φ(c1, c2, c3; x, y) is the
degenerate Appell hypergeometric function.
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processes,” Journal of Computational and Applied Mathe-
matics, vol. 424, no. 3–19, Article ID 114982, 2023.

[22] J. Imai and K. Tan, “An accelerating Quasi-Monte Carlo
method for option pricing under the generalized hyperbolic
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