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Suppose that T (1) is a class of close-to-star functions. In this paper, we investigated the estimate of Zalcman functional on the
logarithmic coefficients and the third Hankel determinant for the class 7 (1) with the determinant entry of logarithmic
coefficients. Also, we obtained the sharp bounds of Zalcman functional J,, (f) and J53(f) for the class 7 (1).

1. Introduction

Let % be the unit disk {z: |z| < 1}, & be the class of functions
analytic in %, satisfying the conditions

f(o) :O>

f'(0) =1 W

Then, each functions f in & has the Taylor expansion
[ee]

f2)=z+ Z a,z". (2)
n=2

Let & denote a class of analytic and univalent functions
in %. Pommerenke (see [1, 2]) defined the k-th Hankel
determinant for a function f as

a, Ape1 * " Opik-1
Ausl gz "0 Qpik
H ko (f ) = . . . . > (3)
Anik-1 Anik * " Onok—2

where a, = 1andn, k € {1,2, - - -}. Note that the Fekete-Szeg
0 functional is actually Hankel determinant with k = 2 and
n =1, where

a, a 2
=as;—a,. (4)

H2,1 (f) =

a, as
Then, the second Hankel determinant with k = 2 and n =
2 gives

a, as 2
= a,a, —as. (5)

H2,2 (f) =

as 4y
The third Hankel determinant H;, (f) is given by
a; a; as
H;,(f) =|ay a3 ay|=a3H,,(f) +a,l +asH,; (f),
as a, as
(6)
where I = a,a; —a,.
In recent years, many mathematicians have investigated

Hankel determinants for various classes of functions con-
tained in &/. These studies focus on the main subclasses of
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class & consisting of univalent functions. For f € S, the two
determinants H,, (f) and H,,(f) have been extensively
studied in the literature for various subfamilies of univalent
functions. The sharp bounds for the second determinant
were obtained, which are particularly noteworthy. A few
papers were devoted to the estimation of sharp upper bound
to H;, (f). Namely, for starlike functions the upper bounds
of the third order Hankel determinant H;, (f) is 4/9 (see
[3]), respectively, while for the same bounds for the convex
functions, the upper bound is 4/135 (see [4]).

Robertson [5] defined and studied a subclass of close-
to-star functions, which is defined as follows:

ST (1) = {f €S: Re{(l —z)Z@} >0, ze€ czz} (7)

Associated with each f € & is a well-defined logarithmic
function

1og@ =2) 92" (z€). (8)
n=1

The number y, are called logarithmic coefficients of f.
Differentiating (8) and using (2), we have

1 2 1o 14
V4= E(“s T gl a3y — oy - —a2>,

(9)

The logarithmic coefficients are very essential in the
problems of univalent functions coeflicients. For instance,
Milin’s conjecture highly depends on logarithmic co-
efficients (see [6, 7]). Logarithmic coeflicients are a hot topic
for various authors. For instance, Lecko and Sim [8] studied
logarithmic coefficients’ problems in families related to
close-to-star functions, while the Hermitian Toeplitz de-
terminants of the second- and third-order for classes of
close-to-star functions was studied by Jastrzebski et al. [9]. In
[10], it was shown that the logarithmic coefficients y, of
f € (1) satisfy the inequality Y, n?|y,|* < 1/12. Also, the
early bounds of y, for functions in the class of close-to-
convex functions, starlike functions related to the vertical
strip, and functions starlike with respect to symmetric points
were examined in [11-13].

Very recently, Kowalczyk and Lecko [14] introduced the
Hankel determinant H, (F/2), whose elements are loga-
rithmic coefficients of f, that is,
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Y Yue1 = VYark-1
Hk,n(Ff/z) _ Yn:rl yrt.+2 . . Yn.+k (10)
Yntk-1 Ytk * " Vnt2k-2

Kowalczyk and Lecko [15] obtained sharp bounds for
H, ; (F;/2) for the classes of starlike and convex functions of
order a. The problem of computing the sharp bounds of
Hankel determinant on logarithmic coefficients for func-
tions of bounded turning associated with petal-shaped
domain has been considered by Shi et al. [16]. In this pa-
per, we investigate the estimate of Zalcman inequality on the
logarithmic coefficients and the third Hankel determinant
for the class §J (1) with the determinant entry of loga-
rithmic coefficients. Also, we obtain the sharp estimate of
Zalcman inequality for the class ST (1).

