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Te fractional nonlinear Schrödinger equation solutions have been investigated via fraction space-time derivative sense.
We applied the unifed technique for this model to extract new structures of waves. Te fractional property structures were
obtained from the model in form of hyperbolic, soliton, shock, explosive, superperiodic, and trigonometric structures. It
was found that increasing fractal factors produces a change in the phase and wave frequency of propagating nonlinear
waves. Te physical models that explain tidal energy generation are crucial to the development of contemporary green
power systems. Te parametric description for wave characteristics in this process is created by the solution of nonlinear
equations. Te obtained solutions are applicable in new communications, energy applications, fractional quantum modes,
and in science and complex phenomena in astrophysics. Finally, the proposed technique can be implemented for further
fractional physical models.

1. Introduction

In recent years, mathematicians and physicists have become
more interested in the exploration of complex wave prop-
agation characterized by a certain type of nonlinear frac-
tional partial diferential equations (NFPDEs) [1–4]. Tese
equations play an important role in describing the dy-
namical processes and physical phenomena in plasma
physics, superconductivity, chemical engineering, bio-
chemistry, ocean engineering, networked systems, fber
communications, industrial studies, and many other sci-
entifc felds [5–7]. As a result, it is crucial to investigate the
exact wave solutions to NFPDEs when looking at nonlinear
physical occurrences. Over the years, various sturdy ana-
lytical methods have been designed to examine the nature of

solutions and comprehend the mechanics of nonlinear
difcult phenomena [8–11].

Te well-known Riemann–Liouville derivatives have
recently been the starting point for numerous writers who
have attempted to propose new operators acting on con-
tinuous functions.Te reason for such broad generalizations
is usually that the Riemann–Liouville fractional derivatives
fail to account for some intriguing characteristics. For ex-
ample, the Riemann–Liouville derivatives of a constant
function are not zero, or they do not obey Leibniz’s relation
[12]. Actually, Tarasov [13] clarifed that a violation of the
Leibniz rule is one of the main characteristic properties of
fractional derivatives. Indeed, the prospect of fractional
calculus deserves some comments, because they are in
contradiction with the classic results [14]. On the other
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hand, various operators in fractional calculus have been
developed to explore NFPDEs, such as local fractional de-
rivative, He’s fractional derivative, Caputo’s fractional de-
rivatives, and Abel–Riemann fractional derivative [15–19].
Te fractional calculus’s physical explanation was in-
troduced in [20, 21]. A vital conformable fractional de-
rivative was developed by Khalil et al. [22]. Tis defnition’s
efectiveness and simplicity have garnered considerable at-
tention. Tis defnition is consistent with the Rie-
mann–Liouville and Caputo polynomial defnitions (up to
a constant multiple) [22]. As a result, many infuential works
have been produced using this new defnition [3, 23–25].Te
defnition of the conformable fractional derivative is given
in [22].

Defnition 1 (see [22]). Let U: (0,∞)⟶ R be a function,
and then, the α order of the conformable derivative of G is

D
α
t (U(t)) � lim

κ⟶0

U t + κt
1− α

  − U(t)

κ
, t> 0, 1≥ α> 0.

(1)

Tis defnition satisfes the following:

(i) Dα
t (K1G + K2Q) � K1D

δ
t (U) + K2D

α
t (Q), K1; K2

∈ R
(ii) Dα

t (tι) � ιtι− α, ι ∈ R
(iii) Dα

t (UQ) � QDα
t (U) + UDδ

t (Q)

(vi) Dα
t (U/Q) � QDα

t (U) − UDα
t (Q)/Q2

To knowmore about the characteristics of a conformable
fractional defnition, see [22].

Many methods have been used to solve nonlinear and
fractional equations in order to fnd mathematical structures
suitable for interpreting the phenomena described by these
equations and also useful in cases of energy conversion that
occurs in coupled systems, symmetric potentials, higher
order nonlinearity in locked fber laser modes, and femto-
second optical soliton. Examples of these methods are the
Hirota bilinear method [26], similarity transformations [27],
the square operator method [28], and the network
method [29].

