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Let % be a complex separable Hilbert space and % (%) be the algebra of all bounded linear operators from & to #. Our goal in
this article is to describe the closure of numerical range of parallel sum operator P : PQ for two orthogonal projections P and Q in
PB(I) as a closed convex hull of some explicit ellipses parameterized by points in the spectrum.

1. Introduction

Let # be a complex separable Hilbert space with inner
product {-,-) and %B(F) be the algebra of bounded linear
operators on #. The numerical range W (T') of an operator
T € B(H) is defined as

W(T) ={{Tx,x): x € Z,|x| =1}. (1)

It is known that W (T') is a nonempty bounded convex
set in the complex plane C and its closure, denoted by W (T),
always contains the spectrum o(T) of T (see [1, 2]). In
addition, for T,,T, € B(¥), we have W(T,®T,) =
conv(W (T,)UW (T,)), where conv(S) stands for the
convex hull of the set S. For references on the numerical
range and its generalizations, see, for instance, [3-8].

This paper arose from an attempt to gain a geometric
characterization of the numerical range of parallel sum with
a view of operator block. In what follows we always suppose
A,B € B() and A + B has closed range. The parallel sum
of A and B is defined as

A:B=A(A+B)'B, (2)

where T is the Moore-Penrose generalized inverse of T (see
[9, 10]). The study of parallel sum is motivated by the fact
that if A and B are impedance operators of resistive n-port

electrical networks, then A : B is the impedance operator of
the parallel connection [11]. Several authors, in particular
Anderson and Trapp [11], Anderson and Duffin [12], Ando
[13], and Wang et al. [10], extended this result and estab-
lished many different equivalent definitions and properties
on parallel sum (see also [9, 10]). Recently, Klaja [14] applied
Halmos’ two projections theorem to describe the numerical
range of a product of two orthogonal projections P and Q.
He showed that the closure of its numerical range is equal to
a closed convex hull of some ellipses parametrized by points
in the spectrum. In [8], Wang et al. also used Halmos’ two
projections theorem to study the containment region of the
numerical range of the product of a pair of positive con-
tractions. Zhang and Yu [15] described the numerical range
of the operator P + QP. Motivated by these, we consider the
numerical range of the parallel sum P: PQ for orthogonal
projections P and Q. The investigation uses in an essential
way Halmos’ two projections theorem, which is introduced
as follows.

Let P and Q be two orthogonal projections on #. Thus,
P =P?=P* and Q = Q* = Q*. The ranges of P and Q are
denoted by & and /¥, respectively. According to Halmos’
two projections theorem (see [16] and consult [17] for the
history and more on the subject), there is a representation of
Z as an orthogonal sum:


https://orcid.org/0009-0007-3540-053X
mailto:wyyume65@163.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/1448498

H=(ZnNe(Zns)e (L nN)e (L NI e,
(3)

where # =Moo M, My=LO(ZLNN)d(ZLNN)),
My =Fo(ZLnN)e (LnAHY)). If one of the spaces
My and M, is nontrivial, then these two spaces have the
same dimension and there exist two self-adjoint operators S
and C of , into itself such that 0<S<I,0<C<],
§? + C? =1, Ker(S) = Ker(C) = {0}, and such that P and Q
are simultaneously unitary equivalent to the following op-
erator matrices:

10 c* cs

P~Ieoleo0a0s ,Q~Ie0la0s .
00 cS §°

(4)
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Moreover, there exists a self-adjoint operator T verifying
0 <T <n/2I such that cos(T) = C and sin(T) = S.

In [18], Deng and Du introduced the pair (P,Q) in
generic position, if LNN =LnNN =L NN =L
N+ ={0}. If two orthogonal projections P and Q are in
generic position, then # = .#,® #, and the operator
matrices in (4) can be simplified to

( I0 > ( cos* (T) cos(T) sin(T) >
P~ Q~ . ) :
00 cos(T) sin(T) sin” (T)

(5)

Tian et al. [9] gave a specific matrix representation of the
operator P: PQ with respect to the decomposition (1). Let P
and Q have the operator matrices in (4), and we can get

cos’ (T)(I + cos’ (T)) cos(T) sin(T)(I + cos’ (T))

1
pP: PQ~§I®O®O®O®

If P and Q are in generic position, the above operator
matrix in turn will be

I +3cos’(T)

I+ 3cos’(T) ) (6)

cos’ (T)(I + cos’ (T)) cos(T) sin (T)(I + cos’ (T))

PZPQ"" I+3COSZ(T)

0

which will be very useful in the next section.