2. Preliminaries

9%, denotes the class of Schwarz functions, i.e., analytic
functions w: % — %, w(0) = 0. The function w € %, has
the Taylor series expansion

w(z) = Z c,z". (11)
n=1

In order to establish our main results, we need the
following Lemmas.

Lemma 1 (see [17]). If w € B, is given by (11), then the
sharp estimate |c,| <1 holds for n>1.

Lemma 2 (see [18]). Let w € 9B, be the analytic function of
the form (11). Then, for any real numbers
y and v such that

(u,v) € {|y|s% —131/31}, (12)

the following sharp estimate holds:

|cs + peycy +vci|sl. (13)

Lemma 3 (see [19]). Let w € 5B, be given by (11). Then,
|cz| <1- lcl|2,
|C2|2

, (14)
1+ |y

les|<1- |c1|2—

|c4| <1- |c1|2 - |c2|2.

3. Hankel Determinant with Logarithmic
Coefficients for the Class 7 (1)

We begin this section by finding the absolute values of the
first five initial logarithmic coefficients for the function of
class T (1).
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Theorem 4. Let f € $T (1), then Proof. Let f € §F (1). It follows from (2) that
Iyl <2 (1- 2@ _ Lt (16)
1-w(z)
<3
Y2 =5 From (16), we get
z
4 (1—z)2&=1+(a2—2)z+(a3—2a2+1)z2
sl <3 (15) z
5 + (ay—2a; +a,)2" + (as - 2a, + a;)z"
|4l 7
5
+ (ag —2as +a,)z” +...,
6
<- (17)
lys| 5
and
These inequalities are sharp.
1+w(z2) 2\ 2 3\ 3
m =1+2cz+ 2(c2 + cl)z + 2((:3 +2c¢,¢y + cl)z
+ 2(c4 +2¢3¢; + c% + 3c2cf + c‘f)z4 (18)
+ 2(c5 +2c¢i¢4 + 2¢5¢5 + 3c1c§ + .’acfc3 + 4cfc2 + c‘;’)z5 +....
Hence, comparing (17) and (18), we achieve
a, =2+ 2,
az; =3+4c; +2¢, + 2cf,
a,=4+6¢c; +4c, + 4::? +2¢y +4cicy + ZCT,
as =5+8c; +6c, + 6(:? +4c; + 8c,ycy + 4c? + 2((:4 +2c,¢3 + ci + 3cfc2 + c‘f),
ag=6+10c; +8c, + 8c§ +6c3 + 12¢,c, + 6(:? +4c, +8cic3 + 4c§ + 12cf(:2 + 4(:‘11 + 2((:5 +2¢,¢4 +2¢505 + 3c1c§ + 3(:?(:3 + 4c?c2 + c?)
(19)

From (9) and (19), we obtain

(Y1 =1+c¢y,
1
Y2—§+C2’
1
J '}/3—§+C3+ Cl’
Y4 =—+C4 +CiCy,
1 2 2 ls
[ V5 —§+c5+c2c1+c1c3+gcl.

Since |c;[ <1 and || <1 - |cl|2, the bonds of y, and y,
are obvious. Taking 4 =0 and v =1/3 in Lemma 2, the
bound of y; are as follows. By (20) and Lemma 3, we have

1
ya| = 4_1|1 +4c, + 4cfc2|

si[1+4(1_|c1|2_|c2|2)+4|cl|2|c2|] (21)
(20)

1

=1 (5-4¢ —4d* + 4’d) = ¢, (c. d),

where ¢ = |¢;| and d = |c,| <1 - ¢%. Calculus of functions of
two variables easily leads to conclusion that ¢, (c, d) attains
its maximal value 5/4 on [0,1] x [0,1 —¢?].

