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In this article, we address the challenge of solving the nonlinear fractional Burger’s KdV equation, time-fractional Burger’s
equation, and the fractional modifed Burger’s equation. Tis is achieved by employing the Caputo and conformable derivatives.
To tackle these equations, we introduce a new numerical method which is the combination of the local fractional Mohand
transform and the Adomian decomposition method. Tis choice is driven by its straightforward methodology and reduced
computational complexity. Moreover, to demonstrate the versatility of this technique, we provide several illustrative examples
along with their corresponding exact or approximate solutions. Tese solutions are accompanied by graphical representations,
further enhancing the clarity of the presented approach.

1. Introduction

Fractional diferential equations are widely used in many
felds of science and engineering to describe physical
phenomena that exhibit nonlocal and nonlinear behavior.
Burger’s type equation is one such equation that describes
the dynamics of a wide range of phenomena including gas
dynamics, fuid mechanics, and population dynamics [1].
However, the solution of Burger’s type equation becomes
challenging due to its nonlinearity and fractional de-
rivatives [2]. To address this challenge, various numerical
methods have been proposed, and one such method is the
local fractional Mohand–Adomian decomposition method
(LFMADM). In general, fractional partial diferential
equations do not have exact solutions, and only approx-
imate and numerical methods can be employed to obtain
solutions.

Burger’s equation:
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is a fundamental nonlinear partial diferential equation in
fuid mechanics. Burger’s equation is a crucial model utilized
in various felds of applied mathematics, including gas
dynamics, heat conduction, trafc fow, and acoustic waves.
Its importance was initially highlighted by Bateman in 1915
[3] who identifed its steady solutions as worthy of explo-
ration. Later, Burger proposed it as one of the equations
describing mathematical models of turbulence in 1948 [4].
Benton and Platzman [5] conducted a comprehensive survey
of one-dimensional Burger’s equation in 1972, examining its
exact solutions. Te pursuit of numerical or analytical so-
lutions to such equations is of signifcant importance in
applied mathematics, leading to numerous studies by sci-
entists to determine these solutions [6, 7].

Te area of fractional calculus fnds extensive applications
across a wide range of engineering and scientifc disciplines.
Tese include viscoelasticity, fuid mechanics, biological
population modeling, electrochemistry, and optics. Fractional
calculus is particularly valuable when it comes to modeling
physical and engineering systems that are most accurately
described by fractional diferential equations. Tese models
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are employed to provide precise representations of systems
with specifc damping requirements. Recently, various nu-
merical and analytical methods have been introduced in these
domains, often applied to tackle novel and challenging
problems. Mathematical modeling frequently leads to the
formulation of fractional diferential equations and a range of
problems that encompass special functions of mathematics,
along with their generalizations in more variables. Further-
more, many physical phenomena in felds such as quantum
mechanics, fuid dynamics, electricity, and ecological systems
are governed by fractional-order partial diferential equations
(PDEs) within their applicable scope. Consequently, it is of
growing signifcance to have a comprehensive understanding
of both traditional and newly devised techniques for solving
fractional PDEs and the practical applications of these
methods [8–10].

Numerous investigations have been conducted by re-
searchers to acquire both numerical and analytical solutions
for Burger’s equation. Ozis and Ozdes [11] employed a direct
variational approach, whereas Aksan and Ozdes [12] in-
troduced a variational method based on time discretization.
Numerous wavelet-based approaches have been meticu-
lously examined to evaluate their precision and efciency in
tackling both linear and nonlinear fractional diferential
equations. Te authors have delved into the challenges faced
by researchers in this particular feld and emphasized the
importance of interdisciplinary collaboration to advance the

exploration of various wavelets for solving diferential
equations spanning diverse orders. Several wavelet meth-
odologies, such as the cubic B-spline wavelet, Haar wavelet,
Legendre wavelet, Legendre multiwavelet, and Chebyshev
wavelet methods, have been subjected to scrutiny for their
applicability in solving fractional diferential equations.
Among these techniques, the Legendre multiwavelet
method, when combined with the Galerkin method, has
demonstrated efectiveness in providing approximate so-
lutions to initial value problems associated with fractional
nonlinear partial diferential equations. Tese wavelet-based
approaches adeptly convert fractional diferential equations
into systems of algebraic equations, facilitating their
straightforward resolution through conventional methods.
Kutluay et al. [13] derived a numerical solution for Burger’s
equation using fnite diference methods, while Varoḡlu and
Liam Finn [14] utilized a weighted residue method. Caldwell
et al. [15] employed fnite elements, and Evans and Abdullah
[16] utilized the group explicit method. Mittal and Singhal
[17] employed the Galerkin method to compute numerical
solutions for Burger’s equation. In 2005, Gorguis [18] pre-
sented a comparison between the Cole–Hopf transformation
and the decomposition method for solving Burger’s equation.
Tus, it can be inferred that researchers have dedicated
signifcant attention to obtaining solutions for the fractional
Burger’s equation.

