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In this paper, we explore the asymptotic behavior of solutions in a thermoplastic Rao–Nakra (sandwich beam) beam equation
featuring nonlinear damping with a variable exponent. Te heat conduction in this context adheres to Coleman–Gurtin’s thermal
law, encompassing linear damping, Fourier, and Gurtin–Pipkin’s laws as specifc instances. By employing the multiplier approach,
we establish general energy decay results, with exponential decay as a particular manifestation. Tese fndings extend and
generalize previous decay results concerning the Rao–Nakra sandwich beam equations.

1. Introduction

Partial diferential equations (PDEs) featuring variable ex-
ponents have garnered considerable attention from re-
searchers in recent times. Unlike conventional PDEs with
constant exponents, equations with variable exponents
entail power-law dependencies on spatial variables, with the
exponents subject to variation along the spatial coordinates.
Tis variation introduces added intricacy and complexities
in both the analysis and solution of these equations.

Te importance of PDEs with variable exponents is due
to several reasons. Tey ofer a more adaptable framework
for modeling physical phenomena, enabling the represen-
tation of diverse behaviors in diferent regions of the domain
by allowing spatial variation in the exponents. Tis type of
nonlinearity within PDEs allows for a more precise repre-
sentation of various physical phenomena, particularly in
instances where the system’s behavior cannot be accurately
depicted by linear models. Te variable exponents enable
a more adaptive and versatile approach to processing,
contingent upon the characteristics of the image content.

Tey come up in the research on optimal control problems,
where the goal is to fnd strategies that make certain criteria
as good as possible while considering the changes described
by the PDE with variable exponents.

Moreover, heat conduction is a fundamental phenom-
enon with widespread applications in various physical
processes, frequently described through partial diferential
equations (PDEs). Tese equations are instrumental in
capturing the intricacies of heat distribution, as evidenced by
their application in diverse scenarios. For instance, the
temperature variation along a solid rod or bar fnds rep-
resentation in a 1D heat conduction equation, commonly
formulated as the one-dimensional heat equation. Tis PDE
correlates temporal changes with the distribution of tem-
perature, ofering a comprehensive understanding of the
thermal dynamics. In the realm of electronics, especially for
components such as computer chips and integrated circuits,
a profound comprehension of heat conduction is in-
dispensable. PDEs prove invaluable in modeling the tem-
perature distribution within these devices, thereby
contributing to the design of efcient cooling systems.
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Furthermore, engineering simulations leverage PDEs to
analyze the thermal behavior of structures and systems,
extending their application to felds such as civil engi-
neering. Te study of how buildings respond to environ-
mental temperature changes relies on the insights gained
from understanding heat conduction, showcasing the per-
vasive signifcance of PDEs in elucidating complex thermal
phenomena.

For additional insights into the hierarchy of heat con-
duction laws, the authors refer to [1]. Motivated by the
mathematical complexities presented by these equations and
their efcacy in modeling intricate physical phenomena, we
examine the following Rao–Nakra with a sandwich beam
system:

ρ1h1utt − E1h1uxx − k − u + v + αwx(  + δ1θx � 0, in (0, L) × R+,

ρ3h3vtt − E3h3vxx + k − u + v + αwx(  − δ1θ + δ2ϑx � 0, in (0, L) × R+,

ρhwtt + EIwxxxx − αk − u + v + αwx( x + δ3(t) wt



m(x)− 2

wt � 0, in (0, L) × R+,

ρ4θt + β1 − 1( θxx − β1 
+∞

0
g1(s)θxx(x, t − s)ds + δ1 uxt + vt(  � 0, in (0, L) × R+,

ρ5ϑt + β2 − 1( θxx − β2 
+∞

0
g2(s)ϑxx(x, t − s)ds + δ2vxt � 0, in (0, L) × R+,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

in which u and v denote the longitudinal displacement of the
top layer and shear angle of the bottom layer, respectively,
and w represents the transverse displacement of the beam.
Te positive constants ρi, hi, Ei, and Ii(i � 1; 3) are physical
parameters representing, respectively, density, thickness,
Young’s modulus, and the moments of inertia of the i-th
layer for i � 1, 2, 3 and ρh � Σ3i�1ρihi. Here, EI � Σ3i�1EiIi,
α � h2 + (h1 + h3/2), and k � (E2/2h2(1 + μ)) where
− 1< μ< 1/2 is the Poisson ratio. δ1 > 0 and δ2 > 0 are cou-
pling constants. δ3 is a time-dependent coefcient and
β1, β2 ∈ (0, 1). θ is the temperature supposed to be known
for negative times. ρ4 and ρ5 are the ratio between the re-
laxation time and the thermal conductivity. m(.) is the
variable exponent function and satisfes some conditions

that will be mentioned later. Te functions g1 and g2
represent the convolution thermal kernel, nonnegative
bounded convex summable function on [0, +∞), belonging
to a wide class of relaxation functions that satisfy the unitary
total mass and additional properties specifed in the paper.
Te system (1) consists of one Euler–Bernoulli beam
equation for the transverse displacement and two wave
equations for the longitudinal displacement of the top layer
and the shear angle of the bottom layer. Te top and bottom
layers of the beam are subjected to Coleman–Gurtin’s
thermal law [2], where the Fourier, Maxwell–Cattaneo’s, and
Gurtin–Pipkin’s laws [3] are special cases. We subject the
system (1) to the following boundary conditions:

ux(0, t) � vx(0, t) � w(0, t) � wxx(0, t) � θ(0, t) � ϑ(0, t) � 0, t≥ 0,

u(L, t) � v(L, t) � w(L, t) � wxx(L, t) � θx(L, t) � ϑx(L, t) � 0, t≥ 0,
 (2)

and the initial data are given by

u(x, 0) � u0(x), v(x, 0) � v0(x), w(x, 0) � w0(x), x ∈ (0, L),

ut(x, 0) � u1(x), vt(x, 0) � v1(x), wt(x, 0) � w1(x), x ∈ (0, L),

θ(x, − t) � θ0(x, t), ϑ(x, − t) � ϑ0(x, t), x ∈ (0, L), t≥ 0.

