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In this paper, we explore the asymptotic behavior of solutions in a thermoplastic Rao-Nakra (sandwich beam) beam equation
featuring nonlinear damping with a variable exponent. The heat conduction in this context adheres to Coleman-Gurtin’s thermal
law, encompassing linear damping, Fourier, and Gurtin-Pipkin’s laws as specific instances. By employing the multiplier approach,
we establish general energy decay results, with exponential decay as a particular manifestation. These findings extend and
generalize previous decay results concerning the Rao-Nakra sandwich beam equations.

1. Introduction

Partial differential equations (PDEs) featuring variable ex-
ponents have garnered considerable attention from re-
searchers in recent times. Unlike conventional PDEs with
constant exponents, equations with variable exponents
entail power-law dependencies on spatial variables, with the
exponents subject to variation along the spatial coordinates.
This variation introduces added intricacy and complexities
in both the analysis and solution of these equations.

The importance of PDEs with variable exponents is due
to several reasons. They offer a more adaptable framework
for modeling physical phenomena, enabling the represen-
tation of diverse behaviors in different regions of the domain
by allowing spatial variation in the exponents. This type of
nonlinearity within PDEs allows for a more precise repre-
sentation of various physical phenomena, particularly in
instances where the system’s behavior cannot be accurately
depicted by linear models. The variable exponents enable
a more adaptive and versatile approach to processing,
contingent upon the characteristics of the image content.

They come up in the research on optimal control problems,
where the goal is to find strategies that make certain criteria
as good as possible while considering the changes described
by the PDE with variable exponents.

Moreover, heat conduction is a fundamental phenom-
enon with widespread applications in various physical
processes, frequently described through partial differential
equations (PDEs). These equations are instrumental in
capturing the intricacies of heat distribution, as evidenced by
their application in diverse scenarios. For instance, the
temperature variation along a solid rod or bar finds rep-
resentation in a 1D heat conduction equation, commonly
formulated as the one-dimensional heat equation. This PDE
correlates temporal changes with the distribution of tem-
perature, offering a comprehensive understanding of the
thermal dynamics. In the realm of electronics, especially for
components such as computer chips and integrated circuits,
a profound comprehension of heat conduction is in-
dispensable. PDEs prove invaluable in modeling the tem-
perature distribution within these devices, thereby
contributing to the design of efficient cooling systems.
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Furthermore, engineering simulations leverage PDEs to
analyze the thermal behavior of structures and systems,
extending their application to fields such as civil engi-
neering. The study of how buildings respond to environ-
mental temperature changes relies on the insights gained
from understanding heat conduction, showcasing the per-
vasive significance of PDEs in elucidating complex thermal
phenomena.

[ prhyuy — Evhyuy, —

in which u and v denote the longitudinal displacement of the
top layer and shear angle of the bottom layer, respectively,
and w represents the transverse displacement of the beam.
The positive constants p;, h;, E;, and I, (i = 1; 3) are physical
parameters representing, respectively, density, thickness,
Young’s modulus, and the moments of inertia of the i-th
layer for i =1, 2, 3 and ph = £} p;h;. Here, EI = £} | E,I,,
a=hy+ (h +hy/2), and k= (E,/2h,(1+p)) where
—1<u<1/2 is the Poisson ratio. §; >0 and J, >0 are cou-
pling constants. §; is a time-dependent coeflicient and
B1> B, € (0, 1). 6 is the temperature supposed to be known
for negative times. p, and p; are the ratio between the re-
laxation time and the thermal conductivity. m(.) is the
variable exponent function and satisfies some conditions

u, (0,8) = v, (0,8) = w(0,£) = w,, (0,£) = 6(0,) = 9(0,¢) = 0,
{MLH=wLﬂ=w@ﬁ=wm@ﬁ=6ALﬂ=&@ﬁ=Q

and the initial data are given by

u(x,0) = uy(x),v(x,0) = v, (x), w(x,0) = w,(x),
u, (x,0) = u; (x),v,(x,0) = v, (x), w, (x,0) = w, (x),
0(x,—t) =0, (x,1),9(x,—t) = 9y (x, 1),

The stabilization of Rao-Nakra beam systems has
recently captured significant attention among researchers,
leading to the establishment of numerous findings. The
Rao-Nakra beam model involves the dynamics of two
outer face plates, presumed to be relatively rigid, along
with a compliant inner core layer sandwiched between
them. The authors of [4-7] provide insights into

k(-u+v+aw,)+6,0, =0,
pshsvy — Eshyv + k(-u+v+aw,) - 6,0+ 68,9, =0,

phwy, + EIw,.., — ak (—u+v+aw,), + 85 (1) | wt|m(x)_2wt =0,
pi0y+ (B~ D0 =By [ 9190t = s+ 8, ( +4) =0,

p59t + (ﬁZ - l)exx _/32 JO 92 (S)Sxx (x’t_ S)dS + 62th =0,
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For additional insights into the hierarchy of heat con-
duction laws, the authors refer to [1]. Motivated by the
mathematical complexities presented by these equations and
their efficacy in modeling intricate physical phenomena, we
examine the following Rao-Nakra with a sandwich beam
system:

in (0,1)xR,,
in (0,L)xR,,

in (0,1)xR,,
(1)
in (0,L)xR,,

in (0,L)xR,,

that will be mentioned later. The functions g, and g,
represent the convolution thermal kernel, nonnegative
bounded convex summable function on [0, +00), belonging
to a wide class of relaxation functions that satisfy the unitary
total mass and additional properties specified in the paper.
The system (1) consists of one Euler-Bernoulli beam
equation for the transverse displacement and two wave
equations for the longitudinal displacement of the top layer
and the shear angle of the bottom layer. The top and bottom
layers of the beam are subjected to Coleman-Gurtin’s
thermal law [2], where the Fourier, Maxwell-Cattaneo’s, and
Gurtin-Pipkin’s laws [3] are special cases. We subject the
system (1) to the following boundary conditions:

t>0,
(2)
t>0,
x € (0,L),
x € (0,L), (3)
x € (0,L),t=0.