From (20) and Lemma 3 for y5, we get



1
s§+ 1- |c1|2 - |c2|2

1 2 2 15
§+C5 +C2C1 +C1C3 +gC1

|Y5| =

|C3|2

1+ |cl|

1
+ |52|2|C1| + |Cl|2|c3| + glc1|5-

(22)

The expression on the right side of the above inequality
takes its , greatest value with respect to |cs] when
|c3| = (|c1| (1+ |cl|)/2), )

|Y5| S 4’2 (C> d)) (23)
where ¢ = |cll, d= |cz|, and
6 o, o 1, 2, 95
P B P 25 24
¢, (c,d) g ¢ d e +cd 50 (24)

A simple algebraic computation shows that the critical
points of ¢, in Q = {(c,d): 0<c<1,0<d <1 -c?} satisfy
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Thus, there are critical points in Q. On the boundary of
Q, we get

6, 6
0,(0.d) = ~d’ <,

6 , 1, 9 6
,0)=——c"+-c +-c<9,(0,0)==, (27
¢, (c, 0) 57C T TS ¢,(0,0) s (27)

2y 1 2 3 34 295

goz(c,l c ) —5+c+c 2c 4c +20c .

Since the functions ¢,(c)=c*~- (3/4)c* and ¢, (c)
= (1/5) + ¢ — 2¢® + (29/20)c> reach their greatest values for
¢ =+/(2/3) and ¢ = 0.4810, respectively. ¢, (c) <¢,(2/3) =
(1/3) and ¢, (c) < ¢,(0.4810) = 0.4211, and it follows that

1
¢y(c:1-¢) <3 +0.4211 = 0.75433, (28)

The equalities in Theorem 4 hold for the functions f
given by (16) with w(z) =2z w(z)=2% w(z)=2z2’

% = 2c++d*+ ZC“ =0, w(z) = 2% and w(z) = z°, respectively. O
c
3 (25) Theorem 5. Let ¢, = 0.2978 be a zero of the polynomial
4
S = 24+ 2ed=0. 4-12c - 6% +4c°. (29)
By a numerical computation, If f € $T (1), then
{ a=0 ly1ys = 3] s%(zs +16¢) — 24c, — 8cj +4cy ) = 2.28804 .. .
d, =0,
‘ (26) (30)
¢, ~ 0.8339,
oo
Proof. By (20), we get
lyiys =93] = 1—12 |1 +12¢; +4c] + 4c; + 12¢,¢5 + 4c] — 12¢, — 1263|. (31)
Applying the triangle inequality and Lemma 3 in (31), we
obtain
s~V 1412 1) |2_i wale, P+ aley| + 12l | 1- e ) - o]
Yi¥Vs = V2| = 12 1 1+ |Cl| 1 1 1 ! 1+ |C1|
+alo|" +12]cy| + 12|, ]
= 1—12(13 +16lcy| = 120, = 8ley|” + 4fey|* + 12]c,|) (32)
1 2 3 4 2
§E(13 +16|c,| - 12]ey|" = 8ley|” + 4fey| +12(1 = |ey]*))

1
-5 (25 + 16]cy| = 24fc,|* = 8fe,* +4fey|") = 95 (0),
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where ¢ = |¢,|. Obviously, we have 274564 ...

| ly1vs = ¥3| < 95 (0.2978..) = 228804,
@3 (c) :5(4— 12¢ - 6¢* + 4c”), (33) (35)
the critical point of ¢;(c) is ¢ = 0.2978. .., and we find Hence, the proof is completed. O
93(c) = ~4-4c+4c’,97(02978...) = ~1.61217... <0.  Theorem 6. Let (Cyd,)~ (0.012165,0.150977) be the

(34)  approximate root of the system of linear equations

As aresult, at c = 0.2978. . ., @5 (¢) reaches its maximum
value.

288d° — 216(c2 +2c+ 1)d2 +(48c4 +480¢” + 360¢” — 648¢ — 576)d - 36¢" - 72¢% + 54¢* + 180c + 90 = 0,
—144d* +(48c4 —240¢ + 144¢% + 648¢ + 252)d2 +(—72c4 - 216¢° - 216¢% - 72c)d (36)
+48¢® — 967 — 288¢° + 384¢° + 744c* — 504¢% — 1176¢% — 456¢ = 0.