2. Main Results

The following theorems are the main results of this article.
Let A € [0,1/2], &(A). We denote the domain delimited by
the ellipse with foci 0 and A, and minor axis length

1+(1/2)[(3)L— 1) + (1 - 31)° +4)L]
A
1+ (3/2)[(3/\ S (1 - 30+ 41]

Theorem 1. Let P, Q be two orthogonal projections; then, for
A € a(P: PQ), the closure of the numerical range of operator
P: PQ is the closed convex hull of the elliptical disk & (A):

- \% (8)

W(P: PQ) = conv{ u
e (P:PQ)

%(A)}. 9)

I +3cos*(T) i (7)

0

If (P,Q) are in generic position, we will first prove the
following theorem.

Theorem 2. Let P, Q be two orthogonal projections in generic
position; then, for A € o (P : PQ), the closure of the numerical
range of operator P: PQ is the closed convex hull of the el-
liptical disk & (A):

W(P: PQ) = conv{ U
Aea (P:PQ)

gu)}. (10)

In order to prove Theorem 2, we need the following
definition and lemmas.

Definition 3 (see [14]). Let & be a bounded convex set in C.
Let o € R. The support function of &, of angle «, is defined
by the following formula:

ps (@) = sup{Re(z exp (-ia)), z € S}. (11)
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Lemma 4 (see [14, 19]). We denote by S the closure of §. We
have

S8 ={z € C,Va,Re(z exp (-ia)) < p (a)}. (12)

Lemma 5 (see [14, 19]). Let &, S, be two bounded convex
sets of the plane C with support functions pg (a) and pg (a),

respectively. Let & be such that pg(a) = max,_;pg, (a).

Then, we have
S = conv{$; US,}. (13)

Lemma 6. Let (P,Q) be in generic position. Then, the
support function of the numerical range of operator P: PQ is

1+ (1/2)[(3A 1) + /(1 = 31)? +4A]

1 2 .2

pwippoy (@) = sup  =|Acos(a)+ \|A — A sin” (a) |. (14)

MRS renre 2 1+ (3/2)[(31 D=3+ 4/\]

Proof. We fix a € R. From Definition 3, we can get

Pw (ppq) (&) = sup{Re ({(P: PQ)h, h) exp (—ia)), h € ., ||| = 1}
= sup{Re ({exp (—iat) (P: PQ)h, h)),h € Z, |h| = 1} (15)

= sup{<Re (exp (—ia) (P: PQ))h, hy,h € Z, ||h| = 1}.

It follows that
cosz(T)(I + cos’ (T)) cos(T) sin(T)(I + cosZ(T))
P:PQ~ I+ 3cos’(T) I+ 3cos’(T)
0 0
cos’ (T)(I + cos’ (T)) (16)
I +3cos*(T)
(P: PQ)" ~ ,
cos(T) sin(T)(I + cos’ (T))
I +3cos*(T)
and we have
Re (exp (—ia) (P: PQ)) = % [exp (—ia) (P: PQ) + exp (ia) (P: PQ)"]
cos (a)cos® (T)(I + cos” (T)) exp (—ia)cos (T) sin(T)(I + cos’ (T))

I +3cos*(T) 2(1 + 3 cos’ (T)) (17)