⎧⎪⎪⎨

⎪⎪⎩
(3)

Te stabilization of Rao–Nakra beam systems has
recently captured signifcant attention among researchers,
leading to the establishment of numerous fndings. Te
Rao–Nakra beam model involves the dynamics of two
outer face plates, presumed to be relatively rigid, along
with a compliant inner core layer sandwiched between
them. Te authors of [4–7] provide insights into

Rao–Nakra, Mead–Markus, and multilayer plate or
sandwich models. Te fundamental equations of motion
for the Rao–Nakra model are derived based on
Euler–Bernoulli beam assumptions for the outer face plate
layers, Timoshenko beam assumptions for the Sandwich
layer, and a no-slip assumption for motion along the
interface.
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Let us begin by revisiting some prior works concerning
multilayered sandwich beam models. Wang et al. [8] ex-
plored a sandwich beam system with boundary control
using the Riesz basis approach, establishing exponential
stability, exact controllability, and observability. In a dif-
ferent approach, Rajaram [9] utilized the multiplier ap-
proach to determine the precise controllability of
a Rao–Nakra sandwich beam with boundary controls.
Hansen and Imanuvilov [10, 11] investigated a multilayer
plate system with locally distributed control in the
boundary, employing Carleman estimations to establish
precise controllability. Özer and Hansen [12, 13] achieved
boundary feedback stabilization and perfect controllability
for a multilayer Rao–Nakra Sandwich beam. Liu et al. [14]
considered viscous damping efects on either the beam
equation or one of the wave equations, establishing
a polynomial decay rate using the frequency domain
technique. Wang [15] analyzed a Rao–Nakra beam with
boundary damping on one end, fnding that the semigroup
created by the system is polynomially stable of order 1/2.
Mukiawa [16] recently studied system (1) with linear
damping and Gurtin–Pipkin’s thermal law for heat con-
duction, proving the existence and establishing an expo-
nential decay rate. Additional results on multilayer beams
can be found in [17–30].

Our objective is to explore the asymptotic behavior of
solutions in the context of the system (1)–(3). We aim to
investigate how the thermal damping and the nonlinear
damping with a variable exponent power, introduced in
equation (1)3, impact the asymptotic behavior of the energy
function. Without imposing restrictions on the wave
propagation speeds in the system, we employ the multiplier
approach to establish both exponential and general energy
decay rates for this system. Tese results extend and gen-
eralize previous decay fndings related to the Rao–Nakra
sandwich beam equation. Te primary objectives are as
follows:

(i) Establishing an exponential decay of the system
when the relaxation functions converge exponen-
tially, and the variable exponent is set to m(x) � 2.

(ii) Establishing more generalized decay results for the
system applies when the relaxation functions do not
converge exponentially, and the variable exponent
m(x)≠ 2. In this scenario, various cases will be
discussed based on the range of variable exponents
and the convergence type of the relaxation functions.

To the best of our knowledge, stability results for the
Rao–Nakra sandwich beam with nonlinear damping of
variable exponent type have not been explored.

Te rest of the paper is structured as follows: Section 2
introduces preliminary results and notations. Section 3
presents and proves technical lemmas, and Section 4 outlines
and proves the stability theorem, ofering a detailed proof.

2. Notations, Assumptions,
and Transformations

Tis section is dedicated to the assumptions and specifc
transformations required for our problem. We make the
following assumptions:

(A1). g1, g2: [0, +∞)⟶(0, +∞) are nonincreasing
C2 ([0, +∞)) and convex summable functions satis-
fying the following:

lim
s⟶+∞

gi(s) � 0,


+∞

0
gi(s)ds � 1, i � 1, 2.

(4)

Furthermore, there exists ξi > 0, i � 1, 2 such that

− gi
″(s)≤ ξi(s) gi

′(s)( , ∀s≥ 0  i � 1, 2. (5)

By setting:

μ1(s) � − g1′(s),

μ2(s) � − g2′(s),
(6)

we obtain the following:
(A2). μ1, μ2: [0, +∞)⟶(0, +∞) are nonincreasing
C1 ([0, +∞)) and convex summable functions
satisfying

μ0i � 
+∞

0
μi(s)ds � gi(0)> 0,


+∞

0
sμi(s)ds � 1, i � 1, 2,

(7)

and there exists ξi > 0, i � 1,2 such that

μi
′(s)≤ − ξi(s)μi(s), ∀s≥ 0, i � 1, 2, (8)

(A3). We assume the existence of two positive con-
stants ζ,

ζ such that

η0x(s)
����

����
2 ≤ ζ, ∀s> 0,

η0x(s)
�����

�����
2
≤ ζ, ∀s> 0,

(9)

where η0x and η0x are defned (below).
We defne Lμ1 � η: R+⟶ H1

0(0, L): ‖η‖2Lμ1
≔ 
∞
0

μ1(s)‖ηx(s)‖2ds<∞}, and Lμ2 � η: R+⟶ H1
0(0,

L): ‖η‖
2
Lμ2
≔ 
∞
0 μ2(s)‖ηx(s)‖2ds<∞}, which defnes

a Hilbert space.
(A4). Te time-dependent coefcient δ3: [0,∞)
⟶(0,∞) is a nonincreasing C1 function satisfying

∞
0 δ3(s)ds �∞.
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(A5).Te variable exponent m(x): [0, L]⟶ [1,∞) is
a continuous function such that

m1 ≔ essinfx∈[0,L]m(x), m2 ≔ esssupx∈[0,L]m(x), (10)

and 1<m1 ≤m(x)≤m2 <∞. Moreover, the variable func-
tion m satisfes the log-Hölder continuity condition; that is,
for any δ with 0< δ < 1, there exists a constant A> 0 such
that

|m(x) − m(y)|≤ −
A

log|x − y|
, for all x, y ∈ Ω,with  |x − y|< δ. (11)

For further details on the memory kernels, refer to
[31, 32].

Due to Dafermos [33], we defne new functions for the
relative past history of θ and ϑ as follows:

η, η: (0, L) × R+ × R+⟶ R+, (12)

defne by

η(x, t, s) ≔ 
t

t− s
θ(x, r)dr,

η(x, t, s) ≔ 
t

t− s
ϑ(x, r)dr.