Rao-Nakra, Mead-Markus, and multilayer plate or
sandwich models. The fundamental equations of motion
for the Rao-Nakra model are derived based on
Euler-Bernoulli beam assumptions for the outer face plate
layers, Timoshenko beam assumptions for the Sandwich
layer, and a no-slip assumption for motion along the
interface.
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Let us begin by revisiting some prior works concerning
multilayered sandwich beam models. Wang et al. [8] ex-
plored a sandwich beam system with boundary control
using the Riesz basis approach, establishing exponential
stability, exact controllability, and observability. In a dif-
ferent approach, Rajaram [9] utilized the multiplier ap-
proach to determine the precise controllability of
a Rao-Nakra sandwich beam with boundary controls.
Hansen and Imanuvilov [10, 11] investigated a multilayer
plate system with locally distributed control in the
boundary, employing Carleman estimations to establish
precise controllability. Ozer and Hansen [12, 13] achieved
boundary feedback stabilization and perfect controllability
for a multilayer Rao-Nakra Sandwich beam. Liu et al. [14]
considered viscous damping effects on either the beam
equation or one of the wave equations, establishing
a polynomial decay rate using the frequency domain
technique. Wang [15] analyzed a Rao-Nakra beam with
boundary damping on one end, finding that the semigroup
created by the system is polynomially stable of order 1/2.
Mukiawa [16] recently studied system (1) with linear
damping and Gurtin-Pipkin’s thermal law for heat con-
duction, proving the existence and establishing an expo-
nential decay rate. Additional results on multilayer beams
can be found in [17-30].

Our objective is to explore the asymptotic behavior of
solutions in the context of the system (1)-(3). We aim to
investigate how the thermal damping and the nonlinear
damping with a variable exponent power, introduced in
equation (1);, impact the asymptotic behavior of the energy
function. Without imposing restrictions on the wave
propagation speeds in the system, we employ the multiplier
approach to establish both exponential and general energy
decay rates for this system. These results extend and gen-
eralize previous decay findings related to the Rao-Nakra
sandwich beam equation. The primary objectives are as
follows:

(i) Establishing an exponential decay of the system
when the relaxation functions converge exponen-
tially, and the variable exponent is set to m(x) = 2.

(ii) Establishing more generalized decay results for the
system applies when the relaxation functions do not
converge exponentially, and the variable exponent
m(x)+#2. In this scenario, various cases will be
discussed based on the range of variable exponents
and the convergence type of the relaxation functions.

To the best of our knowledge, stability results for the
Rao-Nakra sandwich beam with nonlinear damping of
variable exponent type have not been explored.

The rest of the paper is structured as follows: Section 2
introduces preliminary results and notations. Section 3
presents and proves technical lemmas, and Section 4 outlines
and proves the stability theorem, offering a detailed proof.

2. Notations, Assumptions,
and Transformations

This section is dedicated to the assumptions and specific
transformations required for our problem. We make the
following assumptions:

(A)). g1»9,: [0,+00) — (0, +00) are nonincreasing
C? ([0,+00)) and convex summable functions satis-
fying the following:

lim g;(s) =0,

§—>+00

+00 (4)
J gi(sds=1, i=1,2.
0

Furthermore, there exists ;> 0,i = 1, 2 such that
-9/ (5)<&(s)(gi(s)), Vs=0i=1,2. (5)
By setting:

u, (s) = =g (s),

6
ty (s) = =g, (s), ©

we obtain the following:

(A,). py>4y: [0,+00) —(0,+00) are nonincreasing
C!' ([0,+00)) and convex summable functions
satistying

+00
b= | (s = g,0)>0,

+00 (7)
j sy;(s)ds=1, i=1,2,
0
and there exists £;>0,i = 1,2 such that
ui ()< =& (i (s),¥s20, i=1,2, (8)

(A;). We assume the existence of two positive con-
stants (, { such that

I ) <¢ ¥s>0, o
e )] <7 vs>o,

where 7, and 7j,, are defined (below).

We define L, ={n: R, — H(0,L): "’7"21 = [0

(9l ()IPds< oo}, and L, = {7 R, — H{(0,
2 &) ~ .

L): IIﬁIILM2 = .[0 i ()17, (s)|I*ds < 0o}, which defines

a Hilbert space.

(A,). The time-dependent coefficient J5: [0,00)
—(0,00) is a nonincreasing C! function satisfying
[ 85 (s)ds = co.



(Aj;). The variable exponent m (x): [0,L] — [1,00)is
a continuous function such that

my = essinf (o m (X), m, = esssup,c o ym(x),  (10)

A
|m(x) —m(y)| < —m

For further details on the memory kernels, refer to
(31, 32].