If feST (1), then

1 72 24c; + 216¢; — 36¢, — 288
lyavs = vil < == |———dy - 72d5 + —° 0 0 dy +(=36c5 +90)d,
72 (1 + Co) 1+¢g
(37)
6 5 . 3 ) 163.897337 . ..
+8c;) — 48¢, + 72¢, + 64, — 228 + 157 = —— = 2276352,
Proof. From (20), we achieve
1
ly2vs = 73| = ﬁll —72¢; — 48C]c; — 48c5 + 72¢5¢4 + 36¢, + 36¢7¢, + 18¢, + 72¢i¢; — 16¢, — 8¢))]. (38)

Applying the triangle inequality and Lemma 3 to the
equation above, we obtain

1
|y2y4 - y§| Sﬁ (1 + 72|c3|2 + 48|CII3|C3| + 48|c3| + 72|cz||c4| + 36|c4| + 36|cl|2|c2| + 18|c2| + 72|cl|2|c2|2 + 16|c1|3 + 8|cl|6)

2 2 2
Lliem 1-|e,|” - 2] +48e, [ 1-]e,|” - 2 +48( 1-|¢,* - 2l
72 1+]c,| 1+]c,| 1+]c,|

+ 72]c2|(1 —|c1|2 —|c2|2) + 36(1 —|c1|2 —|c2|2) + 36|c1|2|c2| + 18|c2| + 72|cl|2|c2|2 + 16|c1|3 + 8|c1|6]

3 2
1 7 2'62|4_72|62l3+24|61| +216]c, | —36|cl|—288ICZ|2+(_36|CI|2+90)|Czl
72{(1+]c,]) 1+|c,|

+8c,|" — 48lc,|” + 72|c|" + 64c, |’ — 228, * + 157].
(39)
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Setting ¢ = |c1| and d = |c2|, we have

72 24¢% +216¢% - 36¢ — 288
72|Y2Y4 - Y§| 37)2014 —7d + ¢ ¢ d +(—36c2 + 90)d
+

(1+c¢ 1+c (40)

+8c5 —48¢° + 72¢" + 64c” - 228¢% + 157 = ¢, (c, d).

We need to find the maximum value of ¢,(c,d) on  is a maximum at an interior point (cy,d,) of Q. Differen-
={(c,d): 0<c<1,0<d <1-c?}. First, assume that there  tiating ¢, (c, d) with respect to ¢ and d, we get

op, 288 48¢” +432¢% - 72¢ - 576

= d® - 216d* d - 366 + 90, il
d (1407 * T+c <+ (41)
and Setting 0¢,/9d = 0,09,/0c =0 and simplifying, we
9 ~144 , 48¢° - 288¢? +432¢ + 252 obtain
= 3d4 + 3 d* —72cd
o (1+c) (1+¢)

+8c% +48¢° — 240c* + 288¢% + 192¢% — 456¢.
(42)

288d° — 216(c2 +2c+ 1)d2 +(48c4 +480¢” + 360c” — 648¢ — 576)d —36¢* —72¢> + 54¢* +180c +90 = 0
—144d* +(48c4 —240¢% + 144¢% + 648¢ + 252)d2 +(—72c4 —216¢° - 216¢* - 72c)d (43)
+48¢% — 96¢7 — 288¢° + 384¢” + 744c¢* — 504¢° — 1176¢% — 456¢ = 0.

By a numerical computation, (1) ¢ = 0. Then,
{ ¢p = 0.012165, 9,(0,d) = 72d* — 72d° - 288d” + 90d + 157 (45)
dy = 0.150977, <¢,(0,0.1495) = 163.8135.. . ..
{d _o, (2) d = 0. Then,
~ 0.659797, 9,(c,0) = 8¢® —48¢° + 72¢* + 64¢ — 228¢% + 157
{ dy ~ ~1.015659, " <94(0,0) = 157.
~ 2.781615, (46)
{ d; = 0.207693, (3) d = 1-¢?. Then,
{ ~ —0.164927, 94(c.1-¢?) = 176¢° — 456" — 92¢” + 330¢” + 108¢
dy~ —1.104444, —41 = 1,(c) <7, (0.6882) = 70.0435 . . ..
{cs ~ —0.985977, (47)
ds = 0.591726.