(13)

On account of the boundary conditions (2), we have

η(0, t, s) � ηx(L, t, s) � η(0, t, s) � ηx(L, t, s) � 0, (14)

and routine calculation gives

ηt + ηs − θ � 0, in (0, L) × R+( × R+,

ηt + ηs − ϑ � 0, in (0, L) × R+ × R+,

η(x, t, 0) � η(x, t, 0) � 0, in (0, L) × R+,

η(x, 0, s) � 
s

0
θ0(x, r)dr ≔ η0(x, s), in (0, L) × R+,

η(x, 0, s) � 
s

0
ϑ0(x, r)dr ≔ η0(x, s), in (0, L) × R+,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where η0 and η0 represent the history of θ and ϑ, respectively.
Also, using integration by parts and change of variables, we
have


+∞

0
g1(s)θxx(x, t − s)ds

� lim
a⟶+∞

g1(s) 
t

t− s
θxx(x, r)dr||

s�a
s�0 − 

+∞

0
g1′(s) 

t

t− s
θxx(x, r)drds

� 
+∞

0
μ1(s)ηxx(x, t, s)ds.

(16)
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Similarly, we get


+∞

0
g2(s)ϑxx(x, t − s)ds � 

+∞

0
μ2(s)ηxx(x, t, s)ds.

(17)

Using (13)–(17), system (1)–(3) becomes

ρ1h1utt − E1h1uxx − k − u + v + αwx(  + δ1θx � 0, in (0, L) × R+,

ρ3h3vtt − E3h3vxx + k − u + v + αwx(  − δ1θ + δ2ϑx � 0, in (0, L) × R+,

ρhwtt + EIwxxxx − αk − u + v + αwx( x + δ3(t) wt



m(x)− 2

wt � 0, in (0, L) × R+,

ρ4θt + βθxx − β1 
+∞

0
μ1(s)ηxx(x, t, s)ds + δ1 uxt + vt(  � 0, in (0, L) × R+,

ηt + ηs − θ � 0, in (0, L) × R+ × R+,

ρ5ϑt + βθxx − β2 
+∞

0
μ2(s)ηxx(x, t, s)ds + δ2vxt � 0, in (0, L) × R+,

ηt + ηs − ϑ � 0, in (0, L) × R+ × R+,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

with the boundary conditions

ux(0, t) � vx(0, t) � w(0, t) � wxx(0, t) � θ(0, t) � ϑ(0, t), t≥ 0,

u(L, t) � v(L, t) � w(L, t) � wxx(L, t) � θx(L, t) � ϑx(L, t) � 0, t≥ 0,

η(0, t, s) � ηx(L, t, s) � η(0, t, s) � ηx(L, t, s) � 0, s, t ∈ R+,

η(x, t, 0) � η(x, t, 0) � 0, x ∈ (0, L), t ∈ R+,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(19)

and the initial data

u(x, 0) � u0(x), v(x, 0) � v0(x), w(x, 0) � w0(x), x ∈ (0, L),

ut(x, 0) � u1(x), vt(x, 0) � v1(x), wt(x, 0) � w1(x), x ∈ (0, L),

θ(x, − t) � θ0(x, t), ϑ(x, − t) � ϑ0(x, t), x ∈ (0, L), t> 0,

η(x, 0, s) � η0(x, s), η(x, 0, s) � η0(x, s), x ∈ (0, L), s> 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)

where β � β1 − 1 and β � β2 − 1.
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3. Essential Lemmas

In this section, we establish essential lemmas necessary for
proving the stability of the system (18)–(20).

Te energy function associated with the solution Ψ �

(u, ut, v, vt, w, wt, θ, η, ϑ, η) of the aforementioned system is
precisely defned as follows:

E(t) �
1
2

ρ1h1 ut

����
����
2

+ ρ3h3 vt

����
����
2

+ ρh wt

����
����
2

+ E1h1 ux

����
����
2

+ E3h3 vx

����
����
2

+ EI wxx

����
����
2

 

+
1
2

k − u + v + αwx( 
����

����
2

+ ρ4‖θ‖
2

 

+
1
2

β1 
∞

0
μ1(s) ηx



2
ds + ρ5‖ϑ‖

2
+ β2 

∞

0
μ2(s) ηx





2
ds , ∀  t≥ 0.

(21)

Lemma 1. Te energy functional (21) satisfes

E′(t) � − β
L

0
θ2xdx − β

L

0
ϑ2xdx − δ3(t) 

L

0
wt



m(x)

dx

+
β1
2


+∞

0
μ1′(s) ηx(s)

����
����
2
ds +

β2
2


+∞

0
μ2′(s) ηx(s)

�����

�����
2
ds≤ 0, ∀t≥ 0.

(22)

Proof. Multiplying the equations (18)1, (18)2, (18)3, (18)4,
and (18)6 by ut, vt, wt, θ, and ϑ, respectively, followed by the
multiplication of (18)5 and (18)7 by η and η, respectively.

Subsequently, utilizing integration by parts and in-
corporating the boundary conditions (19), we obtain

1
2

d

dt
ρ1h1 ut

����
����
2

+ E1h1 ux

����
����
2

  − k 
L

0
− u + v + αwx( utdx − δ1 

L

0
θuxtdx � 0,

1
2

d

dt
ρ3h3 vt

����
����
2

+ E3h3 vx

����
����
2

  + k 
L

0
− u + v + αwx( vtdx − δ1 

L

0
θvtdx − δ2 

L

0
ϑvxtdx � 0,

1
2

d

dt
ρh wt

����
����
2

+ EI wxx

����
����
2

  + αk 
L

0
− u + v + αwx( wxtdx + δ3(t) 

L

0
wt



m(x)

dx � 0,

1
2

d

dt
ρ4‖θ‖

2
  − β

L

0
θ2xdx + β1 

+∞

0
μ1(s) 

L

0
ηx(s)θx(t)dxds + δ1 

L

0
θ uxt + vt( dx � 0,

1
2

d

dt
β1 

L

0

∞

0
μ1(s) ηx



2
dsdx  −

β1
2


+∞

0
μ1′(s) ηx(s)

����
����
2
ds − β1 

+∞

0
μ1(s) 

L

0
ηx(s)θx(t)dxds � 0,

1
2

d

dt
ρ5‖ϑ‖

2
  − β

L

0
ϑ2xdx + β2 

+∞

0
μ2(s) 

L

0
ηx(s)ϑx(t)dxds + δ2 

L

0
ϑvxtdx � 0,

1
2

d

dt
β2 

L

0

∞

0
μ2(s) ηx





2
dsdx  −

β2
2


+∞

0
μ2′(s) ηx(s)

�����

�����
2
ds − β1 

+∞

0
μ2(s) 

L

0
ηx(s)ϑx(t)dxds � 0.