Lfor all x, y € Q,with |x — y[ < 4.
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and 1 <m; <m(x) <m, < co. Moreover, the variable func-
tion m satisfies the log-Holder continuity condition; that is,
for any § with 0<§ <1, there exists a constant A >0 such
that

(11)

On account of the boundary conditions (2), we have

Due to Dafermos [33], we define new functions for the n(0,t,8) = 1, (L, t,s) = 7(0,t,5) =7, (L, t,5) = 0,  (14)
relative past history of 0 and 9 as follows: . . .
and routine calculation gives
7.7 (0, L) xR, xR, — R,, (12)
define by
t
n(x,t,s) = J 0(x,r)dr,
o (13)
fi(x,t,s) = J 9(x,r)dr.
t—s
(1, +4,—0=0, in (0,L) x (R, xR,,
h,+7,-9=0, in (0,L) xR, xR,,
) ﬂ(x,t,O)zﬁEx,t,O)zO, in (0,L) xR, (15)
7(x,0,s) = J 0, (x,r)dr = ny(x,s), in (0,L) xR,,
0
N
7(x,0,5) = J 9, (x, )dr = 7y (x,5), in (0,1) x R,,
0
where 7, and 7}, represent the history of 6 and 9, respectively.
Also, using integration by parts and change of variables, we
have
+00
jo 9.(9)0,, (5t — $)ds
t _ +00 t
= lim g,(s) J 0, (x,r)drl|iZg — J g1(s) J 0., (x,r)drds (16)
a—+0o t—s 0 t—s

+00
J-o P ($)x (5,8, 5)ds.
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Similarly, we get Using (13)-(17), system (1)-(3) becomes

+00

J " 0, ()9, (xt — )ds = J ()7 (.1, 5)ds.
0 0

(17)
[ p1huy — Eyhyjuy, —k(-u+v+aw,) + 6,0, =0, in (0,L)xR,,
pshsvy — Eshyv, + k(-u+v+aw,) - 8,0+ 8,9, =0, in (0,L) xR,,
phw, + Elw,.., — ak(—u+ v+ aw,), + 05 (t)|wt|m(x)72wt =0, in (0,L)xR,,
+00
< p46t + ﬁexx _ﬁl JO H (S)ﬂxx (x’ t, S)dS + 81 (uxt + Vt) = 0) in (O> L) X R+) (18)
ne+1,-0=0, in (0,L) xR, xR,,
_ +00
0 B [ i e (s + Bav =0, in (0.1) xR,
[ 7, +7,—9 =0, in (0,L) xR, xR,

with the boundary conditions

u,(0,t) = v, (0,t) =w(0,t) = w,, (0,¢) = 6(0,¢) = 9(0,1), t>0,
u(L,t) =v(L,t) =w(L,t) =w,, (L t) =6,(Lt) =9,(L,t) =0, t=>0,
(19)
n(0,t,5) =1, (L, t,s) = 7(0,t,s) = 7, . (L, t,s) = 0, s,teR,,
n(x,t,0) =7 (x,t,0) =0, x € (0,1),teR,,
and the initial data
u(x> 0) = uO (x)) V(x) 0) = VO (x),lU(x, 0) = wO (x)) X € (O)L))
ut (x) 0) = ul (-x)’ V[ (X, 0) = v] (X), wt (-x: 0) = w] (X), X € (0: L)> 20
0(x,—t) =0, (x,1),9(x,—t) = 9 (x, 1), x € (0,L),t>0, (20)
7(x,0,5) = 1y (x,5),7(x,0,) =7, (x, ), x € (0,L),s>0,

where f=, -1 and f =, - 1.
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3. Essential Lemmas The energy function associated with the solution ¥ =
(u, up, v, v, w, wy, 0,1, 9,7) of the aforementioned system is

In this section, we establish essential lemmas necessary for precisely defined as follows:

proving the stability of the system (18)-(20).

1
E@ =3 ol + pats il + ol + Eibfue P + Esh o + B |

1
# 3 [Klu v+ aw )+ pulor?] (21)

2
ds], Vit=>0.

1, (@ o0
o[8[ nlds s oo + 8, [ T

Lemma 1. The energy functional (21) satisfies

L L L
E'(t)=—p IO 62dx - JO 9dx - 8, (1) JO |l
(22)

B

+00 +00 2
+_IJO /,tl’(s)"nx (s)||2d5+%10 thy (s) ﬁx(s)" ds<0, Vt>0.

2

Proof. Multiplying the equations (18);, (18),, (18);, (18)4, Subsequently, utilizing integration by parts and in-
and (18)¢ by u,, v,, w,, 0, and 9, respectively, followed by the =~ corporating the boundary conditions (19), we obtain
multiplication of (18)s and (18); by # and 7, respectively.

LT bl + B’ kr d— 8, | Gudx =0
i [l + B <k [ cuev awJudx 6, | udx o

1d 5 5 L L L
= — [p3h3||vt|| + E3h3||vx|| ] + kj (~u+v+aw,)vdx -6 J Ov,dx - 6, J- Iv,dx =0,
2 dt 0 0 0

1d 2 ) L Lo
¥ T [ph”wt I” + EI|w,.]| ] +ak ,[o (u+v+aw, )w,dx + 85 (t) .[o lw,|" ¥ dx =0,

1d

+00 L L
2 [pallor] - ﬁj 6dx + B, jo 4, (s) JO 1. ()6, (H)dxds + 5, JO 0(u,, +v,)dx = 0, (23)

1 d L , +00 L
W7 [[31 ,[o J. th (s)|17x| dsdx] /321 J-o 73 (s)||17x(s)||2ds -5 Jo py (s) .[0 1, ()0, (£)dxds = 0,

L +00 L L
[p5||9|| |- ﬁj 9dx + B, j 0, (s) J 7. ()9, (Ddxds + 5, j 9vdx = 0,
2 dt 0 0 0 0

! % [ﬁz I: j:o Uy (s)

T Ao (o)] ds - B, JOOO 1y (5) jz 7. (5)9, (t)dxds = 0.

