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Both frequentist and Bayesian statistics schools have improved statistical tools and model choices for the collected data or
measurements. Model selection approaches have advanced due to the difculty of comparing complicated hierarchical models in
which linear predictors vary by grouping variables, and the number of model parameters is not distinct. Many regression model
selection criteria are considered, including the maximum likelihood (ML) point estimation of the parameter and the logarithm of
the likelihood of the dataset. Tis paper demonstrates the information complexity (ICOMP), Bayesian deviance information, or
the widely applicable information criterion (WAIC) of the BRMS to hierarchical linear models ftted with repeated measures with
a simulation and two real data examples.Te Fisher information matrix for the Bayesian hierarchical model considering fxed and
random parameters under maximizing a posterior estimation is derived. Using Gibbs sampling and Hybrid Hamiltonian Monte
Carlo approaches, six diferent models were ftted for three distinct application datasets. Te best-ftted candidate models were
identifed under each application dataset with the two MCMC approaches. In this case, the Bayesian hierarchical (mixed efect)
linear model with random intercepts and random slopes estimated using the Hamiltonian Monte Carlo method best fts the two
application datasets. Information complexity (ICOMP) is a better indicator of the best-ftted models than DIC and WAIC. In
addition, the information complexity criterion showed that hierarchical models with gradient-based Hamiltonian Monte Carlo
estimation are the best ft and have supper convergence relative to the gradient-free Gibbs sampling methods.

1. Introduction

We think through the tricky of comparing complex hierar-
chical models in which linear predictors vary by grouping
variables, and the number of model parameters is not no-
ticeably distinct [1]. In natural structure, experimental data in
cognitive science, education, public health, and social follow-
up contain “clusters.” Tese nested structures comprise ex-
perimental measurements that are much more correlated
within the group than between them. Such clusters in clinical
trials and experimental designs are subjects and experimental
units (e.g., words, pictures, and measurements presented to
the issues). Tese clusters arise because we have multiple
(repeated) observations for each subject and item [2].

Incorporating this grouping structure in data analysis leads to
the necessary use of a hierarchical model (also called a mul-
tilevel or mixed-efects model). Tis grouping structure and
hierarchical modeling type are closely connected to the
concept of exchangeability [3].Te exchangeability concept of
hierarchical models is the Bayesian equivalent of the as-
sumption “independent and identically distributed” one often
encounters in classical statistics thinking.

Te rapid advancement of complex statistical modeling
and computing to ft real-world data structures need the best
model selection criteria [4]. In statistical modeling, having
attention to model convergence and interpretability, there is
no specifc reason to select a single best model according to
some criterion [5]. Instead, it makes more sense to “deselect”
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poor models which might have overftting and underftting,
keeping a subset model for further inference. Often, this subset
might consider a single model, but sometimes possibly not.

Model selection is a procedure for fnding the best-ftted
model from a subset of models. Te predictor variables and
covariates are related to the outcome/dependent variable [6].
Model selection approaches fnd the “best” trade-of between
goodness-of-ft with data andmodel complexity [7, 8]. Based on
the correct complexity interpretation of the models, these
techniques can be categorized into diferent goals to realize high
predictive density, low predictive error, high model probability,
or minor looseness of information. Tese goals can be ac-
complished by ensuring unreliable or reliable model selection
and integrating a piece of Bayesian prior information or not [9].

Hierarchical (i.e., mixed-efects) linear models include
random intercepts, random slopes for all within-subjects,
experimental units, and correlations between the random
efects components [10]. Te simulation results showed that
complex models with more parameters, including Bayesian
parameter priors, faced a more negligible convergence efect
[11]. Although various model selection tools indicated the
best-ftting model, proper model selection depends on the
random efect structure of the Bayesian hierarchical model.
Tat is whymodel selection should be built on goodness-of-ft
and consider model complexity [12]. Fitted models with high
complexity measures attempt to capture each deviation in the
data points. Such models are supposed to have high variance
structures, leading to overftting the data [13].

Model selection, based merely on the ft to the trained
dataset, leads to choosing an unnecessarily complex model
that overfts the data and thus infers poorly. Model selection
techniques must appropriately balance the consequence of
overftting [9, 11, 12, 14].

Many more information criteria are implemented in
diferent modeling types and found in diferent software
packages. Tese include Akaike Information Criteria (AIC),
Adjusted Akaike Information Criteria (AICc), Schwartz
Bayes Information Criteria (SBC, SBIC), and Bayesian In-
formation Criteria (BIC) [15]. All these information criteria
are based on the maximum likelihood (ML) point estima-
tion, which can be expressed as the sum of the deviation and
penalty terms [16]. Tese criteria select the “best-ftting”
model with sufcient goodness of ft and few parameters,
penalizing the over determined parameter for lack of ap-
propriate measure [17]. Te Bayesian model selection
method used the posterior proposal to decide whether the
ftted model maximizes the expected utility of the posterior
distribution for the data and parameters [5, 18].

Te model averaging approach used fat priors over the
range of plausible values of the model parameters [19].
Another popular model selection method is the Bayes factor,
which requires one unique priory nominated model by the
decision of the statisticians or the researcher out of all
available ftted models [20]. Nevertheless, the researcher’s
(or scientist’s) decision might be wrong, making the Bayes
factor irrelevant in limited situations. In addition, over-
looking the information criteria computed based on the
deviation terms in the maximum likelihood (ML) point
estimation, the penalty terms rely on only the sample size

and the number of parameters. None-point estimation of the
full posterior estimation (the expected posterior estimator)
considers the variance-covariance matrices [13, 17, 21].

In the Bayesian approachmodel compassion, the deviance
information criterion (DIC) available in the MCMCglmm
and the widely applicable information criterion (WAIC) of
the BRMS in Stan are attempts to fnd the model with the best
predictive models [22]. Like DIC, WAIC estimates adequate
parameters to adjust for overftting in the model. WAIC is
a fully Bayesian pointwise version of the AIC, asymptotically
equivalent to the Deviance Information Criterion (DIC) [20].

On the other hand, a novel model selection criteria
known as information complexity (ICOMP) is calculated by
the set of random vectors obtained from the information-
based covariance complexity index for a general multivariate
linear or nonlinear model estimated with the C-valued
equation or by the structural complexity of an element.
ICOMP represents and is a real-valued measure of com-
plexity. ICOMP is the estimation of the covariance matrix of
the parameter vectors in the model. In the general case of
model selection criteria, the best model minimizes the
criterion [23–25]. Te main objective of this study is to
evaluate the popular model selection criteria that consider
the fxed parameterizations with ICOMP criteria that con-
sider the covariance matrix of the parameter vectors for the
diferent setups of hierarchical modeling with prior distri-
butions. Terefore, this paper compares the ftted Bayesian
hierarchical models using covariance complexity-based
ICOMP and the number of estimated parameters based
on DIC or WAIC under two popular MCMC approaches in
three application datasets.