(23)
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Te summation of the aforementioned equations results
in

E′(t) � − β
L

0
θ2xdx − β

L

0
ϑ2xdx − δ3(t) 

L

0
wt



m(x)

dx

+
β1
2


+∞

0
μ1′(s) ηx(s)

����
����
2
ds +

β2
2


+∞

0
μ2′(s) ηx(s)

�����

�����
2
ds≤ 0.

(24)

Tis completes the proof. □

Lemma 2 (see [34]). Assume that (A1) − (A3) hold. Ten,
for all t ∈ R+ and i � 1, 2, there exists a positive constant c0
such that


+∞

t
μi(s) ηx

����
����
2
2ds≤ c0 

+∞

t
μi(s)ds. (25)

Now, we present three lemmas without providing proofs;
the methodology aligns with that employed in [35].

Lemma 3. Given the assumptions (A4) and (A5), the sub-
sequent approximations are as follows:

cδ3(t) 
L

0
w

2
t dx≤ − cE′(t), if  m1 � m2 � 2.

cδ3(t) 
L

0
w

2
t dx≤ cεδ3E(t) − CεE

− κ̂
E′(t)( , if  m1 ≥ 2, m2 > 2.

cδ3(t) 
L

0
w

2
t dx≤ cε1δ3E + cε2δ3E − Cε1 E′(t)( E

− κ̂
− Cε2 E′(t)( E

− κ̂
, if  1<m1 < 2, m2 ≠ 2,

(26)

where κ̂ � (m2/2) − 1> 0. Lemma 4. Assuming that (A4) and (A5) hold, then for any
λ> 0, we have

− ρhδ3(t) 
L

0
w wt



m(x)− 2

wtdx≤ cλ
L

0
wxx



2
dx + δ3(t)

Ω∗
Cλ(x) wt



2m(x)− 2

dx

+ δ3(t)
Ω∗∗

Cλ(x) wt



m(x)

dx,

(27)

where

Ω∗ � x ∈ [0, L]: m(v)< 2{ },Ω∗∗ � x ∈ [0, L]: m(x) ≥ 2{ }.

(28)

Lemma 5. If the assumptions (A1)–(A5) hold, then we have
the following estimates:

cδ3(t)
Ω∗

wt



2m(x)− 2

dx �

0, m1 ≥ 2,

cεE(t) + cδ3(t)E
2m1− 2/2− m1( )

Ω∗
Cε wt



m(x)

, 1<m1 < 2.

⎧⎪⎪⎨

⎪⎪⎩
(29)
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Lemma 6. Te functional Δ1 defned by

Δ1(t) � ρ1h1 
L

0
uutdx + ρ3h3 

L

0
vvtdx + ρh 

L

0
wwtdx,

(30)

satisfes the estimate

Δ1′(t)≤ −
E1h1

2
ux

����
����
2

−
E3h3

2
vx

����
����
2

− EI wxx

����
����
2

− k − u + v + αwx( 
����

����
2

+ ρ1h1 ut

����
����
2

+ ρ3h3 vt

����
����
2

+ ρh wt

����
����
2

+ C‖θ‖
2

+ C‖ϑ‖
2

− ρhδ3(t) 
L

0
w wt



m(x)− 2

wtdx, ∀  t≥ 0.

(31)

Proof. Diferentiation of Δ1 gives

Δ1′(t) � ρ1h1 
L

0
uuttdx + ρ3h3 

L

0
vvttdx + ρh 

L

0
wwttdx

· ut

����
����
2

+ ρ3h3 vt

����
����
2

+ ρh wt

����
����
2
.

(32)

Using equations (18)1, (18)2, and (18)3, we obtain

Δ1′(t) � 
L

0
u E1h1uxx + k − u + v + αwx(  − δ1θx dx

+ 
L

0
v E3h3vxx − k − u + v + αwx(  + δ1θ − δ2ϑx dx

+ 
L

0
w − EIwxxxx + αk − u + v + αwx( x − δ3(t) wt



m(x)− 2

wt dx

ut

����
����
2

+ ρ3h3 vt

����
����
2

+ ρh wt

����
����
2
.

(33)

Subsequently employing integration by parts across the
interval (0, L) and incorporating the boundary conditions
(19) results in

Δ1′(t) � − E1h1 ux

����
����
2

− E3h3 vx

����
����
2

− EI wxx

����
����
2

− k − u + v + αwx( 
����

����
2

· ut

����
����
2

+ ρ3h3 vt

����
����
2

+ ρh wt

����
����
2

− ρhδ3(t) 
L

0
w wt



m(x)− 2

wtdx.

(34)
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Utilizing Young’s and Poincaré’s inequalities, we acquire

Δ1′(t)≤ −
E1h1

2
ux

����
����
2

−
E3h3

2
vx

����
����
2

− EI wxx

����
����
2

− k − u + v + αwx( 
����

����
2

· ut

����
����
2

+ ρ3h3 vt

����
����
2

+ ρh wt

����
����
2

+ C‖θ‖
2

+ C‖ϑ‖
2

− ρhδ3(t) 
L

0
w wt



m(x)− 2

wtdx.

(35)

Tis completes the proof. □

Lemma 7. Te functional Δ2 defned by

Δ2(t) � − ρ1h1ρ4 
L

0
θ

x

0
ut(y, t)dydx, (36)

satisfes, for any ϵ1 > 0 and ϵ2 > 0, the estimate

Δ2′(t) ut

����
����
2

+ ϵ1 ux

����
����
2

+ ϵ2 − u + v + αwx( 
����

����
2

+ C vt

����
����
2

+ C 
L

0

∞

0
μ1(s) ηx



2
dsdx + C 1 +

1
ϵ1

+
1
ϵ2

 ‖θ‖
2
, ∀  t≥ 0.

(37)

Proof. Diferentiation of Δ2, using (18)1 and (18)4, we get

Δ2′(t) � − ρ1h1ρ4 
L

0
θ

x

0
uttdx − ρ1h1ρ4 

L

0
θt 

x

0
utdx

� − ρ4 
L

0
θ

x

0
E1h1uxx + k − u + v + αwx(  − δ1θx dx

+ ρ1h1 
L

0
β1 − 1( θxx + β1 

+∞

0
g1(s)θxx(x, t − s)ds − δ1 uxt + vt(   

x

0
utdx.