Thus, we get
Thus, in Q, there is a critical point (cy,d,) =
(0.012165,0.150977). For the point, we have ¢, (cy,d,) = lyays — 2] <24 (cordy) _ 163.897337 . ...
163.897337 ... .. 72 72
On the boundary of Q, we get (48)

=2.276352. ...
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We complete the proof of Theorem 6. O Theorem 7. Let (cy,d;) = (0.330472,0.327078) be the ap-
proximate root of the system of linear equations
-36d” - (24> + 48c + 36)d + 8¢* + 8¢ + 16¢ + 16 = 0,
(49)
12d° - (12¢° + 24c + 6)d” +(24c" +48¢” + 24¢%)d - 30¢* - 96¢” - 87¢” - 6¢ + 15 = 0.
If f € $T (1), then
1[ 12 5 12¢2+24c,+18 , ;
174 = v275] <5 1+cod° 0 e, dy +(8cy + 16)d, + 19 + 15¢, — 18c; — 10c; | = 2.042277. (50)
Proof. From (20), we get
1
ly1ys = v2ys| = E|_1262C3 — 605+ 14 12¢, + 12¢,¢, + 12¢5¢, + 3¢, + 8¢)¢, — 2€, — 4cy|. (51)
Applying the triangle inequality and Lemma 3 to the
equation above, we obtain
s —yovs| <= |12l 1 | f - el Y6 l:f 141201 | - |6,
iva T VaVsl=T; 2 1 1+ lcll 1+ lcll 1 2
2 2 2 3 3
+12]e, (1= ey | = |ea] ) + 12]ey| e + 3ler] + 8le] |ea] + 2ler | + 4les]] (52)
o[ Mk P+ (8Je,[ +16)]cs] + 19 + 15]c, | - 18]e, [ - 10]e, [
12 1+|c|2 1+ || 2 ! 2 ! ! '
Setting ¢ = |c1| and d = |cz|, we obtain
12 5, 123 +24c+18 , 3 5 3
— - - - - = 53
12|y174 — 275 < o T +(8¢” +16)d + 19+ 15¢ — 18¢” - 10¢° = g5 (c, d). (53)
We need to find the maximum value of ¢;(c,d) on  and
={(c,d): 0<c<1,0<d<1-c?}. First, assume that there
is a maximum at an interior point (cy,d,) of Q. Differen- 09s 12 5 12¢2 +24¢c + 6 2
tiati ,d) with tt dd, t 5T -
iating ¢, (¢, d) with respect to ¢ an we ge ac  (1+c) (1+c) (55)

Ops 36 , 24c” +48c+36
od  l+c l+c

3
d+8c’+16, (54 +24c%d + 15 - 36¢ — 30¢%.



Setting 0gs/0d = 0, Ogs/0c =0, and simplifying, we
obtain

{ -36d> —(24c2 +48c + 36)d +8c*+8c° +16c+16 =0,
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12d° —(12c2 +24c + 6)d2 +(24c4 +48¢% + 24c2)d —30c* - 96¢° - 87¢% —6¢+15 = 0.

By a numerical computation,

[ ¢y = 0.330472,
d, = 0.327078,
¢ =-1,

d, =0,
¢, = 2.908356,

1 (57)
d, = 1.865770,
¢; = —0.330825,

| d; = —0.941903,
¢, = —1.257837,
dy = —0.376144.

Thus, in Q, there is a critical point
(co»dy) = (0.330472,0.327078). For the point, we have
@5 (co»dy) = 24.507320.. ...

On the boundary of Q, we get

(1) ¢ = 0. Then,
1
95 (0,d) = —12d° - 18d° + 16d + 19 < g05<0, §>
(58)
591
= =21.888889....
27
(2) d = 0. Then,
-6+ V86
95 (c,0) = —10¢> — 18¢” + 15¢ + 193¢5(T\/_,0)
=21.6306. . ..
(59)

(3) d =1 — ¢ Then,
s(c;1—c*) = -18¢" - 24c" +2¢° + 20 + 21c + 45

=1,(c)<1,(0.6877) = 21.4142 . . ..
(60)

(56)
Thus, we get
by - 7 < (cordo) _ 24507320...
VaYamVslsT 5 7 12 =4
(61)
Hence, the proof is completed. O
Theorem 8. Let f € §T (1), then
|H,, (Fy/2)|<8.33363 ... (62)
Proof. Since
Y1 V2 Vs
2
|H3,1(Ff/2)' =1Y2 V3 VYa S|V3||V2Y4 _Y3| (63)
Y3 Y4 Vs

+yallyivs = vavsl +lysllviyvs = v3).