exp (ia)cos(T) sin(T)(I + cos’ (T)) 0

2(1 +3cos’ (T))
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From
cos(oc)cos2 (t)(l + cos’ (t)) exp (—ia)cos () sin(t)(l + cos® (t))
1+ 3cos’(t) 2(1 + 3 cos’ (t))
At a) = , (18)
exp (ia)cos (t) sin(t)(l + cos’ (t)) o
2(1 +3cos’ (t))
. v, (¢, @) 0
where t € [0,7/2], it follows that Re(e ™*(P: PQ)) ~ B(t,a) = 0 > (19)
A(T,a). After some computations, we can get A(t,a) = v, (£, a)
U* (t,a)B(t, «)U (t, a) with and
2v, (t, ) 2v, (t, a)
u, (t, ) u, (t, a)
Ul(t,a) = , (20)
exp (ia)cos (t) sin (t)(l + cos’ (t)) exp (iar)cos (t) sin (t)(l + cos’ (t))
u; (t,oc)(l +3cos’ (t)) u, (t, (x)(l +3cos’ (t))
where
1 | cos (a)cos’ (t)(l + cos’ (f)) cos () (1 + cos? (1)) > [cos? (t) (1 + cos? (1)) S
v (ta) == 3 + - sin“ («) |,
2 1 +3cos*(t) 1+ 3 cos?(t) 1+ 3 cos?(t)
-cos a)cos” (£)(1 + cos® (¢ 2 2 2 2 2 ]
vy () _1 (@) ( )( : ( )) ~ cos (t) (1 + cos? (1)) _( cos () (1 + cos* (1)) sin (o) |. (1)
2 1+ 3 cos”(t) 1 + 3 cos?(t) 1+ 3 cos?(t)
B ) cos () sin(t) (1 + cos? (1)) : B
u; (t,a) = \|4v; (¢, ) +< T+ 3002 (1) , 1=1,2.
It is easy to verify passing to the limit when ¢ goes to 71/2 We also have that U*(T,a)U(T,a) =U(T,a)
that U* (T, «) = I. As all entries of U (t, ) are Borelians functions
1 1 and T is a self-adjoint operator, according to Borelians
n NG VA functional calculus (see [20]), we can define
U(E, o) = . (22)
exp (ia) exp (ia)
V2 V2
2v, (T, a) exp (ia)cos(T) sin (T)(I + cos’ (T)) 2v, (T, a) exp (ia)cos(T) sin (T)(I +cos’ (T)) (23)

u (T, a)’ u, (T, oc)(I + 3cosz(T)) “uy (T, )’ u, (T, (x)(I +3cos’ (T))
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Then, we also can define B(T, «) and U (T, «), and we
have that
A(T,a) =U" (T, 0)B(T, &)U (T, ) and U™ (T,a)U(T,w)
=U(T,)U" (T, «) (24)
=1
So, we obtain
Re(exp (—ia) (P: PQ)) ~ A(T,a) ~ B(T, &) = v (T, a) ® v, (T, ). (25)
Note that v, (t,«) <0< v, (¢, &) for every t € [0, /2] and
a € [0, 2rr]. Since o(T) c [0,77/2], we also have that
v, (T,a) <0< v, (T, ), and then we obtain
Pw (ppq) (@) = sup{(Re (exp (—ia) (P: PQ)h, h),h € Z, ||h| = 1}
- sup{((vl(T, ) ov, (T, 1>, h e 7.1 = 1}
(26)
= ||v1 (T,)® v, (T, oc)"
=y (T, = sup v, (t, ).
tyea(T)
From (5) and (7), we can get and we have
2 2 2 2
T)(I+ cos™ (T cos” (a(T))(1+cos” (a(T
cos” (T)( : ())O o(p: POy = ¢ (T)( 2 (()))UO (29)
(P: PQ)P ~ I+3cos"(T) _ (27) 1+3cos”(o(T))

It follows that

Denoting A = (cos? (t,) (1 + cos? (t)))/ (1 + 3 cos? (t,)),

0 0 where t;, € 6(T), then A € o(P: PQ). We obtain that

o((P: PQ)P) _a(P(P: PQ))

{0}

{0}

_a(P(P: PQ)
U

(28)

Pw (ppq (@) = sup v, (to» @)

= sup 1)Lcos(oc)+ A

too (T)

1+(1/2)[(3A—1)+ \/(1—3A)2+4/1] (30)

— A*sin® () |.

Aea(PpQ) 2 1+ (3/2)[(3A 1)+ (1= 30 + 4A]
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This completes the proof. Remark 7. 'The Cartesian equation of the boundary of & (1)
In order to describe W (P : PQ) clearly, we characterizeit  is given by

as the closed convex hull of ellipses & (A). Several of these

ellipses are shown in Figure 1. O

4(x — (M2))?