Nonhomogenous fractional Burger’s equation:
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Time-fractional Burger’s Kdv equation:
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Fractional modifed Burger’s equation:
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Considering 0< α≤ 1, the symbol U(y, t) signifes the
velocity in the spatial dimension y and at time t. Due to its
signifcant relevance, researchers have focused extensively
on acquiring both precise and numerical solutions for
equations resembling Burger’s equation.

Te objective of this study is to create a dependable and
efective numerical technique, utilizing the LFMADM, for
solving nonlinear fractional Burger’s equation.Te proposed
method will undergo validation and analysis, assessing its
convergence behavior, computational efciency, and sen-
sitivity to parameters and boundary conditions. Te method
will be applied to practical problems in fuid mechanics and

population dynamics. Te results of this research are an-
ticipated to enhance the development of more precise and
efective numerical methods for solving nonlinear fractional
diferential equations.

Furthermore, the proposed method will be applied to
solve practical problems related to fuid mechanics or
population dynamics, which will serve as a demonstration of
its efectiveness in real-world scenarios. Trough the out-
comes of this research, the development of more accurate
and efcient numerical methods for solving nonlinear
fractional diferential equations is expected to be advanced.
Te successful development of this numerical technique will
provide valuable insights into the behavior and solutions of
nonlinear fractional Burger’s equation, which can be utilized
in various felds that require a precise understanding of
complex mathematical models, such as engineering and
physics.

Tis paper is organized as follows. In Section 2, we
highlight some basic defnitions which are used. In Section 3,
we develop the numerical method and present the graphical
representation of the proposed methods. In Section 4, we
draw the conclusion and give the future direction.
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2. Definitions

Defnition 1. Te CFD of a function F: R+⟶ R is de-
fned by

c
D

c
a+F(l) �

1
Γ(n − c)


l

a
(l − η)

n− c− 1
F

(n)
(η)dη, (5)

provided the right side is pointwise defned on (0,∞), where
n � [c] + 1 in case c is not an integer and n � c in case c is an
integer.

2.1. Mohand Transform. Integral transforms provide a sys-
tematic approach for resolving challenges within engi-
neering sciences, such as heat conduction, radioactive decay,
beam vibration, and population growth problems. Nu-
merous researchers have employed a wide range of integral
transforms, including Fourier, Laplace, Mahgoub, Kamal,
Mohand, Sumudu, and Elzaki transforms, to provide so-
lutions for various classes of equations such as delay dif-
ferential equations, integral equations, partial diferential
equations, and partial integrodiferential equations. One
particularly powerful technique in this regard is the Mohand
transform, which fnds its roots in the classical Fourier
integral. Tis transformative method, pioneered by Mohand
Mahgoub, simplifes the resolution of both partial and or-
dinary diferential equations within the time domain,
leveraging its mathematical elegance and inherent proper-
ties. While Laplace, Fourier, Elzaki, Aboodh, Sumudu, and
Kamal transforms are established mathematical tools for
addressing diferential equations, the Mohand transform
and its fundamental characteristics also ofer valuable re-
sources for tackling such mathematical challenges.

Te operator denoted as M(.), commonly referred to as
the Mohand transform, is rigorously defned through in-
tegral equations as follows:

M[f(t)] � R(s)

� s
2


∞

0
f(t)exp− st dt,

(6)

and here, for t≥ 0 and k1≤ s≤ k2, the variable k1≤ s≤ k2
plays a role in factoring the variable k1≤ s≤ k2 within the
argument of the function f. Tis transformation exhibits
notable connections with the Laplace, Elzaki, and Aboodh
transforms.