(38)

Now, through the application of integration by parts and
considering the boundary conditions (19), we reach the
following:

Δ2′(t) � − ρ1h1δ1 ut

����
����
2

− ρ4E1h1 
L

0
θuxdx + ρ1h1δ1 

L

0
vt 

x

0
utdx

− ρ4k 
L

0
θ

x

0
− u + v + αwx( dydx + ρ3δ1‖θ‖

2

+ ρ1h1β1 
L

0
ut 

+∞

0
μ1(s)ηx(., t, s)dsdx.

(39)
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Employing Cauchy–Schwarz, Young’s, and Poincaré’s
inequalities leads to

Δ2′(t)≤ − ρ1h1δ1 ut

����
����
2

+ ϵ1 ux

����
����
2

+
ρ4E1h1( 

2

4ϵ1
‖θ‖

2
+
3ρ1h1δ1

4
vt

����
����
2

· ut

����
����
2

+ ϵ2 − u + v + αwx( 
����

����
2

+
ρ4k( 

2

4ϵ2
‖θ‖

2

+ ρ3δ1‖θ‖
2

+
ρ1h1δ1

4
ut

����
����
2

+
3ρ1h1β

2
1

4δ1


L

0

∞

0
μ1(s) ηx



2
dsdx.

(40)

Tus, we establish (37). □

Lemma 8. Te functional Δ3 defned by

Δ3(t) � − ρ3h3ρ5 
L

0
ϑ

x

0
vt(y, t)dy, (41)

satisfes, for any ϵ3 > 0 and ϵ4 > 0, the estimate

Δ3′(t) vt

����
����
2

+ ϵ3 vx

����
����
2

+ ϵ4 − u + v + αwx( 
����

����
2

+ C‖θ‖
2

+ C 
L

0

∞

0
μ2(s) ηx





2
dsdx + C 1 +

1
ϵ3

+
1
ϵ4

 ‖ϑ‖
2
, ∀  t≥ 0.

(42)

Proof. Diferentiation of Δ3, using (18)2 and (18)5, we obtain

Δ3′(t) � − ρ3h3ρ5 
L

0
ϑ

x

0
vttdydx − ρ3h3ρ5 

L

0
ϑt 

x

0
vtdydx

� − ρ5 
L

0
ϑ

x

0
E3h3vyy − k − u + v + αwy  + δ1θ − δ2ϑy dydx

− ρ3h3 
L

0
β2 − 1( θxx + β2 

+∞

0
g2(s)ϑxx(x, t − s)ds + δ2vxt  

x

0
vtdydx.

(43)

Subsequently, through integration by parts and con-
sidering the boundary conditions (19), we arrive at

Δ3′(t) � − ρ3h3δ2 vt

����
����
2

− ρ5E3h3 
L

0
ϑvxdx − ρ5δ1 

L

0
ϑ

x

0
θdydx + ρ5δ2‖ϑ‖

2

+ ρ5k 
L

0
ϑ

x

0
− u + v + αwx( dydx + ρ3h3β2 

L

0
vt 

+∞

0
μ2(s)ηx(., t, s)dsdx.

(44)
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Applying Cauchy–Schwarz’ Young’s, and Poincaré’s
inequalities, we have

Δ3′(t)≤ − ρ3h3δ2 vt

����
����
2

+ ϵ3 vx

����
����
2

+
ρ5E3h3( 

2

4ϵ3
‖ϑ‖

2
+
ρ5δ1
2

‖θ‖
2

· ‖ϑ‖
2

+ ϵ4 − u + v + αwx( 
����

����
2

+
ρ5k( 

2

4ϵ4
‖ϑ‖

2

+ ρ5δ2‖ϑ‖
2

+
ρ3h3δ2

4
vt

����
����
2

+
3ρ3h3β

2
2

4δ2


L

0

∞

0
μ2(s) ηx





2
dsdx.

(45)

Hence, we get (42). □

Lemma 9. Assuming that (A1)–(A5) are satisfed, the
function defned by

L(t) ≔ NE(t) + N1Δ1(t) + N2Δ2(t) + N3Δ3(t), t≥ 0,

(46)

satisfes for some N, N, N2, N3 > 0 of the following
equivalence:

L(t) ∼ E(t); that  is ∃ b1, b2: b1E(t)≤L(t)≤ b2E(t), t≥ 0,

(47)

and satisfes the following estimate:

L′(t)≤ − cE(t) + c 
L

0
w

2
t dx + β1 

L

0

∞

0
μ1(s) ηx



2
dsdx

+ β2 
L

0

∞

0
μ2(s) ηx





2
dsdx + cδ3(t)

Ω∗
wt



2m(x)− 2

dx

+ δ3(t)
Ω∗∗

Cλ(x) wt



m(x)

dx, t≥ 0.

(48)

Proof. Using Lemmas 6–8, and the estimate (27), we get

L′(t)≤ −
ρ1h1δ1

2
N2 − ρ1h1N1  ut

����
����
2

+ ρhN1 wt

����
����
2

−
ρ3h3δ2

2
N3 − ρ3h3N1 − CN2  vt

����
����
2

· ux

����
����
2

−
E3h3

2
N1 − ϵ3N3  vx

����
����
2

− EIN1 − cλ(  wxx

����
����
2

− kN1 − ϵ2N2 − ϵ4N3  − u + v + αwx( 
����

����
2

− N − CN1 − CN2 1 +
1
ϵ1

+
1
ϵ2

  − CN3  θx

����
����
2

+ CN2 
L

0

∞

0
μ1(s) ηx



2
dsdx + CN3 

L

0

∞

0
μ2(s) ηx





2
dsdx

− Nβ1 
+∞

0
μ1′(s) ηx(s)

����
����
2
ds − Nβ2 

+∞

0
μ2′(s) ηx(s)

�����

�����
2
ds

− N − CN1 − CN3 1 +
1
ϵ3

+
1
ϵ4

   ϑx

����
����
2

+ δ3(t)
Ω∗

Cλ(x) wt



2m(x)− 2

dx + δ3(t)
Ω∗∗

Cλ(x) wt



m(x)

dx.