A(l +(1/2)[(3/\— 1)+ (1 - 3/\)2+4/\]/1 +(3/2)[(3A— 1)+ (1 - 312 +4/\])

(31)
+ 4" =1
/\(1 N (1/2)[(3A S 1)1 - 302 +4/1]/1 +(3/2)[(3/\ S (1 - 30 +4}t]) 2
and the parametric equation of the boundary of &(A) is
given by
L rram]er-n -3t e s N
x,(0) ==1|A = —cos(6) + -,
2\ 1+(3/2)[ (31 = 1) + (1 31)> + 41 2
_ - (32)
Ll 1 2)[GA - 1)+ (1 =307 + 40
¥, (0) == 1|4 L = — \*sin (),
2\ 1+(3/2)[(3h = 1) + /(1 = 31)% + 41

where 0 € [0, 7/2]. Lemma 8. Let o € R. The support function of the elliptical
disk € (M) is

1+ (1/2)[(3A —1)+/(1-31)7° +4A]
1+ (3/2)[(3/\— 1)+ /(1 = 31)? +4)L]

Pe (@) = % Acos(a) + 1|2 - A sin® (a) |- (33)

Proof. Let A € [0, 1/2]. The support function of &(A) rel-  where x, (8), ¥, (0) represent the parametric equation of the
ative to the original point 0 is given by boundary of &,. Let f = f, , be the function defined by the

pg, (@) = supfx; () cos (@) + y, () sin (a)}, (34) following formula:
OeR

1.0 (0) = x, (0) cos(a) + y; (0) sin (a)

N L+ 2311+ \(1- 32 + 41|
=—cos(a) +="1|A cos (0) cos (a)
2 2 1+(3/2)[(3A- 1) +/(1 - 3/\)2+4/1] (35)

|| rramE-nefa - e a
A

+ —

2 1+(3/2)[(3A— 1)+ (1= 312 +4/\]

— A?sin(6) sin (a).
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0.2+

T

Ficure 1: Ellipse & () for A = 0.02, 0.05, 0.1, 0.15. .., 0.45, 0.48, 0.5.

Since & (1) is symmetric about y =0, only « € [0, 7] Case One. Suppose that cos(«) # 0. It follows from
needs to be considered, and the proof will be divided into

two cases.
|| ream]E-n a3 e a
Fra(@ =-1A sin (8) cos ()
2\ 14 (3/2)[(3/1 “ 1)+ (1 - 312 +4/\]
(36)
R (1/2)[(3)L —1)+ (1 -3+ 4/1]
+=1(A —A? cos (0) sin (a),
2 1+(3/2)[(3)\— 1)+ /(1 - 31)? +4)L]
that we have f&;(e) =0 if and Only if tan(@) = (\/1—)(1+(3/2)[(3A—1)+\/(1—3A)2+4/\])/(1+(1/2)[(3/1—1)+ (1-310)%+41]) tan(oc))
\jl—A(1+(3/2)[(3A—1)+\ (=302 + A1+ (1U2)[GA- D+ A -3 +a ) tan (). So, and 92 = 91 + 1. We denoted €, =1le=-1 then,
the critical points are 0, = arctan
1
cos(6;) =¢;
\/2 A 1+(1/2) (3L = 1) + (1 - 31)? +4/\]/1+(3/2)[(3A—1)+\/(1— 31)? +4/\]>tan (@)
(37)
\]1 by 1+(1/2) (3= 1) + (1 - 3 +4)L]/1+(3/2)[(3A— 1)+ /(1 = 31) +4)t])tan((x)
sin(6;) = ¢;

4_

2 )L 1+(1/2) (31—1)“/(1—31) +4/1]/1+(3/2)[(3)L—1)+\/(1 30)? +4/\]>tan (@)
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where i = 1, 2. Substituting the above formula into f, ,(6;),
we can get

f1a(6:) = x,(6;) cos (@) + y, (6;) sin (a)

1+ (1/2)[(3/\ — 1)+ (1 -30)% + 41 ]
cos(6;) cos (a)
1+ (3/2)[(3A S 1)+ J(1— 31)2 + 41 ] (38)

||t am[Eh-n -3 s 41

+ —

2 A1 +(3/2)[(3/1— 1) + (1= 31)? +4/\]

:%cos(oc)+— A

— A% sin (6,) sin (a).