2. Methodology

Classical statistical linear models were often ftted by
maximum likelihood estimation considering parameter
point estimates. Tis paper demonstrates the theoretical and
practical drive of the information complexity criterion for
Bayesian hierarchical linear models, which ft by estimation
methods of maximizing a posterior (MAP) distribution. Te
Bayesian hierarchical model considers a full posterior dis-
tribution supported by parameter prior information, and it
has additional random terms besides the usual residual time
in the standard linear model. Model complexity frequently
refers to the number of features or variables incorporated in
a specifed predictive model in the machine learning con-
cept. Based on the researcher’s needs and the model
structure, there are several freely available R-based Bayesian
hierarchical model applications of bearing to the data in any
feld [26]. Here, we applied two freely available R packages
for Bayesian hierarchical linear modeling: gradient-free
Bayesian Monte Carlo and one gradient-based (Hamilto-
nian Markov Chains). Te hybrid Hamiltonian in Stan is
a pioneer andmore efectiveMonte Carlomethod than other
Markov Chain Monte Carlo approaches [27]. Six diferent
Bayesian hierarchical linear models, of which 3 used
gradient-free Gibbs sampling approach and the other 3 used
gradient-based Hamiltonian Monte Carlo estimation, were
ftted for each of the three application datasets.
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2.1. Te General Form of the Fisher Information Matrix for
a Linear Model. For a given vector of measurements yij,
a general linear model can be written as follows:

Y � Xβ + e. (1)

Te likelihood L is a function of all model parameters
θ � (β, σ2e) defned as L(θ | Y) � P(Yij, θ). For a general
linear regression model, the log-likelihood can be written as
follows:

LL(θ | Y) � logP Yij, θ  � −
n

2
log(2π) −

n

2
log σ2e  −

1
2σ2e



N

i�1
yij − f xij, β  

2
. (2)

Te partial derivative of the log-likelihood for the pa-
rameter θ is called the score. Under the general regularity
condition, the expected value of the score is 0 [28]. Indeed, it
is easy to show that

E
z

zθ
logP yij; θ

∗
   � 0, (3)

where θ∗ is the “true” unknown value of θ such that the ob-
servations yij were generated withmodelP(.; θ∗).Te variance
of the score is called the Fisher information matrix (FIM).

FIM θ∗(  � E
z

zθ
logP yij; θ

∗
 

z

zθ
logP yij; θ

∗
  

t

 .

(4)

Besides, when the log-likelihood LL is double diferen-
tiable concerning the parameter θ, the FIM is given by the
following equation:

FIM θ∗(  � − E
z
2

zθzθ′
logP yij; θ

∗
  

� − 
n

i�1
E

z
2

zθzθ′
logP yij; θ

∗
  .

(5)

Te variance of σ2e is estimated by I− 1
y (σ2) as Iy(σ2)

� (z2/z(σ2e)2)LL(β, σ2e) � − (n/2σ4) + (n/2σ6)N
i�1(Yi − P

(Xi − β))2 � (n/2σ4). And standard errors (SE) of σ2 be-
comes σ2/

���
n/2

√
.

In this case, the estimated inverse Fisher information
matrix (IFIM) (i.e., Cramér–Rao lower bound matrix) is as
follows:

Cov β, σ2e  � F
− 1

�

σ2e X
′
X 

− 1
0

0
2σ4e
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

2.2. Bayesian Hierarchical Linear Modeling for Repeated
Measures Data. Suppose the target variable Yij is the jth

repeated observation (j � 1, 2, 3, . . . , ni) taken of the in-
dividual (subject) i � 1, 2, 3, . . . , m that is considered N �


m
i�1ni as a total number of response measurements. As-

suming the parameters (θ) of the model with the set of p

explanatory variables Xi � x
(1)
ij , . . . , x

(p)

ij (fxed efects) and q

random terms constant compliments of Xi as Zi, the hi-
erarchical linear model which considers a group (subject) i is
an extension of equation (1) and can be written as follows:

Yi � Xiβ + ZiUi + εi, (7)

where

Yi �

yi1

yi2

. . .

yini
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1 x
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i1 · · · x

(p)
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1 x
(1)
i2 · · · x

(p)
i2
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1 x
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· · · x
(p)
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⋮
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(8)
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Since the random efects vary by group (g), Ui ∼
Normal(0, σ2g);Cov(Ug, Ug′) � σgg′ and εi ∼Normal (0, σ2e);

Cov(εg, εg′) � σee′ . Terefore, the variances and covariance
among the random (group) efects are σ2g and σgg′ , respectively.
Te residual error variance and covariance between errors in
the group are σ2e and σee′ [29–31]. In general form,

YN×1 � XN×pβp×1√√√√√√√√
fixed  effects

+ ZN×mqUmq×1√√√√√√√√√√
random  effects

+ εN×1√√
residuals(error  term)

,
(9)

where Y denotes the vector (y1′, y2′, . . . ym
′)′ of outcome

variable, β denotes a vector of fxed efects parameters, U

denotes a vector (U1′, U2′, . . . Um
′)′ of associated random efects

(specific  to  each  subject), X is a matrix of covariates (ex-
planatory variables), Z denotes a block diagonal matrix of
covariates for the random efects as a complement of X

embraced of m blocks that each block has ni × q dimension
matrix, and ε denotes a column vector of residuals. We as-
sumed that the random efects U∼N(0q,Ω � σ2g) and the
residuals ε∼N(0ni

, R � σ2e), where U and ε are independently
distributed. Based on the unknown vector of φΩ and φR, the
unknown random efects in Ω and R can be written as
Σ � (φΩ,φR) [32].

As the population parameters of the hierarchical linear
model, themodel parameters are the vector of fxed efects β, the
q × q variance-covariance matrixΩ for the random efects, and
the variance σ2e of the residual errors. Here, let θ � (β,Ω, σ2e) be
the set of (p + 1) fxed efect and (mq + 1) random efect
model parameters and yi ∼N(Xiβ, ZiΩZi

′ + σ2Ini).

For a given set of parameter estimates θ, the covariance
matrix of Y can be computed as cov(Y) � V � Z ΩZ′ + σ2eI

and the estimate of the covariance matrix is a positive
defnite matrix [33].