2 +00
dsdx] - % J-o 1y (8)
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The summation of the aforementioned equations results
in

E'(t) = -p Jj 0:dx - B Jz 9dx — 8, (t) Jz |wt|m(x)dx
(24)

+&JO y{(s)|qu(5)||2ds+%10 1 (8)

2
5 7, (5)| ds<o.

This completes the proof. O Now, we present three lemmas without providing proofs;
the methodology aligns with that employed in [35].
Lemma 2 (see [34]). Assume that (A,) — (A;) hold. Then,
forallt € R" and i = 1, 2, there exists a positive constant ¢, Lemma 3. Given the assumptions (A,) and (As), the sub-
such that sequent approximations are as follows:

Jtmyi (s)||11x||§dsgc0 Looyi (s)ds. (25)

L
cds (t)J widx< —cE'(t), if m;=m,=2.
0

L N
c83(t)J widx <ceSyE(8) — CLE (' (1), if my>2,m, > 2. (26)
0

L ) .
cds (t) J widx <ce,8,E + c&,0,E - C, (E' ())E*~C_ (E'())E™", if 1<m, <2,m,#2,
0

where k = (m,/2) —1>0. Lemma 4. Assuming that (A,) and (As) hold, then for any
A >0, we have

L L
—phd, (t) J w|wt|m(x)_2wtdx <cA J lwxx|2dx + 05 (t)J C, (x)|wt|2m(x)_2dx
0 0 Qs
(27)
8,0 Gl Vs,
where Lemma 5. If the assumptions (A,)-(As) hold, then we have
Q. ={x € [0,L]: m() <2, Q.. ={x € [0,L]: m(x) 22}, ‘e following estimates:
(28)
0, m; =2,
cds (t)J |w |2m(x)_2dx = 212 m(x) (29)
o1t ceE(£) + cd, ())E (- "”I)J Clw|"™, 1<m, <2.
a.
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Lemma 6. The functional A, defined by satisfies the estimate

L L L
A (t) =phy Jo uu,dx + psh;, JO v dx + ph JO ww,dx,

(30)
Eh E;h
PSP L Y O Y

+ ol + pshs|ve|” + ph|w. | + ClO1® + ClI9I? (31)
t (0-2

- phé; (t) J. wlw [ wdx, Vit>o0.
0

Proof. Differentiation of A, gives Using equations (18);, (18),, and (18)3, we obtain

L L
810 = pihy | x4 pihy

: ””t"2 +pshy “Vt"2 + Phllwtllz-

L
vw,dx + ph Jo ww, dx

(32)

L
AL(t) = J u[Ejhyuy, + k(-u+v+aw,) - 6,0, ]dx
0

L
+ J V[Eshyvy, —k(-u+v+aw,) + 8,0 - 8,9, ]dx

0 (33)
L
+ J w[—Ewaxxx +oak(—u+v+aw,), -6 (t)|wt|m(x)_2wt]dx
0
Juel + pstallvl” + phl ]
Subsequently employing integration by parts across the
interval (0,L) and incorporating the boundary conditions
(19) results in
) 2 2 2 2
A{ () = =E by |Ju|” = Eshs|v,|” - ET|wy.|” - K|(-u + v + aw, )|
: ||”t||2 + pshs|v, ||2 + Ph"wt“2 (34)

L
— phd, (1) J wlwt|m(x)72wtdx.
0
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Utilizing Young’s and Poincaré’s inequalities, we acquire

Eh Esh
PSP L W R T O G e
Nuell” + pshsvil” + phw, | + Cli6N + Cl9I? (35)
L m(x)-2
— phé; (t) Io w|wt| w,dx.
L X
This completes the proof. O A, () = —pyhypy Jo 0 jo u (y,t)dydx, (36)
Lemma 7. The functional A, defined by satisfies, for any €, >0 and €, >0, the estimate

A, (t)”ut"2 + €1||ux||2 + 62"(—14 +v+ ocwx)"2

2 L roo 2 1 1 (37)
+Cly [+ cj J iy (5)| . [Pdsdx + c(1 A —>||9||2, V>0,
0oJo €1 &
Proof. Differentiation of A,, using (18); and (18),, we get
, L X L x
230 = -pihpy [ 8| wdx—pihpy [ 6, wax
o Jo o Jo
L X
= —p4J HJ [Ehyuy, + k(—u+v+aw,) - 6,0, ]dx (38)
o Jo
L +00 X
ot [ B 08 B [} 0108 950, 9| [
Now, through the application of integration by parts and
considering the boundary conditions (19), we reach the
following:
, 2 L L X
AL(E) = —pihy &y - paErhy jo Oudx + p 5, JO v, JO udx
L x
- pik J- HJ. (—u + v+ aw,)dydx + p;6,6]* (39)
o Jo

L

+P1h1ﬂ1_[ Uy jo Yy (1, (8, s)dsdx.