Using the above results, we achieve the required
results. O

4. Zalcman Functional

Lecko and Sim [8] obtained the sharp bound of the Zalcman
functional J,;(f) being a special case of the generalized
Zalcman functional . (f) = a,,,,1 — a,a,, for functions
from &7 (1). We will compute also the sharp bounds of
J24(f) and J; 5 (f) for the family £7 (1).

Theorem 9. Let f € $T (1), then

J2a(f) =las — aya4| <39, 755 (f) =|as - a§| <56. (64)

The inequalities are sharp with the extremal function
z(1+2)

fz)= 1-2°

(zeU). (65)
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Proof. From (19), we have

|as — aya,| = |-3 - 12¢; - 2¢, - 14c] - 8¢;c, - 8¢} (66
+2¢y + 2c§ - 2c2cf - 2c‘11 .

Applying the triangle inequality and Lemma 3 to the
equation above, we obtain

as — a2a4| <3+ 12|c1| + 2|c2| + 14|c1|2 + 8|c1||c2| + 8|c1|3 + 2(1 —|c1|2 —|c2|2)

+ 2|c2|2 + 2|cz||c1|2 + 2|c1|4

(67)

=5+ 12|c1| + 2|c2| + 12|c1|2 + 8|c1||52| + 8|c1|3 + 2|c2||61|2 + 2|c1|4 = ¢ (c,d),

where ¢ = |c;| and d = |¢,|. Differentiating partially with
respect to d, we obtain

99s _ 2 + 8¢ +2¢%. (68)

od

Clearly, 0¢¢/0d >0 and then ¢4(c,d) is increasing in
d for fixed c. ¢, (c,d) attains its maximum at d = 1 — ¢, so

@ (¢, d) s%(c, 1- c2) =7 +20c + 12¢* < 94 (1,0) = 39.
(69)

From (19) by using Lemma 3, it follows that

|a5 - a§| = |—4 - 16c, — 6¢, — 22cf +4c; — 8¢ ¢, — IZCT +2¢cy +4cic5 — Zc§ - Zcch - ZCﬂ

2
<4+ 16|cy| + 6|, | + 22¢, +4<1 “laf - |ea

+2(1 - |c1|2 - |c2|2) +4|c1|<1 - |c1|2 -

3
= |C1|> +8c; Iyl + 12|y

(70)

2
lc, | >+2i62|2+2i51 |C1|2+2|C1l4

1+ |c1|

=10+ 20|c1| + 6|c2| + 16|c1|2 + 8|c1 lc,| + 8|cl|3 - 4|c2|2 + 2|c1 le,|* + 2|c1|4 = ¢,(c,d),

where ¢ = |c1| and d = |cz|.

We need to find the maximum value of ¢,(c,d) on
Q={(c,d): 0<c<1,0<d <1 - c?}. First, assume that there
is a maximum at an interior point (cy,d,) of Q. Differen-
tiating @, (c,d) with respect to ¢ and d, we get

%:—8d+6+8c+2c2, (71)
and
% =20+32c+24c + 8 + (8 +40)d.  (72)

Setting 0¢,/0d = 0,0¢,/0c =0 and simplifying, we
obtain

9¢% +30¢% + 43¢ + 26 = 0. (73)

—36d° — (24c + 36)d + 4c* + 4> + 16¢ + 16 = 0,
12d° + 6d* +(12c4 +24¢ + 12c2)d +6¢* — 246 — 66¢* - 36¢ = 0.

A calculation shows that there is no solution of (73) in (0,
1) as ¢ = —1.3919. On the boundary of Q, we get

¢, (c,0) = 10 + 20c + 16¢* + 8¢” + 2¢* < 9, (1,0) = 56,

3\ 49
9,(0,d) = 10 + 6d — 4d° < <p7(0,_> ==
4) 4
¢;(c;1—c*) =12 +28¢ +20c” - 4c* < ¢, (1,0) = 56.
(74)

Observe that the equalities in Theorem 9 hold for the
functions f given by (16) with w(z) = z. We will study the
estimate of Zalcman functional J,;(f) of the logarithmic
coefficients for the family £ (1). O

Theorem 10. Let (cy,d,) = (0.030175,0.337301) be the
approximate root of the system of linear equations