Te Bayesian hierarchical linear model with fxed and
random efect parameters can be noted as θ � (β, σ2 �

[σ2g, σ2e]). Tis parameterization implies, for Y∼normal
(Xβ, V) in which V � ZΩZ′ + σ2eIn, the marginal likelihood
can be written as follows:

L β, σ2; Y  � −
n

2
log(2π) −

1
2
log|V|

−
1
2
(Y − Xβ)

′
V

− 1
(Y − Xβ).

(10)

Te Best Linear Unbiased Estimator (BLUE) of fxed
efects β and the Best Linear Unbiased Predictor (BLUP) of
random efects can be expressed as follows:

β � X
′
V

− 1
X 

− 1
X
′
V

− 1
Y,

u � ΩZ′V− 1
(Y − Xβ).

(11)

2.3. Maximum a Posterior Estimator (MAP) of Model
Parameters. Te maximum likelihood (ML) estimators of θ
maximize the log-likelihood function defned as follows:

LL(θ | Y) � log(P(y, θ))

� 
N

i�1
log P yi, θ( ( 

� 
N

i�1
−

ni

2
log(2π) −

1
2
log ZiΩZi

′ + σ2Ini


  −

1
2

yi − Xiβ( 
′

ZiΩZi
′ + σ2Ini 

− 1
yi − Xiβ(  .

(12)

Due to the lack of a simple analytical solution to this
optimization problem, various numerical methods such as
the Newton–Raphson and the Expectation-Maximization
(EM) algorithms can be used for maximizing LL(θ | Y).
Among the likelihood methods, the unbiased estimates of
variance and covariance parameters can be computed using
the restricted maximum likelihood (REML) approach in
contrast to the maximum likelihood (ML) method. Te
maximum likelihood estimates of the fxed efect parameters
βpx1 are given by the following equation:

βMLE � X
′
X 

− 1
X
′
y, (13)

where (X’X) is nonsingular. Bayesian inference introduces
prior distributions over all model parameters θ and is built
entirely on posterior distributions of model parameters or

conditional distributions P(θK | data) for Kth parameter θK,
given data, and other known quantities in the model.

In the Bayesian generalized hierarchical linear model,
the joint full parameters, θ � (β,Ω, σ2e), and posterior dis-
tribution P ((θ | Y)) can be articulated as follows:

P(θ | Y)∝P(θ, Y) � 
K

i�1
 P Yij | Ui, β P Ui |Ω( P(θ)dUi,

(14)

where the regularizing constant is independent of the pa-
rameter components in θ. Estimation of the parameter θ can
be derived from the full parameters posterior distribution,
P(θ, Y), only through specifed locational measures of the
posterior, such as posterior mode, mean, ormedian.Te prior
for θ, P(θ), is a constant, then the posterior in equation (14) is
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efectively proportional to the likelihood function in equation
(10), and hence, the posterior mode is numerically identical to
the maximum likelihood estimate. Tus, fat priors or non-
informative priors for fxed efects, (β), and the random efect,
(Ω), are usually preferred. In this case, the distribution of
random efects assumed to be normal, specifcally U1, U2,

. . . , UK are i.i.d. q− dimensional MVNq(0,Ω) [34].
It is computationally true that considering uniform

distribution priors p(θ)  for θ indicates that the posterior
distribution in equation (14) is efciently compared to the
likelihood function. It provides identical results of the
maximum likelihood estimate and the Bayesian maximum

a posteriori (MAP) estimate of the posterior mode [35]. For
this reason, fat priors or noninformative priors for fxed
efect parameters β and random efect parameters Ω are
typically chosen. Moreover, for the reason that the Bayesian
hierarchical modeling dimensions complexity, the usual
numerical approximation techniques cannot provide the
maximization solution. Tus, a recent infuential method for
handling complex statistical integration is the Markov chain
Monte Carlo (MCMC) algorithm. Ten, with the non-
informative prior specifcation, the joint posterior distri-
bution can be written as follows:

P β, σ2g,
σ2e
X

, Y ∝p X,
Y

β
, σ2g, σ2e  × p

σ2g
σ2e

⎛⎝ ⎞⎠ × p(β) × p σ2g  × p σ2e . (15)

Te theoretical derivation of the Bayesian maximum
a posteriori (MAP) estimator considers a Bayesian hierar-
chical linear model where all parameters are random at the
individual level. Based on the marginal likelihood function
of equation (10), one can derive separate scores for each
component of θ as β and σ2(for k � 1, 2, . . . , K) [35].
Terefore, the score for σ2 from the gradient for the kth

pointwise entry of σ2 is as follows:

zL β, σ2; Y 

zσ2k
� −

1
2
tr V

− 1 zV

zσ2k
 

+
1
2
(Y − Xβ)

′
V

− 1 zV

zσ2k
 V

− 1
(Y − Xβ).

(16)

To obtain the scores from every observed gradient i, we
need to use the trace operator with a diag operator by
component-wise multiplication known as Hadamard
product.Te score function Si(.) for each observation for the
parameter vector θ is as follows:

S σ2k; Y  � −
1
2
diag V

− 1 zV

zσ2k
 

+
1
2
(Y − Xβ)

′
V

− 1 zV

zσ2k
 V

− 1
 

′

⊙ (Y − Xβ).

(17)

Equation (17) gives n × 1 score vector from the gradient
of parameter σ2k (a scalar).

Similarly, the score vector for the fxed efect parameter β
can be obtained from the gradient.

zL β, σ2; Y 

zβ
� X
′
V

− 1
(Y − Xβ). (18)

Again replacing the matrix multiplication by the
Hadamard product,

S(β; Y) � X
′
V

− 1
 

′
⊙ (Y − Xβ). (19)

After the derivation of gradients for fxed and random
efects, the complete set of scores can then be the combined
matrix whose columns consist of the results of the separate
score vectors from equations (17) and (19) [28].

2.4. Derivation of the Fisher Information Matrix for Hierar-
chical Linear Modeling. To derive the Fisher information
matrix for the Bayesian hierarchical linear models (BHLM) in
equation (7) or (9), we need to ponder the concept of Fisher
information matrix for general regression and consider the
design matrix Z can be partitioned into r submatrices.
Suppose q(i) denote the number of columns in Zi, and then,
Iq(i) is an identity matrix with dimension q(i) × q(i). Tis
implies Z � [Z1, Z2, . . . , Zr] and U′ � [U1′, U2′, U3′, . . . , Ur

′]
with cov(Ui) � σ2i Iq(i) and cov(Ui, Uk) � 0 for i≠ k. Tere-
fore, the covariance matrix of the random efects U is a block
diagonal matrix with blocks cov(Ui) � σ2i Iq(i). As standard
assumptions, R � IN and R � ZiZi

′. We can rewrite cov(Y) �

V � 
r
i�0σ

2
i ZiZi
′, where σ20 � σ2e . Tus, in equation (9), the

covariance of the random efects U can be rewritten as follows:

Ω � 
r

i�1
σ2i ZiZi
′. (20)

Here, the unknown model parameters vector θ com-
prises the fxed efect parameters β and the random efect
scalars σ20, σ

2
1, σ

2
2, . . . , σ2r . Tus, as an alternative to estimating

the matrix Ω, we need to estimate scalars σ20, σ21, σ22, . . . , σ2r .
Note that, besides the variance terms, the covariance terms,
such as σ01, σ02, . . . .σ(r− 1)r, are needed to be estimated.