2.2.LocalFractionalMohand–AdomianDecompositionMethod.
Te combination of the Mohand transform and Adomian
decomposition method, known as the Mohand–Adomian
decomposition method, ofers notable advantages in solving
diferential equations. Tis approach not only provides al-
gebraic values but also delivers closed-form solutions in the
form of power series. It proves to be a straightforward
technique for obtaining solutions to both linear and

nonlinear fractional diferential equations, characterized by
its efciency in terms of computational workload. An ad-
vantageous feature of this method lies in its capability to
address nonlinear fractional diferential equations without
the necessity of employing He’s or Adomian’s polynomials
for handling nonlinear terms. Tis proposed methodology
stands out due to its absence of restrictive assumptions and
linearization requirements. As a result, it proves in-
strumental in analytically addressing a wide array of prac-
tical problems represented by fractional-order ordinary and
partial diferential equations.

Defnition 2. Te Mohand transform, as proposed by
Mahgoub in 2017 [19], is defned as the transformation of the
function fα(p∗) in the following manner:
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Additionally, the inverse Mohand transform is expressed
as

M
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Nα s
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(   � fα p
∗

( . (8)

Defnition 3. Local fractional convolution: when dealing
with the Mohand transform of functions, f1,α(p∗), f2,α(p∗)

are N1(s∗), N2(s∗), respectively; then,
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where f1,α(p∗)∗f2,α(p∗) is defned as
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Defnition 4. Te Mittag-Lefer function, denoted as Eα(y)

for α> 0, is defned as follows:

Eα(y) � 
∞

i�0

y
i

Γ(αi + 1)
, α> 0, (11)

where α is a member of a complex number set.

2.3. Mohand Transform of Some Functions. Considering an
arbitrary function f(t), it is assumed that integral (6) holds
true. Te presence of the Mohand transform is contingent
upon specifc conditions being met. Sufcient criteria for
the Mohand transform’s existence dictate that the function
f(t), valid for t≥ 0, must exhibit properties of being
piecewise continuous and having exponential order.
Otherwise, the existence of the Mohand transform remains
uncertain.
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(i) Let f(t) � 1; then, by the defnition, we have

M[1] � R(s)
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(12)

(ii) Let f(t) � t; then:

M[t] � R(s)
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2


∞

0
t exp− st dt

� 1.

(13)

In the typical scenario, when n is a positive integer,
then

M t
n
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�
n!

s − 1
.

(14)

(iii) Let f(t) � expat; then,

M expat  � s
2


∞

0
expat exp− st dt

�
s
2

s − a
.

(15)

3. Numerical Methods

In this section, we proposed a numerical Mohand–Adomian
decomposition method for homogenous fractional Burger’s
equation.

3.1. Mohand–Adomian Decomposition Method. To illustrate
the method described above, we have chosen a homogenous
fractional Burger’s equation:
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where (0< α< 1) and the initial condition is

U(y, 0) � V(y). (17)

Upon applying theMohand transform to (16), we obtain:
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Now using the defnition of the Mohand transform, we
get
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and taking inverse Mohand transform,
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Terefore, the initial condition will be utilized to de-
termine the frst term of u(y, t).

U0(y, t) � U(y, 0). (21)

Ultimately, we derive the recursive general relation in the
following form:
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u0 is given, so we get u1 easily. Similarly, we have
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Hence, the solution to (21) can be expressed as

U(y, t) � 
∞

n�0
Un(y, t). (25)

3.2. Examples. Next, we will employ the previously men-
tioned method in specifc scenarios.

Example 1. Consider the following homogenous fractional
Burger’s equation:
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where (0< α< 1) and initial condition

U(y, 0) � sin(y), (27)

where 0< α≤ 1, t> 0, y ∈ R, and (zαU(y, t)/ztα) is the
conformable derivative of the function U(y, t) with respect
to t.

Apply the Mohand transform to (26):
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Now using the defnition of the Mohand transform, we
get
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Applying the inverse Mohand transform yields
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In conclusion, we arrive at the recursive general relation
in the following form:

Um+1(y, t) � M
− 1 1

s
α M

z
α
Um(y, t)

z
α
y
2 + 2Um(y, t)

zUm(y, t)

zy
−

zU
2
m(y, t)

zy
   . (31)

Terefore, from (31), we get
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In a similar manner, we obtain that
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and so on, and we get the solution of (26):

U(y, t) � U0(y, t) + U1(y, t) + U2(y, t) + U3(y, t),

U(y, t) � sin(y) −
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t
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−

t
3α

Γ(3α + 1)
+ . . . ,

U(y, t) � Sin(y)Eα(− t).