0
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Employing Cauchy-Schwarz, Young’s, and Poincaré’s
inequalities leads to

, Eh, ) 3p,h,0
3300 = pidy P + P+ L g 0

NP+ el 2 (pak) o0
ol el s aw ) + g ()
2

3 o0
+p50,116117 +p1 1 1H t|| P1 1ﬁ1 JO Io 1y (s)|11x|2dsdx.

L X
Thus, we establish (37). O As (1) = —pshsps Jo 9 Jo v (3, )dy, (41)

Lemma 8. The functional A, defined by satisfies, for any €5 >0 and €, >0, the estimate

A, (t)”vt"2 + e3||vx||2 +ey[(-u+v+ ocwx)H2

+ Clo +CJ J w, (9|7, dsdx +c(1 N )||9|| V0.
0 €4
Proof. Differentiation of A, using (18), and (18)5, we obtain
, L X
A(8) = =pshsps j 9| vadydx — pshps [ 9, vy
= _‘DSJ j E3 3Vyy u+v+ocwy)+519—829y]dydx (43)
+00 x
gt [ [ 8= 08 j et = s+ v | [y
Subsequently, through integration by parts and con-
sidering the boundary conditions (19), we arrive at
, 2 L L x )
AL (E) = ~pshyy|vilf - psEshs J v dx - psd, J 9J 8dydx + ps0, 9]
0 0 0 (44)

+00

L x L
+psk j 9 j (—u+v+aw,)dydx + pshyf, J vy j ty ()77, (., 1, s)dsdx.
o Jo o " Jo
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Applying Cauchy-Schwarz’ Young’s, and Poincaré’s
inequalities, we have

A3(f)< p3h ) ||Vt|| +€3“V || + p5E3 3) ||9|| p5 1”6"
€3

1917 + e4||(—u +v+ ocwx)"2 (PS ) 5527 19)1% (45)
hsé 3 0o 2
+ps S, 19117 + Ps 43 ZHVt”Z + pi(;ﬁz J J thy (8)|7]| dsdx.
2 0Jo
Hence, we get (42). O  satisfies for some N,N,N,,N;>0 of the following
equivalence:
Lemma 9. Assuming that (A,)-(As) are satisfied, the L() ~ E(t):that is 3 by, by: by E(8) <L(t) <b,E(), t20,

function defined by

47
L(t) == NE(t) + N,A, (t) + N,A, () + N3A; (1), >0, )
(46) and satisfies the following estimate:
L ) L oo 2
L' (t)< —cE(t) +CJ w;dx + B, J J py (8)|n| “dsdx
0 0Jo
L oo
+ 5, J J. Uy (8)|7, 2dsdx +cd; (t)J |wt|2m(x)_ 2dx (48)
0Jo Qs
+0, (t)J Cy(O|w,["Pdx, >0,
Qe
Proof. Using Lemmas 6-8, and the estimate (27), we get
) h,o
L(t)< - [plz”Nz —Plthl]”“r“Z +phN, [,
h30.
[P3 P2N - pshy N - CNz]""t”
il = BN = el = BN, -0
—[kNy = &;N, — e,N;]||(—u + v + aw )“2
—[N—CNI—CNZ( +1 + ) CN3]||6 & (49)
€
L foo 2 L oo 2
+CN, J j wy (9)|n,| dsdx + CNy J J o ()|7| dsdx
olJo olto
+00 +00 2
-NB, [l @@ ds - N, [ o] ds

_[N_CN1 CN3(1+i+ )]ns &

o, (t)JQ Cy (0)|w [ 2dx + o, (t)JQ C, (0)|wy|" Pdx.
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By choosing then (49) takes the form
EI E E
N] — I’A = —,61 = 1—hl,€2 = L’ez‘ = 3—]13,64 = L’
2 4N,"2 74N, 4N, 4N,
(50)
h,6 h36
0= - P50, = il - 2N, - ON, =l
Eh Esh
o~ Bl -l
Sl S v
2 XX 2 X
4N, 4N
—[N—CN2<1+E1h21+TZ>—CN3—C]||GxI|Z (51)
L roo 2 L roo 2
+CN2J J 1 (8)|n, | dsdx + CN, j J Uy ()|, | dsdx
0Jo 0Jo
4N; 4N 2
—[N—CN3<1 +ﬁ+T3> —c]||9x||
+0, (t)J Cy@|w, [ dx + 5, (t)j Cy (0)|w,|"Pdx.
Qx Qxx
Next, we determined the remaining parameters. Initially, Finally, we determined N to be large enough so that (47)
we chose N, to be sufficiently large, ensuring remains valid and
P1Z31N2 prhy >0. (52) N - CN2<1+§1\; +41Z2)—CN3—C>0,
(54)
Second, we chose N; to be large enough, such that 4N. 4N
ho N—CN3<1+Eh3+T3>—C>O.
Ps PEO2N, - O, = sy > 0. (53) o
Thus, we obtain
2 2 2 2 2 2
T | 4 Y e T e o i
2 2 2
o[+ v aw ) [0l iy +Jo. i
(55)

+C||wt||2+53(t)J C) (%) t|2m<") 24y

+83(t)JQ C, (0)|wy|" P,
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for some y, > 0. Recalling (21), it follows from (55) that
L' (6)< — pE () + clw|[* + 83(t)J C, () |w, [ 2d
0, (t)J Cy ()| |["Pdx, V20,
Qxx

(56)

for some y, > 0. o

E(t)< 51<1 + r (1, (s))lfa"ds>ei
0

where &, will be defined in the proof.