(49)
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By choosing

N1 � 1, λ �
EI

2c
, ϵ1 �

E1h1

4N2
, ϵ2 �

k

4N2
, ϵ3 �

E3h3

4N3
, ϵ4 �

k

4N3
,

(50)

then (49) takes the form

L′(t)≤ −
ρ1h1δ1

4
N2 − ρ1h1  ut

����
����
2

−
ρ3h3δ2

4
N3 − CN2 − ρ3h3  vt

����
����
2

· wt

����
����
2

−
E1h1

4
ux

����
����
2

−
E3h3

4
vx

����
����
2

−
EI

2
wxx

����
����
2

−
k

2
− u + v + αwx( 

����
����
2

− N − CN2 1 +
4N2

E1h1
+
4N2

k
  − CN3 − C  θx

����
����
2

+ CN2 
L

0

∞

0
μ1(s) ηx



2
dsdx + CN3 

L

0

∞

0
μ2(s) ηx





2
dsdx

− N − CN3 1 +
4N3

E3h3
+
4N3

k
  − C  ϑx

����
����
2

+ δ3(t)
Ω∗

Cλ(x) wt



2m(x)− 2

dx + δ3(t)
Ω∗∗

Cλ(x) wt



m(x)

dx.

(51)

Next, we determined the remaining parameters. Initially,
we chose N2 to be sufciently large, ensuring

ρ1h1δ1
4

N2 − ρ1h1 > 0. (52)

Second, we chose N3 to be large enough, such that

ρ3h3δ2
4

N3 − CN2 − ρ3h3 > 0. (53)

Finally, we determined N to be large enough so that (47)
remains valid and

N − CN2 1 +
4N2

E1h1
+
4N2

k
  − CN3 − C> 0,

N − CN3 1 +
4N3

E3h3
+
4N3

k
  − C> 0.

(54)

Tus, we obtain

L′(t)≤ − c0 ut

����
����
2

+ vt

����
����
2

+ wt

����
����
2

+ ux

����
����
2

+ vx

����
����
2

+ wxx

����
����
2

 

− c0 − u + v + αwx( 
����

����
2

+ θx

����
����
2

+‖η‖
2
L2
μ1

+ ϑx

����
����
2

+‖η‖
2

L2
μ2

 

+ c wt

����
����
2

+ δ3(t)
Ω∗

Cλ(x) wt



2m(x)− 2

dx

+ δ3(t)
Ω∗∗

Cλ(x) wt



m(x)

dx,

(55)
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for some c0 > 0. Recalling (21), it follows from (55) that

L′(t)≤ − c1E(t) + c wt

����
����
2

+ δ3(t)
Ω∗

Cλ(x) wt



2m(x)− 2

dx

+ δ3(t)
Ω∗∗

Cλ(x) wt



m(x)

dx, ∀  t≥ 0,

(56)

for some c1 > 0. □

4. Stability Results

Theorem 9. If the conditions (A1 − A5) hold, m1 � m2 � 2,
and ξ2(t) � c. Ten, there exist constants c0 ∈ (0, 1) and
δ1 > 0 such that, for all t ∈ R+ and for all δ0 ∈ (0, c0], then the
energy functional (21) satisfes

E(t)≤ δ1 1 + 
t

0
μ1(s)( 

1− δ0ds e
− δ0 

t

0
δ3ξ1( (s)ds

+
cζ
δ0


+∞

t
μ1(s)ds, (57)

where δ1 will be defned in the proof. Proof. To prove the energy decay (57), we multiply (48) by
δ3(t), yielding

δ3(t)L′(t)≤ − cδ3(t)E(t) + cδ3(t) 
L

0
w

2
t dx + cδ3(t) 

L

0

∞

0
μ1(s) ηx



2
dsdx

+ cδ3(t) 
L

0

∞

0
μ2(s) ηx





2
dsdx + cδ3(t)

Ω∗
wt



2m(x)− 2

dx

+ cδ3(t)
Ω∗∗

wt



m(x)

dx.

(58)

By combining (58) with (21) and utilizing the estimate
cδ3(t) 

L

0 w2
t dx in (26)1, (58) can be expressed as follows:

L′(t)≤ − cδ3(t)E(t) + c 
t

0
μ1(s) ηx

����
����
2
ds + c 

∞

t
μ1(s) ηx

����
����
2
ds

+ c 
∞

0
μ2(s) ηx

�����

�����
2
ds,

(59)

whereL � δ3L + cδ3E ∼ E. Using (21), (21) and the fact that
ξ1 and μ1 are nonincreasing, we fnd that

cξ1(t) 
t

0
μ1(s) ηx

����
����
2
ds≤ − c 

t

0
μ1′(s) ηx

����
����
2
ds

≤ − cE′(t), ∀t ∈ R+
.

(60)

Since ξ2 ≡ c, we have

cξ2 
∞

0
μ2(s) ηx

�����

�����
2
ds≤ − c 

∞

0
ξ2μ2′(s) ηx

�����

�����
2
ds

≤ − cE′(t), ∀t ∈ R+
.

(61)

Multiplying (59) by ξ1ξ2 and combining it with (60),
(61), and the constraint provided in hypothesis (A3) yields

F′(t)≤ − cξ1(t)ξ2(t)δ3(t)E(t) + cζξ1(t) 
∞

t
μ1(s)ds,

(62)

where F � ξ1ξ2L + cE ∼ E.
Let c(t) � cζξ1(t) 

+∞
t

μ1(s)ds. Ten, (62) becomes

F′(t)≤ − c0 ξ1ξ2δ3( F(t) + c(t), (63)

for some c0 > 0.Tis last inequality remains true for any δ0 ∈
(0, c0]; that is,

F′(t)≤ − δ0 δ3ξ1ξ2( (t)F(t) + c(t), ∀t ∈ R+
. (64)

Terefore, direct integration leads to
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F(T)≤ e
− δ0 

T

0
δ3ξ1ξ2( (s)ds

F(0) + 
T

0
e
δ0 

t

0
δ3ξ1ξ2( (s)ds

c(t)dt
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠, (65)

and the fact that F∼E gives

E(T)≤ c1e
− δ0 

T

0
δ3ξ1ξ2( (s)ds

F(0) + 
T

0
e
δ0 

t

0
δ3ξ1ξ2( (s)ds

c(t)dt
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠. (66)

We note that

e
δ0 

t

0
δ3ξ1ξ2( (s)ds

c(t) �
cζ
δ0

e
δ0 

t

0
δ3ξ1ξ2( (s)ds⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

′


+∞

t
μ1(s)ds, ∀t ∈ R+

. (67)

Ten, integration by parts gives


T

0
e
δ0 

t

0
δ3ξ1ξ2( (s)ds

c(t)dt

�
cζ
δ0

e
δ0 

T

0
δ3ξ1ξ2( (s)ds


+∞

T
μ1(s)ds − 

+∞

0
μ1(s)ds + 

T

0
e
δ0 

t

0
δ3ξ1ξ2( (s)ds

g(t)dt
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(68)

Combining with (66), we have

E(T)≤ c1 F(0) +
cζ
δ0


T

0
e
δ0 

t

0
δ3ξ1ξ2( (s)ds

μ1(t)dt
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠e
− δ0 

T

0
δ3ξ1ξ2(s)ds

+
cζ
δ0


+∞

T
μ1(s)ds. (69)

We note that

e


t

0
δ3ξ1ξ2( (s)ds

μ1(t)
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

′

≤ 0, ∀t ∈ R+
. (70)

We have e


t

0
(δ3ξ1ξ2)(s)dsμ1(t)≤ μ1(0) and


T

0
e
δ0 

t

0
δ3ξ1ξ2( (s)ds

μ1(t)dt≤ μ1(0)( 
δ0 

T

0
μ1(t)( 

1− δ0dt.

(71)

Finally, combining (69) and (71), we obtain

E(t)≤ δ1 1 + 
t

0
μ1(s)( 

1− δ0ds e
− δ0 

t

0
δ3ξ1ξ2( (s)ds

+
cζ
δ0


+∞

t
μ1(s)ds, (72)
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where δ1 � max c1F(0), (cζ/δ0)(μ1(0))δ0 . Tus, the proof
of (57)1 is completed, and the proof of (57)2 and (57)3 will be
similar to taking μ � max μ1, μ2  and ξ � max ξ1, ξ2 . □

Theorem 1 . If the conditions (A1 − A5) hold, 1<m1 < 2,
m2 ≠ 2, and ξ2(t) � c. Ten, the energy functional (21) sat-
isfes for a positive constant C

E(t)≤C(1 + t)
(− 1/κ) ξ1ξ2δ3( 

− (κ+1/κ) 1 + 
t

0
ξ1ξ2δ3( 

(κ+1/κ)
(s)c

κ+1
(s)(1 + s)

(1/κ)
ds , (73)

where c(t) � c(ξ1ξ2δ3)(t) 
+∞
t

μ1(s)ds and κ � max (2−{

m1/2m1 − 2), (m2/2) − 1}.
Proof. To prove (73), we frst multiply (48) by δ3(t), to get

δ3(t)L′(t)≤ − cδ3(t)E(t) + cδ3(t) 
L

0
w

2
t dx + cδ3(t) 

L

0

∞

0
μ1(s) ηx



2
dsdx

+ cδ3(t) 
L

0

∞

0
μ2(s) ηx





2
dsdx + cδ3(t)

Ω∗
wt



2m(x)− 2

dx − cδ3(t)E′(t).

(74)

Combining (74), (29), and choosing ε small enough, we
arrive at

L1′(t)≤ − cδ3(t)E(t) + cδ3(t) 
L

0
w

2
t dx + cδ3(t) 

L

0

∞

0
μ1(s) ηx



2
dsdx

+ cδ3(t) 
L

0

∞

0
μ2(s) ηx





2
dsdx − cδ3(t)E′(t)E

2m1− 2/2− m1 ,

(75)

where L1 � δ3L + cδ3E ∼ E. Using the estimate of
cδ3(t) 

L

0 w2
t dx in (26)3, we have, for ε � ε1 � ε2, the fol-

lowing equation:

L1′(t)≤ − cδ3(t)E(t) − CεE′(t)E
− κ

− cδ3(t)E′(t)E
2m1− 2/2− m1

+ cδ3(t) 
t

0
μ1(s) ηx



2
ds + cζδ3(t) 

∞

t
μ1(s)ds + cδ3(t) 

∞

0
μ2(s) ηx





2
ds.

(76)

Multiplying (76) by Eκ(t), where κ � max (2 − m1/2m1

− 2), (m2/2) − 1}, we get

L2′(t)≤ − cδ3(t)E
κ+1

(t) + cεδ3(t)E
κ+1

(t) − CεE′(t)

+ cδ3(t)E
κ
(t) 

t

0
μ1(s) ηx



2
ds + cζδ3(t)E

κ
(t) 
∞

t
μ1(s)ds

+ cδ3(t)E
κ
(t) 
∞

0
μ2(s) ηx





2
ds,

(77)
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where L2 � EκL1 + cδ3E∼E. Choosing ε small enough, then
we get

L2′(t)≤ − cδ3(t)E
κ+1

(t) + cδ3(t)E
κ
(t) 

t

0
μ1(s) ηx



2
ds + cζδ3(t) 

∞

t
μ1(s)ds

+ cδ3(t) 
∞

0
μ2(s) ηx





2
ds.

(78)

Multiplying (78) by δκ3(ξ2ξ1)
κ+1, using (21), and using

that ξ1E is nonincreasing, we get

F′(t)≤ − c ξ1ξ2δ3( 
κ+1

(t)F
κ+1

(t) + ξ1ξ2δ3E( 
κ
(t)c(t),

(79)

where c(t) � c(ξ1ξ2δ3)(t) 
∞
t
μ1(s)ds and F � δκ3(ξ2

ξ1)
κ+1L2 + cδ3E∼E.
Use of Young’s inequality, with q � κ + 1 and

q∗ � (κ + 1/κ), gives for some positive constant c1 and c2.

F′(t)≤ − c1 ξ1ξ2δ3( 
κ+1

(t)F
κ+1

(t) + c2c
κ+1

(t). (80)

Multiply both sides of (109) by (ξ1ξ2δ3)
η, η> 1, thus, we

get

ξ1ξ2δ3( 
η
F′(t)≤ − c1 ξ1ξ2δ3( 

κ+1+η
(t)F

κ+1
(t)

+ c2 ξ1ξ2δ3( 
η
c
κ+1

(t).