Te fxed portion of the model in equation (9) is
analogous to the general linear model regression coefcients
to be estimated by maximizing the log-likelihood. For the
random part of the model (6), we assume that U had
variance-covariance matrix Ω and that U is orthogonal to ε
so that
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Var
U

ε
  �

Ω 0

0 σ2eR
 . (21)

Here, considering V � cov (θ) which encompasses the
variance-covariances Ωβ,Ωu, and Ωe for fxed efect β,
random efect U,, and the residual term ε, respectively, the
full variance-covariance matrix for θ can be written as
follows:

Σ �

Ωβ 0 0

0 Ωu 0

0 0 Ωe

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (22)

Suppose F denotes the Fisher information matrix for the
hierarchical model in equation (9); without considering the
constant 2π, the log-likelihood function for model (9) can be
rewritten as follows:

LL(θ | Y) � LL β, σ20, σ
2
1, σ

2
2, . . . , σ2r | Y 

� −
1
2
log|V| −

(Y − Xβ)
′V− 1(Y− Xβ)

2
.

(23)

Now, our primary target is fnding the matrix F � − Eθ
z2LL(β, σ20, σ

2
1, σ

2
2, . . . , σ2r | Y)/zθzθT

 .
Tus, the Fisher information matrix for the Bayesian

hierarchical linear model (BHLM) is a block diagonal matrix
that combines the covariance terms of the fxed and random
parts:

F � − Eθ
z
2
LL β, σ20, σ

2
1, σ

2
2, . . . , σ2r | Y 

zθzθT

⎧⎨

⎩

⎫⎬

⎭

�

X
′
V

− 1
X 0

0
1
2

tr V
− 1

ZiZi
′V− 1

ZkZk
′ 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(24)

Ten, from equations (23) and (24), we need to invert the
information matrix F to get the full variance-covariance
matrix concerning all parameters in the model [28].

2.5. Bayesian Deviance Information and Widely Applicable
Information Criterion. Many researchers have scrutinized
model selection from frequentist and Bayesian perspectives,
and many tools for selecting the “best-ftted model” have
been suggested [5]. Te Bayesian deviance information
criterion (DIC) developed by [1] is a Bayesian version of the
Akaike Information Criterion that substitutes a maximized
log-likelihood with the log-likelihood evaluated by the Bayes
estimate. Nevertheless, it is not fully Bayesian logically be-
cause of its reducing behavior of the probability distribution
down to point estimates. Bayesian deviance information
criterion (DIC) can be computed as follows:

DIC � − 2 logp y | θMAP  + 2pDIC

� Dhat + 2pDIC � Dbar + pDIC,
(25)

where θMAP is the maximizing a posterior (MAP) estimate
that replaces the ML-point estimate in AIC. Te new
measure of the Bayesian predictive accuracy expressed as the
expected log-point prediction intensity is the diference
between the posterior mean of the deviance minus the
deviance of the posterior means: pDIC � 2(logp(y | θMAP) −

Epost(logp(y | θ))), and Dbar is the posterior mean of de-
viance and Dhat is a point estimate of the deviance obtained
by substituting in the posterior means θMAP, thus Dhat �

− 2 logp(y | θMAP). Tis gives an adequate number of pa-
rameters, pDIC, given by pDIC � Dbar − Dhat.

Widely applicable information criterion (WAIC), also
known as Watanabe–Akaike [36], could be achieved as an
improvement over the deviance information criterion (DIC)
for Bayesian models [25]. Widely applicable Bayesian in-
formation criterions penalty term is purely Bayesian and is
computed pointwise as follows:

pWAIC � 
N

i�1
Varpost logp yi | θ( ( . (26)

Here, pWAIC, the penalty term is the variance of the log-
predictive-density terms aggregated over N data points.
Tus, theWatanabe–widely applicable Bayesian information
criterion can be calculated as follows:

WAIC � − 2 log p Y | θpost   + 2pWAIC, (27)

where θpost is the joint posterior distribution of ftted model
parameters and pWAIC  is an estimate of the number of efective
parameters computed as in equation (26). In the general case,
WAIC uses the logarithm of the pointwise predictive density,
and its logarithm sums the overall observations. Tis esti-
mation leads to the asymptotical equivalence of WAIC and
DIC in Bayesian modeling. However, the penalization term for
overftted estimates the number of efective parameters [20].

2.6. Te Information Complexity (ICOMP) Criterion for the
Hierarchical Linear Model. Deviance can be defned as the
likelihood diference between the ftted and perfect models.
It is used to measure the deviance of the ftted binary logistic
model for the saturated model for P(Y� 1 | X1 � x1, X2 �

x2, . . . , Xp � xp). It is statistically valid that the deviance is
always larger than or equal to zero only if the ft is perfect
[35]. Te deviance of the worst (null) model, the one ftted
without any predictor, to the ideal model can be written as
Y|(X1 � x1, X2 � x2, . . . , Xp � xp)∼Binary(β0).

As a background of model selection criteria, Akaike
Information Criterion (AIC) [21, 37] is extensively used for
diferent statistical models selection criteria and it is given by
the following equation:

AIC � − 2LL(θ | Y) + 2k, (28)

where LL(θ | Y) is the log-likelihood function of θ parameter
in a probability distribution, and k is the number of pa-
rameters in a model Mθ. ICOMP (I, information-COMP,
complexity) is a criterion developed by [38] for selecting
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multivariate linear and nonlinear models, whereas the log-
likelihoodAIC ismerelymeant to strike a balance between the
lack of ft and the penalty terms; however, ICOMP seeks to
achieve this balance by taking into account a measure of
complexity that assesses how the model’s parameters interact
with one another. As a result, it penalizes the covariance
complexity of the model rather than simply punishing the
number of parameters [39]. Te information complexity
(ICOMP) criterion is given by the following equation:

ICOMP � − 2LL(θ | Y) + 2Cmax(Σ). (29)

Te second part of equation (29) is called the measure of
complexity of the model given in equation (9), which can be
computed as follows:

Cmax(Σ) �
d

2
log

tr(Σ)
d

  −
1
2
log|Σ|, (30)

where |Σ| represents the determinant of Σ and d is the
dimension of Σ. As seen, Cmax(Σ) includes the two most
straightforward scales of multivariate scattering called de-
terminant and trace in a single function [40]. Depending on
the model structure, the ICOMP criterion can be computed
by substituting the inverse Fisher information matrix (IFIM)
F− 1 to measure the covariance complexity. Information
complexity (ICOMP) has various forms [41–43].