8 12(6351)(5)615 e J~+oo

13

4. Stability Results

Theorem 9. If the conditions (Al — A5) hold, m, = m, =2,
and &, (t) = c. Then, there exist constants y, € (0, 1) and
8, >0 such that, for allt € R* and for all §, € (0,v,], then the
energy functional (21) satisfies

LS s)ds, (57)
8

Proof. To prove the energy decay (57), we multiply (48) by
05 (1), yielding

L 2 L oo 2
85 ()L’ (1) < —cbs (DE(t) + c5 (1) Jowtdx+c83 (1) JO JO 11 (5)| s P dsclx

o [n

+ ¢85 (t)J' |wt|m(x)dx.
Qs

By comblmng (58) with (21) and utilizing the estimate
¢85 (1) .[o w?dx in (26);, (58) can be expressed as follows:

Z' (1)< —cO; (E(t) +¢ Jo 78 (s)"qxuzds +c Jjo t (s)||17x||2ds

flx

+c J:o‘uz(s)

where & = §;L + c0;E ~ E. Using (21), (21) and the fact that
&, and y, are nonincreasing, we find that

t t
) | m@lnlds< < [ gilnas
< —cE'(p),

(60)
Vt e R".

Since &, = ¢, we have

c&, J:O U, (s) 2ds < —c JZO &y (s)

< —cE'(t),Vt e R".

2
7| ds

flx (61)

Multiplying (59) by &,&, and combining it with (60),
(61), and the constraint provided in hypothesis (A,) yields

2
ds,

3 (t)j |, [ 2 dx (58)
Qx*

(59)

F (1) < ~ct, (DE, (18, (DE(#) + cl&, (1) jm iy (S)ds,
(62)

where F =&, 523+CE ~ E.
Let y(t) = cC&, (1) _[ Y, (s)ds. Then, (62) becomes

F' (1)< =y (£,6,8)F (1) +y (1), (63)

for some vy, > 0. This last inequality remains true for any §, €
(0, pol; that is,

F' ()< =8, (8:6E)OF () +y(t), VteR™.  (64)

Therefore, direct integration leads to
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T t
F(T)< e_ 8 Jo (635152) (s)ds (3‘7(0) N J‘T 650 JO (535152) (S)dsy(t)dt), (65)
0

and the fact that & ~E gives

T t
-5 | (6 d s | (0 d
E(T)<ye ’ Jo( hid2) () S(.@;(o)+ JT(f Jo( &) () sy(t)dt). (66)
0
We note that
o | (O d s | (6 d , +00
65 JO( 351&'2)(5) Sy(t) _ ;_((65 JO( 35152)(5) S) J u, (s)ds, Vit e R (67)
0 t

Then, integration by parts gives

JT N J;(53£152) s

e (t)dt
0
T t (68)
) ) ds +oo +00 T 5, ) d
= g (ea IO (ha%a) (s JT p (s)ds - JO py (s)ds + JO e6 jo( %182)(9 Sg(t)dt).
Combining with (66), we have
t T
T ¢, 6 d -5 | 6 d +00
5D Syl(f’i(O) +§J 66 ,[o( 36,8, (s) slu1 (t)dt)e B JO 3618, (s)ds +§J' uy (s)ds. (69)
8 Jo S )T
We note that JT e60 J.o (635152)(5)015.“1 (H)dt < (4, (0))60 JT (1 (t))176°dt.
t ’ 0 0
1) d 71
(Jo( 48 0 (t)) <0, VteR". (70) 7
Finally, combining (69) and (71), we obtain

3{1{2) (s)ds

We have eJow py (t) <y, (0) and

t -3, 1) d +00
E(t)S(Sl(l +J (4, (s))”ﬂds>e ? Jo( 616) () ﬁgﬁj uy (s)ds, (72)
0 t

0
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where §;, = max{yl.ci(O), (c(18y) (py (0))8"}. Thus, the proof Theorem 10. If the conditions (Al — A5) hold, 1<m, <2,
of (57), is completed, and the proof of (57), and (57); will be m, #2, and &, (t) = c. Then, the energy functional (21) sat-
similar to taking g = max{u;, y,} and & = max{¢,,&,}. O  isfies for a positive constant C

E(#)<C(1+1)" 1 (£,£,8,) [1 + jo (£,6,8;) M (9)y () (1 + 5)Mds |, (73)

where y(t) = c(&E,85)(t) J:OO p(s)ds and x = max{(2— Proof. To prove (73), we first multiply (48) by &5 (¢), to get
my/2my — 2), (m,/2) — 1}.

L L oo
8,(OL' ()< —c8, (DE(1) + cd, (t)J widx + b, (t)J j iy (5)|n, [Pdsdx
Lo 0 ) 0Jo (74)
+ 8, (t)J J w, ()| [ dsdx + asS(t)j " 2dx —c8, ()E (8).
0Jo Q,
Combining (74), (29), and choosing ¢ small enough, we
arrive at
L ) L roo 2
LI ()< =8 (DE(t) + ¢, (£) J widx + c53(t)J J 1y (5)|n,[Pdsdx
0 0Jo
L oo 2 (75)
8, (1) J j w, (). [ dsdx —c, (1) (pyE2m-22m,
0Jo
where L= 0;L+cd;E ~E. Using the estimate of
cé5 (1) Jo w?dx in (26)s, we have, for ¢ = ¢ =¢,, the fol-
lowing equation:
L] (t)< —cd; ()E(t) — C.E (t)E * —cd, (t)E' (t)E*™ >~
t 2 o0 oo _ 2 (76)
+e8, (1) Joyl (9)|nds + <8, (1) Jt U, (8)ds + c8; (1) jo w )] ds.
Multiplying (76) by E;(t), where & = max{(2 - m,/2m,
-2), (m,/2) — 1}, we get
L) < —c8; (DE™ (£) + cedy (DE™ (£) - CE' (t)
~ t ~ o0
+c05 (H)E" (1) Jo thy (s)|l1x|2ds +¢(8; (t)E* (t) L p (s)ds (77)
~ 00 2
+ 8, (DE (1) JO w )] ds,
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where L, = EzL1 + c8;E~E. Choosing ¢ small enough, then