(75)
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If f € ST (1), then

1 12 18 + 12¢
vars =il s o |y oo~ o o +(16:+4c))dy + 19 ~ 18¢; + 265 | = 1.825495 .. . (76)
0 0
Proof. From (10), we obtain
1 3 3 2
|y2y3 - y4| =5 |—1 +6¢3 + 2] +4c, + 12¢,¢3 + 4cyc] — 12¢4 — 12¢5¢] | (77)

Applying the triangle inequality and Lemma 3 to the
equation above, we obtain

_ 1 e P = |C2|2 3 e |Cz|2
ly2vs y4|§12|:1+6<1 |y 1+|C1|>+2|c1| +4|c2|+12|c2|<1 |y o]

+4|C1|3|62l + 12(1 - |51|2 - |c2|2) + 12|61|2|C2|] (78)

1 12 | 5 12fe|+18
1|IC2| -

- e +(16.+ e, es) + 19 - 18], + 2|c1|3].

1+|c 1+ ey
dp, 36 , 24c+36 ,
Setting ¢ = |¢,| and d = |c,|, we get o 1+cd B d +4c” + 16, (80)
12 5 12c+18 , ,
12 Yyl -—d" - d” +(16 +4c’)d and
|Y2Y3 hl 1+c¢ 1+c¢ +( * C) 3 0
Ps 3 2 2 2
- = d d” +12c¢°d — 36¢ + 6¢”.
+19-18¢" +2¢” = g (c,d). o (1+c) +(1+C)2 i croc. (B8
(79)

Setting O0gg/0d = 0,09g/0c =0 and simplifying, we
We need to find the maximum value of ¢g4(c,d) on  ©Obtain

Q= {(c, d): 0<c<1,0<d<1 - cz}. First, assume that there

is a maximum at an interior point (cy,d,) of Q. Differen-

tiating g4 (¢, d) with respect to ¢ and d, we get

- —(24c + +4c +4c” +16c+16=0,
36d* — (24c +36)d + 4c* +4¢® + 16c + 16 =0 )

12d° + 64> +(12c4 +24¢ + 12c2)d +6ct - 246 — 66¢% - 36¢ = 0.

By a numerical computation,
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(¢, = 0.030175,
d, =~ 0.337301,

(¢, =-1,
d, =0,

(¢, =~ 1.882189,

1 (83)
d, ~ 1.037633
¢y = —0.477731,

| d; = —0.925485,

cy ~ —2.785022,
| d, ~ —1.488559.

Thus, in Q, there is a critical point (¢, d,) =
(0.030175,0.337301). For the point, we have ¢ (c,,d,) =
21.905936. ..

On the boundary of Q, we get

(1) ¢ = 0. Then,

1
95 (0,d) = —12d° —18d° + 16d + 19 < goS(O, 5)
(84)
591
== =21.888889....
27

(2) d = 0. Then,
95 (c,0) = 2¢° —18¢” + 19 < 94 (0,0) = 19. (85)

(3) d =1 - ¢%. Then,
9g(c:1—c*) =8c” - 24c* — 24> +20¢” + 18c + 5
= 17,(c) <7, (0.6045) = 15.3289 . . ..

(86)
Thus, we get
oy - 2|<¢8(60,d0) 21905936 oo
Ve Vs|sT 5 T 12 =L
(87)
Hence, the proof is completed. O

5. Conclusions

Due to the great importance of logarithmic coefficients,
Kowalczyk et al. [3, 4] proposed the topic of studying the
Hankel determinant with the entry of logarithmic co-
efficients. In our present investigation, we have successfully
examined and studied a subclass of close-to-star functions.
We have obtained estimate for some initial logarithmic
coefficients and some related inequalities problems on
logarithmic coefficients. The third-order Hankel de-
terminant bound for the logarithmic coeflicients as the entry
for this class were determined.

The bounds of various coefficient functionals in the class
&I (1) presented in this paper were obtained due to con-
necting this class with the class 9 of Schwarz functions. It is
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worth noting that knowing everything about 9, including
estimates of coefficient functionals, is a good tool in studies
of other classes of analytic functions. Using these results, one
can easily obtain the fourth and fifth Hankel determinants as
studied in the articles [20-23].
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