AIC, DIC, BIC, and ICOMP, among other model ft
criteria, combine the goodness-of-ft term of the model, 2LL
(Y), and the model’s complexity, commonly referred to as
the penalty term. All likelihood-based ML points and
maximizing posterior estimation measures of model ft
criteria also do this. However, many criteria used the
number of parameters as a penalty for complexity; the
penalty term of AIC is 2k, two times the number of estimated
parameters. In contrast, the penalty term of the ICOMP
criterion is the measure of the covariance complexity for the
ftted models [41]. Because the structured covariance matrix
Σ of the estimated parameters θ is unknown in closed form
and nonidentifability, we then apply the estimated inverse
Fisher information matrix to assess the complexity of the
Bayesian hierarchical linear model [44]. Te estimated in-
verse Fisher information matrix F

− 1 can be computed with
θ instead of θ in a matrix F− 1. Tus,

ICOMP(IFIM) � − 2LL(θ | Y) + 2Cmax
F

− 1
 . (31)

Combining equation (23) having constant 2π with
equation (29), the inverse Fisher information matrix (IFIM)-
based information complexity (ICOMP) [42] is computed as
follows:

ICOMP(IFIM) � − 2LL(θ | Y) +
d

2
log

tr F
− 1

 

d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −

1
2
log F

− 1



� N × Log(2π) + log|V|

+(Y − Xβ)
′ V

− 1
(Y − Xβ)

+
d

2
log

tr F
− 1

 

d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −

1
2
log F

− 1

.

(32)

For the ICOMP criterion implemented on the ftted
models, the model with a minimum ICOMP measure value
is known as the best model.

3. Application of Model Fitting to Categorical
Outcome Repeated Measures Data

Tis article demonstrates and realizes the ftting of a cate-
gorical outcome Bayesian generalized hierarchical linear
model for a trait with repeated observations using two
diferent (MCMCglmm and BRMS) R packages in two real
datasets and simulation data.

3.1. Bayesian Hierarchical Linear Model Specifcations.
Suppose the general Bayesian hierarchical model in equation
(1) for the subject (group) i and measurement repeated at j.
It is assumed that Yij ∼N(μij, σ2y ) ui ∼N(μg, σ2g) βi ∼N

(μβ, σ2β).

Every part of the hierarchical model can be seen in the
graph as a node, as depicted in Figure 1. Te solid arrows
refect stochastic (random) connections, such as those from
σ2e to Yij, whereas the dotted arrows indicate deterministic
(fxed) relationships across the parameters, such as those
from βi to μij.

3.1.1. Model 1: Te Null or Unconditional Random Intercepts
Model. In hierarchical modeling, the null model is the
model with only grouping (clustering level) variables as
a determinant of the intercept of the dependent variable [45].
Tis is an “unconditional” and random intercept model
since it predicts the outcome variable’s level one intercept
without any predictor variable at any level. Furthermore, this
model provides information on intraclass correlations,
which helps to decide if hierarchical models are necessary for
the data in the frst place.
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Yij � Binomial ni � 1, pij ,

Logit pij  � αi + αj,

αi ∼Normal α, σi( ,

αj ∼Normal 0, σj ,

α∼Normal(0, 10),

σi ∼HalfCauchy(1),

(33)

where α is the overall intercept; αi and αj are the intercepts
with σi and σj variance (standard deviation) components for
each individual considering all measurements and for the
repeated measures, respectively. In a Bayesian hierarchical
model, the BRMS-Stan documentation package in R rec-
ommended using half-Cauchy as the prior, which is auto-
matically constrained at zero, to lessen the likelihood of
unreasonably large standard deviation (SD) values [45]. For
the intercept, the default prior is a normal distribution.

3.1.2. Model 2: Te Conditional Random Intercepts Model.
A conditional random intercept model incorporates a cluster
as a random efect, and only the intercept of the outcome
variable is adjusted for the random efects. It is also con-
ditional because predictor variables are added to the clus-
tering variables [46]. A random intercept model is one in
which intercepts are allowed to vary. As a result, the in-
tercept that fuctuates across groups predicts the scores on
the dependent variable for each unique observation [47].

However, the slopes in this model are assumed to be fxed
(the same across diferent contexts). Given Yij � Binomial
(ni, pij). A random intercept logistic regression model is de-
fned as follows:

Logit pij  � α + αi + αj + β1 + . . . + βp Xij,

αi ∼Normal 0, σi( ,

αj ∼Normal 0, σj ,

α∼Normal(0, 10),

β1, . . . βp ∼Normal(0, 10),

σi ∼HalfCauchy(0, 1),

σj ∼HalfCauchy(0, 1),

(34)

where α is the overall intercept; αi and αj are the intercepts
with σi and σj variance (standard deviation) components for
each individual considering all measurements and for the
repeatedmeasures at j, respectively. In a Bayesian hierarchical
model, the BRMS-Stan documentation package in R rec-
ommended using half-Cauchy as the prior, which is auto-
matically constrained at zero, to lessen the likelihood of
unreasonably large standard deviation (SD) values at all levels
[45]. Te default prior is normal for the intercepts and slopes,
with a mean of 0 and a standard deviation of 10 considered.

Te mathematical notation of the variance-covariance
matrix, Σf, considering the overall intercept α and slopes β,

which are fxed efects, can be designed as follows:

Σf �
σ2α ρσασβ

ρσασβ σ2β

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

, (35)

where σ2α, σ
2
β, σβ, and σα are the variance and standard

deviation components of the intercept and coefcients and ρ
is the relationship between intercepts and coefcients.

Similarly, the covariance matrix for the grouping (ran-
dom) efects, Σr, can be expressed as follows:

Σr �
σ2i σ2i ρij

σ2i ρij σ2j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
, (36)

where σ2i and σ2j are the variance components at the indi-
vidual subject and repeated measurements, respectively; and
ρij is the relationship between j measurements within subject
i. Hierarchical (multilevel) models adjust parameter estimates
of the intercepts (mean) of one or more dependent variables
at level 1 based on grouping variables defning the higher
levels. And it also adjusts the slopes (β, coefcients) of one or
more predictors (regressors) at any level, and ρ is the asso-
ciation between intercepts and coefcients at the subject level.