NFPDEs are suggested for comprehending and evalu-
ating real-world models since their behavior is infuenced by
their past states. In recent years, the investigation of non-
linear fractional Schrödinger equations (NLFSEs) is very
wonderful. Tis equation is extremely important in frac-
tional quantum mechanics [30–32]. Darvishi et al. [33]
developed three NLFSE equations as space-time fractional
types, and they presented optical soliton solutions for these
models using the sine-cosine approach. After that, Darvishi
andNajaf [34] applied the semi-inverse variational principle
to produce some new soliton solutions for these equations.
Tis paper is concerned with the following NLFSE [33]:

iD
α
t q + D

2β
x q − 2μ|q|

2
q � 0, 1≥ α, β> 0, (2)

where μ ∈ R − 0{ } and q(x, t) is a complex valued function.
In fractal complex media such as space plasma, super-

conductors, chemical engineering, ocean waves, fber

communication, industrial applications, and many other
scientifc domains, NLFSEs are crucial for characterizing
dynamical processes and physical phenomena. Te energy
and wave propagation in these media are impacted by fractal
features in these complex modes, which may result in wave
forcing, wave turbulence, and trapping [5–7, 33, 34]. Using
Fourier spectral techniques, it is possible to study the sta-
bility of solutions for NLFSEs numerically [35, 36]. NLSE
mass conservation and dispersion relations are maintained
by this approach. Furthermore, research on the numerical
instability of NLSEs and NLFSEs has been conducted
[37–40].

In [41], we created a reliable solver approach to solve
NFPDEs based on the Jacobian elliptic function approach
[42, 43]. Tis solver explicitly ofers the unifed structure of
solitary waves of diferent types of NFPDEs. It is also simple,
dependable, and efective. Tis solver was used in this study
to generate some novel solitary waves for equation (2).
Namely, some fractional structures for this model are pre-
sented in the forms of hyperbolic, shock, soliton, explosive,
superperiodic, and trigonometric structures. With regard to
optical fber communications [44, 45] and fractional
quantum mechanics [30–32], the presented waves are es-
sential for describing complex but crucial processes. To the
best of our knowledge, this method has not yet been used in
any scientifc research.

Te rest parts of this article are scheduled as follows:
Section 2 introduces some new solitary waves for the three
models of space-time fractional NLSE. Section 3 describes
the physical interpretation for the obtained results. Finally,
Section 4 gives a conclusion remark about the acquired
results.

2. Optical Fiber Solitary Waves

Using the wave transformation [33], we obtain

q(x, t) � e
iφ

Q(ξ), ξ � k
x
β

β
− w

t
α

α
,φ � r

x
β

β
− c

t
α

α
. (3)

Substituting equation (3) into equation (2) yields w �

2rk and

Γ1Q
″

+ Γ2Q
3

+ Γ3Q � 0, (4)

where Γ1 � k2, Γ2 � −2μ and Γ3 � c − r2.
Te equation expressed in equation (4) is solved using

many mathematical techniques [46–48].
In the light of the solver technique [41], the solutions of

equation (2) are as follows.

Family 2

Q1(x, t) � ±
k
��μ√ msn k

x
β

β
− w

t
α

α
 . (5)

At m⟶ 1, equation (5) converts to

Q1(x, t) � ±
k
��μ√ tanh k

x
β

β
− w

t
α

α
 . (6)
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Tus, the solutions of equation (2) are

q1(x, t) � ±
k
��μ√ e

i r xβ/β( )− c tα/α( )( ) tanh k
x
β

β
− w

t
α

α
 , (7)

c � r2 + 2k2.

Family 3

Q2(x, t) � ±
k

2 ��μ√ msn k
x
β

β
− w

t
α

α
 

+ i
k

2 ��μ√ mcn k
x
β

β
− w

t
α

α
 .

(8)

At m⟶ 1, equation (8) converts to

Q2(x, t) � ±
k

2 ��μ√ tanh k
x
β

β
− w

t
α

α
 

+ i
k

2 ��μ√ sech k
x
β

β
− w

t
α

α
 .

(9)

Tus, the solutions of equation (2) are

q2(x, t) � ±
k

2 ��μ√ tanh k
x
β

β
− w

t
α

α
  + i

k

2 ��μ√ sech k
x
β

β
− w

t
α

α
  e

i r xβ/β( )− c tα/α( )( ), (10)

c � r2 + 1/2k2.