we get
i K+l x ! 2 ®
LL(t) < —c85 (DE™ (1) + ¢85 ()E (t)J s (5)| [P + c(53(t)J U, (s)ds
. s t (78)
+ 8y (1) JO (9| ds.
- - N _ erl4y o+l
Multiplying (78) by &% (£,€,)*", using (21), and using (818:0:)'F" (D) < - 1 (§18,03) (OF () (81)
that &, E is nonincreasing, we get +e, ( £, 63)'7)/;“ (t).
F' (< —c (Elfzaa)ml (OF* (1) + (£16.8:E) (Dy (1), Let H: = £,&,6; > 0 which is nonincreasing, we find that

(79) (Xﬂgy(t))r < C])(?Hm (t)&”;“ (t) + szqyzﬂ ®). (82)

where  y(t) = c(£,£,85) (¢) _[fo py(s)ds and F =85(&,
&)L, + cS,E~E. , - -

Use of Young’s inequality, with g=%+1 and ¢ (1)< — 19" (1) + o) ()Y (1) (83)
q* = (¥ + 1/%), gives for some positive constant ¢; and c,.

Setting ¢ = x'# and noting # = (¥ + 1/%), one finds that

Let
F' (1)< —c; (£,58) T (OF () + ey (1), (80)
Multiply both sides of (109) by (&,&,85)", 1> 1, thus, we
get
~ t ~ ~
y(£) = ¢(t) — v (£); where y () = ¢, (1 + 1) j X1 ()Y () (1 + ) ds, (84)
0
From the definition of y, we have
~ ~ t ~ ~
CZX” (t)yml (t) _ v/r (t) + %(1 + t)(* 1/x)-1 JOX” (S)yKH (S) (1 + S)(llx)ds) (85)
since x" (s)y”;r1 (1+ s)(”;) >0, then we have for all t>¢,>0
t ~ _ t ~ _
V= J XY () (1 +9)Mds < J XY ) (1 +9) s, (86)
0 0
and then Thus, (85) yields, Vi >t,
t oy W+l (1/x)
Jox (" () (1 +5) L (87)
y

~ +1
K+1

o (Y () <y (1) + %cgv;cgﬂ [a+0C ”@]m “; L) (1 +9)WPds| (88)
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we can choose ¢, large enough so that (1/x)c5v*<c;, and
then, we get

X WY ) <y (1) + cquz“, Vit >t (89)
Now, using (89) and the definition of H, we get, Vt > t,,
H ()= ¢ (1) -y (< — 6™ (1) + o (0™ () v/ (1)
< o[ H+ ™ O] e @ - v

(90)
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Since H(0)>0, then there exists #; >0 such that
y(t)>0,Vt € [0,¢t,). Hence,

H' ()< —cl[HZH O+ )| + o OHT (1) -y (.Y t € [tort,).

< _Cl|:H’E+1(t)+l//’;+l(t)_z_2
1

Thus,
H ()< -, H (1), t € [to.1,). (92)
This gives
—Ij.gl >c,ds. (93)

Integrate over (t,,t), we have

) (91)
AT ()Y (1) A ACN
1
Hence, it follows that

(t-1)""

If ¢, = +00, then, using the definitions of H and vy, we
observe that, for sufficiently large t,

p(H<CU+1" 1"’5)[1 + Jt Y () (1 +5) s |.
0

K
= 2c1t+c2||§0. (94) (97)
H™ (1) By multiplying (97) with ™" and recalling the definition
Therefore, we get of ¢, we obtain the following for # = (¥ + 1/%):
H (<"
s 1, (95)
-1 .
F()<C(1+1) & X"‘*“")[l + j ¥ (519 (s) (1 + s)“”‘)ds]. (98)
0

Using the fact #~E, we have two cases:

If K= (2-m;/2m; —2)>0, then K+ 1 = (m;/2m, - 2)
and (¥ + 1/%) = (m,/2 — m,), we get

E()<C(l +t)—(2m1—2/2—m1)X—(m1/2—m1)<1 . r (1 +S)(2m1—2/2—m1)X(m1/2—m1)(S)y(l/ml—l)ds). (99)
0
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If € = (m,/2) = 1>0, we have

E(t) < C(l + t)—(Z/mZ—Z)X—(mZ/mZ_2)<1 n J.t (1 n S) (2/m2—2)X(m2/m2—2) (S)y(mZ/Z)ds).
0

(100)

This establishes (73). O Theorem 11. If conditions (A, — As) hold, m, 22, m, >2,
and &, (t) = c. Then, the energy functional (21) satisfies for

a positive constant C,

E(t)<C(1+ t)*(z/mrz) (515253)—(%/%—2)(1 + J; a +s)(2/m2—2) (515283)(%/%—2) (s)y(m2/2)ds),

(101)

where y(t) = c(§,£,85;) (¢) f:oo Yy (s)ds. Proof. To prove the decay (101), we first multiplying (48) by
85, recalling the estimate of cd; [, w?dx in (26),, to get

N t 00
831’ (£) < —c83E(t) + cesE(t) - C, (E (t))E”‘+c63J yl(s)|11x|§ds+653j G|, [dx
0 t

2
dx —c8,E' (1).