3.1.3. Model 3: Te Conditional Random Coefcients Model.
Te random coefcients model also called the conditional
random coefcient model is the model with all varying efects,
adjusting the intercept (mean) of the outcome variable as well
as the coefcients (slopes) of predictors for the random efects
at any clustering (level) of the hierarchical data. Te co-
efcient (slope) term in the random coefcients model should
not obscure the fact that a random slope model estimates the
intercept (mean) as well as the slopes (regression coefcients)
at the appropriate hierarchy [48].

A random slope model is one in which the slopes are
permitted to change, resulting in slopes that difer between
groups.Temost realistic model contains random intercepts
and random slopes but can also be the most complex. Both
intercepts and slopes can change among groups in this
paradigm, implying distinct in diferent situations [49].
Tus, in Bayesian hierarchical modeling, the prior distri-
bution parameters as hyperparameters and the distributions
of hyperparameters as hyperprior distribution noticeably
occurred.

μg

μβ

ui

μij

Yij
σ 2
e

σ 2
g σ 2

β

βi

Subject i = 1,2, ... , n & Measurement j = 1,2, ... , ni

Figure 1: A full random intercept and slopes model (Bayesian
framework).

8 Journal of Mathematics



It can be assumed that both the random intercepts and
coefcient/slopemodel hyperparameters μg, μβ, σg, σβ, and ρ
have uniform hyperprior distributions with assumptions
suitable for parameters. A more common way to write the
model by addressing the correlation between parameters is
as follows: Yij ∼f(ui + Xijβi, σ2e), where the regression co-
efcient βi vary by grouping variables.

Yij � Binomial ni � 1, pij ,

Logit pij  � α + αi + αij + βi( Xij,

αi ∼Normal 0, σi( ,

αj ∼Normal 0, σj ,

α∼Normal(0, 10),

β1, . . . βp ∼Normal(0, 10),

σi ∼HalfCauchy(0, 1),

σj ∼HalfCauchy(0, 1),

(37)

where α is the overall intercept and αi and αij are the in-
tercepts with σi and σj variance (standard deviation)
components for each individual considering all measure-
ments and for the repeated measures at j, respectively. Half-
Cauchy distribution is used as the prior for standard de-
viation (SD) at the individual subject and measurement
levels. Te default prior is normal for the intercepts and
slopes, with a mean of 0 and a standard deviation of 10
considered.

Considering the intercepts (means) α as μ for groups, the
covariance matrix for the random efect, u and fxed efect, β
of the model can be expressed as follows:

u

β
 ∼MVN

μg

μβ
⎛⎝ ⎞⎠,

σ2g ρσgσβ

ρσgσβ σ2β
⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (38)

where σ2g and σ
2
β are the variance components of the random

and fxed efects, respectively, and ρ is the relationship
between random and fxed efects.

3.2. Real Data Application One: Arterial Occlusive Disease
Data. In this application, we consider a dataset related to
surgical planning, specifcally for arterial occlusive disease
data. Te two popular invasive methods, ultrasound imaging
and reduced cuf pressure measures, classify each leg as either
healthy (0) or diseased (1). Te variables are indicated as
health  status: Yij which is the ith patient’s health status from
themeasurement on the jth side of the leg. Ultrasound: X1ij is
the ith patient’s ultrasoundmeasurement on the jth side of the
leg. RCP: X2ij is the ith patient’s reduced cuf pressure (RCP)
measurement on the jth side of the leg. Here, individual
patients i � 1, 2, 3, . . . , 16 and leg side s, j � 1, 2, 3, 4, which
indicatesmeasurements at j � 1 for right leg upper-side, j � 2
for right leg lower-side, j � 3 for left leg upper-side, and j � 4
for left leg lower-side. In the body, the branches of the arteries
that come out of the aorta and carry clean blood to the arms,

legs, head, and organs, and the branches of the veins that
connect to the main vein bring the dirty blood coming from
them to the heart are called peripheral vessels [50].

Arterial occlusive diseases are occlusion or narrowing of
the arteries in the legs (or rarely in the arms), usually caused
by atherosclerosis resulting from reduced blood movement.
Data were collected at Broadgreen Hospital in Liverpool,
England, in 1988/89 [51]. Healthy peripheral arteries have
a fatlining that prevents coagulation and promotes constant
blood movement. Peripheral artery disease can afect all
arteries but is most commonly seen in the legs. Te data
included 16 patients whose features were measured at 4
points on the lower and upper sides of their right and left
legs. Of all patients’ characteristics measured during data
collection, we only considered the patient’s health status,
ultrasound measurements, and reduction in cuf pressure
measurements, excluding variables measured at one point
and missing values. Te patient’s health status was con-
sidered the outcome variable, while the ultrasound imaging
score and cuf pressure measurement reduction were in-
dependent variables. Te data structure for the variables in
each measurement is shown in Table 1.

3.3. Real Data Application Two: Te National Longitudinal
Survey of Youth 1979. National Longitudinal Survey of
Youth (1979–2012) is a longitudinal project that follows
a sample of Americans on various life aspects collected from
1979 to 2012.Te dataset has multiple characteristics, mainly
socioeconomic status, employment, education, and mar-
riage. For this modeling application, we considered 895
black Americans by year level, and the variables include
poverty status, family size, and overall income extracted
based on removing missing measurements on selected
variables for two years. Bayesian hierarchical linear models
were demonstrated, modeling the poverty status of young
people as the response variable and family size and overall
income varying over their identifcation (YID) as the pre-
dictor variables. Te data can be accessed from https://dasil.
sites.grinnell.edu/downloadable-data/.

3.4. Application Tree: Simulation of Repeated COVID-19
PCR Test Results Scenario. Tis section considers the vari-
ation in three consecutive testing for people with severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
PCR test results related to age and testing site (environ-
ment). Te scenario can be easily simulated for a sample of
50 patients using the R package, as shown in the R-code of
the data analysis.

4. Results and Discussion

4.1. Results of Fitted Model Estimates and Model Selection in
Each Application Case. After ftting a set of models for each
dataset, we need to know which model is more accurate and
should be used to make inferences and draw conclusions.
Choosing (using R2, for example) the model with a better
absolute ft to the real dataset can be a challenge, as this
model does not necessarily perform well on new data.
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Instead, we may want to choose the model with the best
predictive capabilities, that is, the model that performs best
in predicting data that has not yet been observed. We call
this ability the out-of-sample prediction performance of the
model [3].