(35)

Figure 1 represents the line graph plotting of homoge-
nous fractional Burger equation (26), while Figure 2 illus-
trates the 3D surface plots of (26) using various fractional
orders.

3.3. Nonhomogenous Fractional Burger’s Equation. In this
section, we developed a numerical method based on the
Mohand–Adomian decomposition method for non-
homogenous fractional Burger’s equation. Let us now consider
the following nonhomogenous fractional Burger’s equation:
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with initial condition:

U(y, 0) � 0, (37)

where 0< α≤ 1, t> 0, y ∈ R, and (zαU(y, t)/ztα) is the
conformable derivative of the function u(y, t) with respect
to t.

Applying the Mohand transform to (36), we get
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Now using the defnition of the Mohand transform, we
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Taking inverse Mohand transform, we get
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Finally, we obtain the recursive general relation form as

Um+1(y, t) � M
− 1 1

s
α M

z
α
Um(y, t)

z
α
y
2 + 2Um(y, t)

zUm(y, t)

zy
−

zU
2
m(y, t)

zy
− y

2
+ 2

t
α

α
   . (41)

0

500

1000

1500

U
 (y

,t)
2 4 6 8 10 120

t

α=0.6
α=0.8
α=0.5

α=1.0
α=0.9

Figure 1: Temperature plots for equation (13) at various α in Caputo sense.
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Figure 2:Te approximate solution ofU(y, t) of equation (13) for diferent values of α, 0≤y≥ 10 and 0≤ t≥ 10. (a) Approximate solution of
U(y, t) for α � 1. (b) Approximate solution ofU(y, t) for α � 0.9. (c) Approximate solution ofU(y, t) for α � 0.8. (d) Approximate solution
of U(y, t) for α � 0.7.
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Terefore, from (41), we get
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Since u0 � 0, we get
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Similarly,

U3(y, t) � 0. (44)

By adding all the terms, the series solution of (36) can be
found as

U(y, t) �
t
α

Γ(α + 1)
y
2

+ 2Γ2
t
2α

Γ(2α + 1)
+

2t
2α

Γ(2α + 1)
. (45)

Figure 3 depicts a line graph illustrating the plotting of
solutions derived from nonhomogenous fractional Burger
equation (36).Tis visual representation ofers a clear insight
into the behavior and trends depicted by these solutions.
Moreover, in Figure 4, there are 3D surface plots showcasing
(36) at work, demonstrating its behavior under diferent
fractional orders. Tis visual exploration allows for a com-
prehensive understanding of how varying fractional orders
impacts the overall solution landscape. Additionally, the
exact solution of (36) is presented in Figure 5, providing

a comparative perspective to the plotted solutions. Tis
fgure serves as a reference point to understand the char-
acteristics and deviations of the exact solution concerning
the solutions portrayed in Figure 4.

3.4. Another Type of Fractional Burger’s Equation. In this
section, we developed a numerical method based on the
Mohand–Adomian decomposition method for another type
of fractional Burger’s equation.

We examine the subsequent fractional Burger’s equation:

z
α
U(y, t)

zt
α + U

2
(y, t)

zU(y, t)

zy
+

z
2
U(y, t)

zy
2 � 0, (46)

with initial condition

U(y, 0) � y. (47)

Applying the Mohand transform to (46), we get

M
z
α
U(y, t)

zt
α  + M U

2
(y, t)

zU(y, t)

zy
  + M

z
2
U(y, t)

zy
2  � 0. (48)

Now using the defnition of the Mohand transform, we
get

R(y, t) � sU(y, 0) −
1
s
α M U

2
(y, t)

zU(y, t)

zy
+

z
2
U(y, t)

zy
2  . (49)
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Figure 3: Temperature plots for equation (18) at various α in Caputo sense.
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Figure 4:Te approximate solution of U(y, t) of equation (18) for diferent values of α, − 10≤y≥ 10 and 0≤ t≥ 5. (a) Approximate solution
of U(y, t) for α � 1. (b) Approximate solution of U(y, t) for α � 0.9. (c) Approximate solution of U(y, t) for α � 0.8. (d) Approximate
solution of U(y, t) for α � 0.6. (e) Approximate solution of U(y, t) for α � 0.5.
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Taking inverse Mohand transform, we get

U(y, t) � U(y, 0) − M
− 1

·
1
s
α M U

2
(y, t)

zU(y, t)

zy
+

z
2
U(y, t)

zy
2   .