T AETN

Multiplying (102) by E* where & = (m,/2) — 1 >0, we get

L] (t) < —c8,E* (t) + ceE*"' = C,(-E' (1))

2
7| dx,

Lt . (00 00
+c8,E" jo thy (s)|;1x|ids +c8,E" Jt ty (s)|‘I’x|2dx +cd, ,[0 thy (s)

where L, = §5L + c6;E ~ E. Choosing ¢ sufficiently small, we
get

N .t [e3)
L, (t)< —c8,E* (t) + c8,EF Io y (s)|;1x|;ds +cd, J-t ty (s)|11x|2dx

2
7| dx.

+ ¢85 Jo ty (8)

(102)

(103)

(104)



Journal of Mathematics

Using (21), (21) and the fact that &; and y; are non-
increasing, we find that

t t
)| m@lnlds< < [ gilnas

(105)
< —cE'(t), VteR"
Since &, = ¢, we have
co 2 ) 2
c (|7, ds< —cj )7, ds
3 Jo Ha n o §otty n (106)
< —cE'(t), VteR".

Now, multiplying (104) by (8;)* (£,£,)*"" and using
(105) and (106), we get

z! (t) < _C(&—1£263)k+1Ek+1 (t)

e 2 (107)
(660 | @hnfids

where Z = (63)’%(.{1{2)’%“L1 +c0,E~E.
Recalling (21) and (25) and putting y(#) = c(&,&,
&) (1) I:OO , (s)ds. Then, (107) becomes

Z' (1) < —c(£,6,0,) " (DEF () + ¢ (£,6,8,)" (H)y (1).
(108)
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Setting y := &;&,8; which is a positive nonincreasing,
then we get

Z' 1)< - OF (1) + c () y (1). (109)
Using Young’s inequality, with g=%+1 and
q" = (k + 1/k), we get some positive constant ¢, and c,

Z' (1)< e OF (@) + ey (). (110)

Repeating the procedures outlined in the last part of the
proof of Theorem (58), substituting ¥ with x = (m, — 2/2),
concludes the verification of the decay (101). O

5. Examples and Remarks

In this section, we provide examples and remarks to illus-
trate and compare our stability results from Theorems 9-11
with some earlier findings in the literature.

Example 1. For, i=1,2, let g;(s) =ae V*. Therefore,
&, (s) = (1/2+/s ). Then, in case if K = (2 —m,/2m; —2) >0,
the energy decay (73) becomes for &;(t)= (1+ £,
0<A<l,

E(£)<C(1 + 1)~ (m=222m) +t)(’"1’“’”1”<1 + r (1 +s)(5”“4’2(2’”1))A(fﬁ)(ml/z"")(s)h('"l’z"‘l)ds). (111)
0

Thus, we achieve polynomial stability in the form of

E(t)<C(1 +¢)(#3m2(-m))-2 (112)

For A=0 and m;>(4/3), it is evident that
tlim E(t) = 0. In the case of A =1, for any 1<m,; <2, we
—00
observe lim E(t) =0.
t— 00

In the second scenario, when ¥ = (m,/2) - 1>0, and
considering g; (s) = ae” Vs £ (s) = (1/2+/s ), and &, (¢) =
(1+1)"*, we obtain polynomial stability in the form of

E(t) S(?l(l + J; (4y ()" %ds

)e- b jo (:6) s

E(t)<C(1 +¢) (e 42(m=2))-4 (113)

Notably, for A=0 and m,<m,<4, we have
tlim E(t) = 0. Similarly, for A = 1 and any 1 <m; <m,, we

find tlim E(t)=0.
Remark 12

(1) If &, = ¢, then the decay (57) becomes

8—j+00 Y, (s)ds. (114)
0oJt
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(2) If &, and &, are functions of ¢, then the decay (57)

becomes
E(t) S61<1 + Jt (H(S))1_5°ds>e_
0
there ff max{¢;, &}, p=max{y;,u,}, and
(= max{(, C}

(3) The proofs of (114) and (115) are similar to the proof
of decay in (57).

Remark 13

(1) In the case where &, = c, the energy decay estimate
mirrors the decay (73), with the only difference being

Y(t) = c(§,6,85) (1) [ u, (s)ds. The proof remains
the same.

(2) If &, and &, are functions of t, then the energy decay
will be the same as the decay (73) except y(t) =

c(&8;) (1) j:oo p (s)ds where & = max{¢,,&,} and p =
max{y,, 4,} and the proof will be the same.

Remark 14

(1) If&, = ¢, the energy decay aligns with the decay (101),
with the only difference being y(t) = ¢ (&,£,05) (¢)
I:OO U, (s)ds. The proof remains the same.

(2) If &, and &, are functions of t, then the energy decay
will be the same as the decay (101) except y(t) =

c(£8,)(t) [ u(s)ds where &=max{£,&} and
¢ = max{y,, 4,}. The proof will be the same.
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