Model convergence was demonstrated in a complex
parameter confguration using R-hat (R) statistics some-
times referred to as the potential scale reduction factor
(PSRF) and efective sample sizes (ESS). Te consistency of
an ensemble of Markov chains was demonstrated by models
with an efective sample size greater than 100 and an R-hat
closest to 1.00 but not greater than 1.10 [52]. As model
convergence diagnosis, we reported efective sample size
cutofs for hierarchical models as the bulk efective sample
size (Bulk_ESS) and the tail efective sample size (Tail_ESS).

In the frst case, based on the arterial occlusive disease
real data application, among the ftted six models, results in
Table 1 showed that the random coefcient model (M3H) in
the Hamiltonian Monte Carlo algorithm fts best relative to
other models. Besides, the Bayesian information complexity
criterion has smaller values than Bayesian deviance or widely
applicable information criteria for each ftted model. Tus,
the random coefcient model ftted by Hamiltonian Monte
Carlo (HMC) algorithm has the least ICOMP value iden-
tifed as the absolute best model or more accurate in ap-
plying dataset one.

In the second case, based on the National Longitudinal
Survey of Youth 1979 real data application, among the ftted
six models, results in Table 1 showed that the random in-
tercept model (M2H) in the Hamiltonian Monte Carlo al-
gorithm fts best relative to other models. Besides, the
Bayesian information complexity criterion has smaller
values than Bayesian deviance or widely applicable in-
formation criteria for each model. Tus, the random in-
tercept (fxed slopes) model ftted by Hamiltonian Monte
Carlo (HMC) algorithm has the least ICOMP value, iden-
tifed as the absolute best model or more accurate in the
application two dataset. Te results also showed that the
varying efects of coefcients (fxed efects) do not provide
additional information for the data.

In the third case, based on the simulation application
dataset of the repeated COVID-19 PCR test results sce-
narios, among the ftted six models, the results in Table 2
showed that the random coefcient model (M2H) in the
Hamiltonian Monte Carlo algorithm fts best relative to
other models. Tus, the random coefcient model ftted by
Hamiltonian Monte Carlo (HMC) algorithm has the least

ICOMP value identifed as the absolute best model or more
accurate in the application three simulation dataset. Te
three cases showed that Hamiltonian Monte Carlo (HMC)
estimation is better than the Gibbs sampler for complex
Bayesian hierarchical models. ICOMP criterion has smaller
values and is a better model assessment tool than Bayesian
deviance or widely applicable information criteria for each
ftted model of two-level repeated measures data [53].

In Tables 3–5, the results of application datasets showed
the estimates of the posterior mean (intercept), estimates of
coefcients, and standard error as the standard deviation
(SD) for each parameter. Model convergence was achieved
well enough since Rhat � 1.00 in all cases, and both the bulk
efective sample size (Bulk_ESS) and the tail efective sample
size (Tail_ESS) for the 95% credential intervals were ade-
quate [25]. Generally, each parameter is summarized by the
posterior mean (“Estimate”) and standard deviation of the
population parameter (“Std. Err.”). Moreover, a 95%
credible interval can be used as lower and upper bounds
based on posterior quintiles.

4.2. Assessment of Convergence and Conditional Efects in
Selected Models. Te information complexity (ICOMP)
criterion assessed the best-ftted model based on the fgures.
Te hierarchical model with gradient-based Hamiltonian
Monte Carlo estimation provided the best ft and super-
convergence models relative to the gradient-free Gibbs
sampling approach. Although there is no specifc best sta-
tistical package for a particular statistical model and dataset,
complex hierarchical models can be estimated well using
Bayesian Regression Models using Stan (BRMS) compared
to MCMC generalized linear mixed/hierarchical models
(MCMCglmm) in R software [27, 49, 52, 54].

Based onApplication 1: Arterial occlusive diseases data, the
model convergence diagnosis, paired plots, and marginal ef-
fects are visualized in Figures 2–4 for the models ftted by
MCMCglmm and BRMS in Stan. Based on the convergence
plots, the convergence assessment of the models selected above
showed that the random coefcient model under the HMC
approach best ftted and Bayesian hierarchical models con-
vergedwell under theHamiltonianMonte Carlo approach.Te
best-ftted model’s marginal efects plot (Figure 2) showed that
leg side and ultrasound imaging had a positive efect, while the
reduced cuf pressure (RCP)measures had no efect in both the
fxed and random parts. Te probability of events (Figure 3) of
a patient’s illness positively afected the leg sides. Tere are

Table 1: Arterial occlusive disease data structure and variables measurement.

i

Left leg Right leg
Upper side Lower side Upper side Lower side

X1i X2i Yi X1i X2i Yi X1i X2i Yi X1i X2i Yi

1 170 0.25 1 45 0.66 0 170 1.0 1 45 0.81 1
2 − 5 0.72 1 25 0.23 0 − 5 0.78 1 25 0.37 1
3 30 0.29 0 − 10 0.23 0 30 0.58 1 − 10 0.12 0
4 160 0.47 0 100 0.37 0 160 0.91 1 100 1.0 1
5 50 0.63 1 70 0.61 1 50 0.69 0 70 1.0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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more disease occurrence variations between the legs within
a patient than between patients. From Figures 3 and 4, ul-
trasound measurements showed a signifcant positive efect on
patients’ arterial occlusive disease status varying between four
leg sides. At the same time, reduced cuf pressure (RCP)
measures had no variation.

Application 2: National Longitudinal Survey of Youth
1979 data showed that the model convergence diagnosis
paired plots and marginal efects are visualized in Figures 5
and 6 for the models ftted by MCMCglmm and BRMS in
Stan. Based on convergence plots, the convergence assess-
ment of the selected random intercept model under the

HMC approach showed the best ft and Bayesian hierar-
chical models converged well under the Hamiltonian Monte
Carlo approach.Temarginal efects of year, family size, and
income, as visualized in plot Figures 6 and 7 on the poverty
status of youths in the best-ftted model, showed that year
and family size had a positive efect. In contrast, income had
almost no impact on poverty status.

Application 3: simulation data, the model convergence
diagnosis paired plots, and marginal efects are visualized in
Figures 8–10 for the models ftted by MCMCglmm and
BRMS in Stan. Based on the convergence plots, the con-
vergence assessment of the models selected above showed

Table 3: Estimates of random coefcient models for application 1: arterial occlusive disease.

Covariates Estimates
(post. mean) Std. Err.