By simple calculation, we have

1+ (1/2)[(31— 1)+ (1 - 312 +4/\]
1+ (3/2)[(3A —1)+(1- 30+ 4A]

—A*sin’ (a) |. (39)

Fra(6) =% Acos(a) + &1(A

Then, we finally get that

1+ (1/2)[(3A— 1)+ /(1 -31)>° +4A]

1
peoy (@) =sup f),(6;) == [Acos(a) + |[A
O 2 1+ (3/2)[(3)\ S +1- 3%+ 4)L]

— A% sin® (@) |. (40)

Case  Two. 1f cos(a)=0, then f,,(6) =1/2 \//1(1+1/2[(3)L—1)+ (1=30)% + A1)/ (1+3/2[(3A = 1) + /(1 = 34) + 41]) — A2
\/m 12030 - )+ (-3 + a1+ 3200 - D+ a2+ e -2 sin (6).  The
function f,,(0) reaches its maximum value 1/2

while sin(8) = 1 and also satisfies

1+(1/2)[(3/1— 1) + /(1 = 312 +4/1]
1+ (3/2)[(3/\— 1) + (1 - 3))? +4A]

— A*sin®(a) |. (41)

1
pgu)(oc):i Acos(a) + \|A
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FIGURE 2: conv{ UAE[O)I/Z]%(A)}.
The proof is completed. O  Proof of Theorem 1. From Lemmas 6 and 8, we have
Then, we can prove Theorems 1 and 2.
. L+ (L= 1+ (1= 30 +41 |
Pwppq (@) = sup —|Acos(a)+\[A — A sin’ ()
Aeo(P:PQ) 2 1+ (3/2)[(3}L D+ (L- 30+ 40 ] ()
= sup  pgq (@)
Aea (P:PQ)
It follows from Lemma 6 that The proof is completed. |

W(P: PQ) = conv{ U %()t)}. (43)
Aeo (PPQ)

Proof of Theorem 2. From the matrix form in (2), we have

cos’ (T)(I + cos’ (T)) cos(T) sin(T)(I + cos’ (T))

1
p: PQ~EI€B0€B0€BOEB

0

Suppose F = {0}. The following proof will be divided
into two cases.

M If Lna/+{0}, then W(P:PQ) =W(1/2Is0
®080) = conv{{0}U {1/2}} = [0, 1/2]. In this case,
Aeo(P: PQ)={0,1/2} and &(0)= {0}, &(1/2)
= [0, 1/2]. Thus, W (P: PQ) = [0, 1/2] = conv{& (0)
U&(1/2)} = conv{ U o ppy& (V)]

) If NN = {0}, we have W (P: PQ) = {0} = €(0).

I +3cos*(T)

I +3cos (T) _ (44)

0

Suppose # #{0}. The following proof will be divided
into two cases.

3) If N ={0}, we have P: PQ =0 on the space
(Znwy )eai’. Thus, the closure of the numerical
range of P: PQ on the space (20/1/)633} is
conv{{O} Uconv{ UAEJ(P:PQ)%(A)}}. As {0} c&(})
for all A€ [0, 1/2], we can

have
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W (P: PQ) = conv{ UAEU(P:PQ)%()L)} on the space
(ZnA)e.

(4) It Zn A #{0}, we have P: PQ = 1/2I on the space
(&LnwNy )GB?} . Thus, the closure of the numerical
range of P: PQ on the space (ZnN /V)eai’ is
conv{{l/Z} Uconv{ U)LW(P:PQ)%(/\)}}. As {0} c @&

(1) for all A€ [0, 1/2] and # # {0}, the convex
combination of 0 and 1/2 is contained in the closure
of the numerical range of P : PQ. Thus, the closure of
the numerical range of P:PQ on the space

(nMNe is conv{[0, 1/2]
Uconv{U ey ppgy& (M} But &(1/2) = [0, 1/2].
So, we have W (P: PQ) = conv{ UAEG(p:PQ)%(A)} on
the space (ZNA) @ %.The proof is completed. [

Corollary 9. Let P and Q be orthogonal projections. Then, for
A € 0(P:PQ), we can get

W(P:PQ)=conv{ U %(/\)} Cconv{ U %()L)}. (45)
eo (P:PQ) Ae[0.1/2]

W(P: PQ) =
conv{ UAE[O’W]%(A)} when o(P: PQ) = [0, 1/2], as shown
in Figure 2 [21-24].

In particular, we have
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