Family 4

Q3(x, t) � ±
k

2 ��μ√ msn k
x
β

β
− w

t
α

α
 

− i
k

2 ��μ√ mcn k
x
β

β
− w

t
α

α
 .

(11)

At m⟶ 1, equation (11) converts to

Q3(x, t) � ±
k

2 ��μ√ tanh k
x
β

β
− w

t
α

α
 

− i
k

2 ��μ√ sech k
x
β

β
− w

t
α

α
 .

(12)

Tus, the solutions of equation (2) are

q3(x, t) � ±
k

2 ��μ√ tanh k
x
β

β
− w

t
α

α
  − i

k

2 ��μ√ sech k
x
β

β
− w

t
α

α
  e

i r xβ/β( )− c tα/α( )( ), (13)

c � r2 + 1/2k2.
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Figure 1: Graph of Q1(x, t) with x and c.
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Family 5

Q4(x, t) � ± i
k
��μ√ mcn k

x
β

β
− w

t
α

α
 . (14)

At m⟶ 1, equation (14) converts to

q4(x, t) � ± i
k
��μ√ sech k

x
β

β
− w

t
α

α
 . (15)

Tus, the solutions of equation (2) are

q4(x, t) � ± i
k
��μ√ e

i r xβ/β( )− c tα/α( )( ) sech k
x
β

β
− w

t
α

α
 ,

(16)

c � r2 − k2.
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Figure 2: Graph of Q1(x, t) with x and diferent values of c.
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Figure 3: Graph of Q1(x, t) with t and α.
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Figure 4: Graph of Q1(x, t) with t and diferent values of α.
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Figure 5: Graph of q2(x, t) with x and c.
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Figure 6: Graph of q2(x, t) with t and α.
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3. Results and Discussion

TeNLS fractional approach discussed here is very crucial in
the energy generation of various environmental physical
modes. Te fractional new NLS structures were derived
using a novel analytical solver using mathematical and al-
gebraic techniques. However, it would be more signifcant
for us to examine at how fractal variables infuence the
features, geometries, and dynamics of nonlinear wave forms.

Te output fractional solutions appears in forms of
rational solitons, superperiodic shock, shock like-soliton,
and rational, dispersive, and cnoidal waves. Equation (5)

characterizes shock waves and supershock periodical
waves as shown in Figures 1–4. In Figure 2, a shock wave is
formed for c � 0.2, but increasing c generates a new super
shock profle. Te change of equation (5) with t and α is
given in Figure 4, and the increasing of α causes an in-
crease in the wave frequency of the produced wave.
Variations of equation (10) with t, x, c, α are characterized
by periodic cnoidal and geometrical solitons with phase
changes as shown in Figures 5 and 6. Figures 7–10 show
the variations of Q3 and Q4 with t, x, c, α. Tey represent
an important wave form called super periodic solitary
formations. For c � 0.2 and α � 0.3, the deformed
supersolitons have been obtained, and by raising c and α,
the periodic form has been generated as shown in Fig-
ures 8 and 10. Te change in equation (16) for q4 with
t, x, c, α produces a geometrical shock wave with x, c and
rational shock formation with t, α as plotted in Figures 11
and 12.

Te authors in [33, 34] obtained the sech-type and bright
solitons for pace-time fractional NLSE and other forms of
dark, bright, and singular solutions of the same space-time
fractional model. In our work, new shock rationals, super
shock, and supersolitons have been produced for the frac-
tional space-time NLS model. From a physical point of view,
our results are important for wave energy applications. For
special cases of m values, some of our results reduce to
solutions given in [33, 34].
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Figure 8: Graph of ImQ3(x, t) with x and diferent values of c.
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Finally, the presented solutions of this work admit a very
characteristic prospect. Namely, the various transformation
formulae of elliptic functions can be used to relate these
solutions ([49], Chapter 16). Actually, this technique will
generate vital families of elliptic functions.

4. Conclusions

New rational shocks, super shocks, and periodic super-
soliton generation have been produced for the fraction
space-time NLS model. Wave structures, phase, and fre-
quencies have been impacted by fractional time-space
modulations. Te fractional model mechanisms in energy
generation overmany physical modes are applicable inmany
communication and new engineering aspects. Our fndings
may be utilized to enhance fuid models that explain tidal
lagoons, which are a potential new model for tidal power
production research.
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