95% cred. interval
Bulk_ESS Tail_ESS

Lower Upper
Population-level (location) efects: fxed efects
Intercept − 3.33 0.86 − 5.14 − 1.74 3741 3257
Leg side 0.60 0.05 0.50 1.70 376 3468
Ultrasound 5.73 1.48 3.04 8.78 3760 3486
RCP 0.01 0.01 0.00 0.03 4062 3773

Group-level efects: random efects
Level 2: patient ID 0.37 0.30 0.01 1.09 3847 3722
Level 1: leg side 0.04 0.01 0.02 0.06 6 2254
σultrason.ID 0.73 0.65 0.02 2.30 2878 2841
σRCP.ID 0.01 0.01 0.00 0.03 3987 3377

Table 4: Estimates of random intercept models for application 2: NLS of Youth 1979.

Covariates Estimates
(post. mean) Std. Err.

95% cred. interval
Bulk_ESS Tail_ESS

Lower Upper
Population-level (location) efects: fxed efects
Intercept 0.10 6.70 − 13.88 8.01 387 337
Year 5.73 1.48 3.04 8.78 3760 3486
Family size 0.01 0.01 0.00 0.03 4062 3773
Income − 0.01 0.01 − 0.02 0.01 343 413

Group-level efects: random efects
Level 2: youth ID 0.16 0.10 0.01 0.39 399 337
Level 1: years 1.86 3.20 0.08 10.14 358 314

Table 5: Estimates of the random coefcient models for application 3: simulation data.

Covariates Estimates (post.
mean) Std. err

95% cred. interval
Bulk_ESS Tail_ESS

Lower Upper
Population-level (location) efects: fxed efects
Intercept − 3.95 354 55.59 − 117.95 105.80 354 332
Time points 0.72 6.92 − 12.75 14.37 467 443
Age 0.05 0.92 − 1.81 1.90 357 399
Site − 0.76 6.94 − 13.75 13.38 477 417
Level 2: ID: intercept 0.76 0.60 0.02 2.21 366 362
Level 1: time points 0.67 0.84 0.02 2.63 393 367
σage.ID 0.02 0.01 0.00 0.05 426 440
σsite.ID 0.53 0.39 0.03 1.49 514 416
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that the random coefcient model under the HMC approach
was best ftted, and Bayesian hierarchical models converged
well under the Hamiltonian Monte Carlo approach. Te
best-ftted model’s marginal efects plot (Figure 8) showed
that test time points and age had a positive efect, while the

test site had (more negative) no impact in both the fxed and
random parts. Te probability of events (i.e., a positive
SARS-CoV-2 PCR test) shown in Figures 3 and 10 of
a patient’s status in the three measurement time points
increases with age but decreases with test site variation.
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Figure 2: Trace and density plots of the best-ftted random coefcient model (application 1).
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Figure 8: Trace and density plots of the best-ftted random coefcient model (application 3).
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5. Conclusion

Complex hierarchical models require a Bayesian computation
(MCMC) that integrates the three components of the poste-
rior: a prior, likelihood, and evidence (marginal likelihood).

Tis study demonstrates two Bayesian computations (MCMC)
methodologies to ft three distinct application datasets to three
Bayesian hierarchical models: null, random intercept, and
random coefcient models. All ftted models estimated by
Gibbs sampler and Hamiltonian Monte Carlo (HMC)
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Figure 9: Marginal efect directions of the fxed efect parameters for the best-ftted model (application 3).
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approaches were compared to select the best-ftted model in
each application case. In all cases, models ftted with the
HamiltonianMonte Carlo (HMC)method were the best-ftted
models than models ftted with the Gibbs sampler. Hamil-
tonian Monte Carlo (HMC) in BRMS and Gibbs sampler in
MCMCglmm R packages were used in this context.

Tat model convergence diagnosis demonstrated using
efective sample size cutofs for hierarchical models as the
bulk efective sample size (Bulk_ESS) and the tail efective
sample size (Tail_ESS) for the 95% credential intervals in
each parameter estimation was adequate.

Moreover, model comparisons and sections were made
using Bozdogan’s information complexity measure, Bayesian
deviance information: DIC (under MCMCglmm), and widely
applicable information criterion (WAIC) of the BRMS in Stan
[55]. Among the ftted candidate models, the information
complexity (ICOMP) criterion showed the lowest measure
values in all cases. A better-ft model has a smaller selection
criterion measurement value. Hairy caterpillars were depicted
in the model convergence assessment graphs, showing the
model is well-ftted for the applied data. Performance as-
sessment of ICOMP-type criteria and DIC or/andWAIC was
validated using Bayesian hierarchical linear models. We are
impressed that instead of DIC or/and WAIC, ICOMP de-
serves more exploration as a tool for model assessment and
comparison with various thematic areas of repeat measures
data of two hierarchical levels.
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the data analysis that had simulation scenarios (Application
3) and all ftted model applications are obtainable upon
inquiry from the principal investigator.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

Ebrahim EA engaged at every research stage: developing,
writing the manuscript, managing data, and analyzing. EA
Ebrahim wrote the initial format of the manuscript. EA
Ebrahim and MA Cengiz performed material preparation,
managing data, and analysis.MACengiz participated in editing
and manuscript commenting. Erol Terzi participated in
proofreading and revising the manuscript to improve the
manuscript. Te authors had substantial direct and intellectual
involvement in themanuscript and approved it for publication.

References

[1] D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and
A. Van Der Linde, “Bayesian measures of model complexity
and ft,” Journal of the Royal Statistical Society-Series B:
Statistical Methodology, vol. 64, no. 4, pp. 583–639, 2002.

[2] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari,
and D. B. Rubin, Bayesian Data Analysis, CRC Press, Boca
Raton, FL, USA, 3rd edition, 2013.

[3] R. McElreath, Statistical Rethinking: A Bayesian Course With
Examples In R And Stan, CRC Press, Boca Raton, FL, USA,
2018.

[4] J. R. Busemeyer and Y.-M. Wang, “Model comparisons and
model selections based on generalization criterion method-
ology,” Journal of Mathematical Psychology, vol. 44, no. 1,
pp. 171–189, 2000.

[5] J. B. Kadane and N. A. Lazar, “Methods and criteria for model
selection,” Journal of the American Statistical Association,
vol. 99, no. 465, pp. 279–290, 2004.

[6] S. Müller, J. L. Scealy, and A. H. Welsh, “Model selection in
linear mixed models,” Statistical Science, vol. 28, no. 2,
pp. 135–167, 2013.

[7] M. P. Wand, “Fisher information for generalised linear mixed
models,” Journal of Multivariate Analysis, vol. 98, no. 7,
pp. 1412–1416, 2007.

[8] S. Watanabe, “Information criteria and cross validation for
Bayesian inference in regular and singular cases,” Japanese
Journal of Statistics and Data Science, vol. 4, no. 1, pp. 1–19,
2021.
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