(50)

We derive the general recursive relation in the following
form:

Um+1(y, t)

� − M
− 1 1

s
α M U

2
m(y, t)

zUm(y, t)

zy
+

z
2
Um(y, t)

zy
2   .

(51)

Terefore, from (46), we get

U1(y, t) � − M
− 1 1

s
α M U

2
0(y, t)

zU0(y, t)
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+
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2
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zy
2   ,
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2
   ,
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α
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y
2
.

(52)

Similarly,

U2(y, t) � − M
− 1 1
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α M U

2
1(y, t)

zU1(y, t)

zy
+

z
2
U1(y, t)
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2   ,
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− 1 1
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4 t
α
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   ,
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2   ,
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2t
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8

+ 4    ,

U3(y, t) � − 6y
8 t
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.

(53)
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Figure 5: Te exact solution for equation (18).
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Figure 6: Temperature plots for equation (20) at various α in Caputo sense.
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Figure 7:Te approximate solution ofU(y, t) of equation (20) for diferent values of α, 0≤y≥ 500 and 0≤ t≥ 5. (a) Approximate solution of
U(y, t) for α � 1. (b) Approximate solution ofU(y, t) for α � 0.9. (c) Approximate solution ofU(y, t) for α � 0.8. (d) Approximate solution
of U(y, t) for α � 0.7. (e) Approximate solution of U(y, t) for α � 0.6. (f ) Approximate solution of U(y, t) for α � 0.5.
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Summing the above terms yields

U(y, t) � y −
t
α

Γ(α + 1)
y
2

+
2t

2α

Γ(2α + 1)
y
4

− − 6y
8 t

3α

Γ(3α + 1)
.

(54)

In Figure 6, a precise line graph illustrates the solutions
obtained from fractional type Burger equation (46). Tis
graph ofers a clear and detailed view of the complex be-
havior and trends displayed by these solutions. Further,
Figure 7 provides intricate 3D surface plots that demonstrate
(46) under various fractional orders. Tese visuals allow
a comprehensive understanding of how altering fractional
orders intricately infuences the overall solution patterns.

Moreover, Figure 8 exhibits the exact solution derived
from (46) for comparison purposes. Tis fgure acts as
a standard reference, aiding in a nuanced examination of
specifc traits and deviations when contrasted with the so-
lutions depicted in Figure 7.

4. Conclusion

In this research, we have applied the Mohand transform and
Adomian decomposition method to address fractional
Burger’s equations, fractional Burger’s Kdv equations, and
fractional modifed Burger’s equations. Te objective of this
investigation is to showcase the efectiveness and simplicity
of the Mohand transform as a viable approach for obtaining
precise and approximate solutions to these equations.
Furthermore, we have illustrated several applications to
underscore the versatility of this methodology.

By analyzing the graphs of the solutions, we have ob-
served that the behavior of the solution varies signifcantly
with diferent values of the fractional-order derivative. Tis
indicates the importance of considering diferent fractional-
order values when studying these equations. Notably, when
setting α � 1 in the given examples, we have obtained the
exact solutions that have been previously investigated in
references [20, 21].

It is worth noting a few crucial points regarding the
Mohand transform. Firstly, this method provides the so-
lution in terms of easily computable components, making it
highly practical for real-world applications. Te solutions
obtained using the Mohand transform exhibit rapid con-
vergence, which is benefcial for solving physical problems
accurately. Te numerical results obtained from this

approach have shown excellent agreement with their re-
spective exact solutions, further validating its efectiveness.

Secondly, the methods employed in this study were ap-
plied directly, without resorting to linearization, perturbation,
or restrictive assumptions.Tis direct approach demonstrates
the broad applicability of the Mohand transform in solving
various linear and nonlinear fractional problems encountered
in applied science.

For the purpose of presenting graphical representations
of the solutions, we have utilized MATLAB in this thesis. In
future work, we can further explore the capabilities of the
Mohand transform by employing it to solve nonlinear
diferential equations and systems of linear equations and
compare its outcomes with other existing methods to
evaluate its efciency and performance.

Overall, the results obtained in this study highlight the
efectiveness and practicality of the Mohand transform and
Adomian decomposition method in solving fractional dif-
ferential equations.Te potential of this approach for solving
a wide range of linear and nonlinear fractional problems
demonstrates its signifcance in applied science and paves
the way for future research and applications.
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