(81)

Let H: � ξ1ξ2δ3 > 0 which is nonincreasing, we fnd that

χηF(t)( ′ ≤ − c1χ
κ+1+η

(t)F
κ+1

(t) + c2χ
η
c
κ+1

(t). (82)

Setting ϕ � χηF and noting η � (κ + 1/κ), one fnds that

ϕ′(t)≤ − c1ϕ
κ+1

(t) + c2χ
η
(t)c

κ+1
(t). (83)

Let

c(t) ≔ ϕ(t) − ψ(t);where ψ(t) � c2(1 + t)
(− 1/κ)


t

0
χη(s)c

κ+1
(s)(1 + s)

(1/κ)
ds. (84)

From the defnition of ψ, we have

c2χ
η
(t)c

κ+1
(t) � ψ′(t) +

c2
κ

(1 + t)
(− 1/κ)− 1


t

0
χη(s)c

κ+1
(s)(1 + s)

(1/κ)
ds, (85)

since χη(s)cκ+1(1 + s)(1/κ) > 0, then we have for all t≥ t0 > 0

] ≔ 
t0

0
χη(s)c

κ+1
(s)(1 + s)

(1/κ)
ds≤ 

t

0
χη(s)c

κ+1
(s)(1 + s)

(1/κ)
ds, (86)

and then


t

0 χ
η
(s)c

κ+1
(s)(1 + s)

(1/κ)
ds

]
≥ 1, ∀t≥ t0.

(87)

Tus, (85) yields, ∀t≥ t0,

c2χ
η
(t)c

κ+1
(t)≤ψ′(t) +

1
κ
c
κ
2]

κ
c
κ+1
2 (1 + t)

(− 1/κ)
 

κ+1


t

0
χη(s)c

κ+1
(s)(1 + s)

(1/κ)
ds 

κ+1

, (88)
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we can choose c2 large enough so that (1/κ)cκ2]
κ ≤ c1, and

then, we get

c2χ
η
(t)c

κ+1
(t)≤ψ′(t) + c1ψ

κ+1
, ∀t≥ t0. (89)

Now, using (89) and the defnition of H, we get, ∀t≥ t0,

H′(t) � ϕ′(t) − ψ′(t)≤ − c1ϕ
κ+1

(t) + c2χ
η
(t)c

κ+1
(t) − ψ′(t)

≤ − c1 (H + ψ)
κ+1

(t)  + c2χ
η
(t)c

κ+1
(t) − ψ′(t).

(90)

Since H(0)> 0, then there exists t1 > 0 such that
c(t)> 0,∀t ∈ [0, t1). Hence,

H′(t)≤ − c1 H
κ+1

(t) + ψκ+1
(t)  + c2χ

η
(t)H

κ+1
(t) − ψ′(t), ∀  t ∈ t0, t1 .

≤ − c1 H
κ+1

(t) + ψκ+1
(t) −

c2

c1
χη(t)c

κ+1
(t) +

1
c1
ψ′(t) .

(91)

Tus,

H′(t)≤ − c1H
κ+1

(t), ∀  t ∈ t0 , t1. (92)

Tis gives

−
dH

H
κ+1
≥ c1ds. (93)

Integrate over (t0, t), we have
κ

H
κ
(t)
≥ c1t + c2||

t
t0

. (94)

Terefore, we get

H
κ
(t)≤

κ
c1t + c2

||
t
t0

. (95)

Hence, it follows that

H(t)≤
c

t − t0( 
(1/κ)

, ∀  t ∈ t0, t1. (96)

If t1 � +∞, then, using the defnitions of H and ψ, we
observe that, for sufciently large t,

ϕ(t)≤C(1 + t)
(− 1/κ) 1 + 

t

0
χη(s)c

κ+1
(s)(1 + s)

(1/κ)
ds .

(97)

By multiplying (97) with χ− η and recalling the defnition
of ϕ, we obtain the following for η � (κ + 1/κ):

F(t)≤C(1 + t)

− 1
κ χ− (κ+1/κ) 1 + 

t

0
χ(κ+1/κ)

(s)c
κ+1

(s)(1 + s)
(1/κ)

ds . (98)

Using the fact F∼E, we have two cases: If κ � (2 − m1/2m1 − 2)> 0, then κ + 1 � (m1/2m1 − 2)

and (κ + 1/κ) � (m1/2 − m1), we get

E(t)≤C(1 + t)
− 2m1− 2/2− m1( )χ− m1/2− m1( ) 1 + 

t

0
(1 + s)

2m1− 2/2− m1( )χ m1/2− m1( )(s)c
1/m1− 1( )ds . (99)
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If κ � (m2/2) − 1> 0, we have

E(t)≤C(1 + t)
− 2/m2− 2( )χ− m2/m2− 2( ) 1 + 

t

0
(1 + s)

2/m2− 2( )χ m2/m2− 2( )(s)c
m2/2( )ds . (100)

Tis establishes (73). □ Theorem 11. If conditions (A1 − A5) hold, m1 ≥ 2, m2 > 2,
and ξ2(t) � c. Ten, the energy functional (21) satisfes for
a positive constant C,

E(t)≤C(1 + t)
− 2/m2− 2( ) ξ1ξ2δ3( 

− m2/m2− 2( ) 1 + 
t

0
(1 + s)

2/m2− 2( ) ξ1ξ2δ3( 
m2/m2− 2( )(s)c

m2/2( )ds , (101)

where c(t) � c(ξ1ξ2δ3)(t) 
+∞
t

μ1(s)ds. Proof. To prove the decay (101), we frst multiplying (48) by
δ3, recalling the estimate of cδ3 

L

0 w2
t dx in (26)2, to get

δ3L′(t)≤ − cδ3E(t) + cεδ3E(t) − Cε E′(t)( E
− κ̂

+ cδ3 
t

0
μ1(s) ηx



2
2ds + cδ3 

∞

t
g(s) Ψx



2
dx

+ cδ3 
∞

0
μ2(s) ηx





2
dx − cδ3E′(t).

(102)

Multiplying (102) by Eκ̂ where κ̂ � (m2/2) − 1> 0, we get

L1′(t)≤ − cδ3E
κ̂+1

(t) + cεEκ̂+1
− Cε − E′(t)( 

+ cδ3E
κ̂


t

0
μ1(s) ηx



2
2ds + cδ3E

κ̂

∞

t
μ1(s) Ψx



2
dx + cδ3 

∞

0
μ2(s) ηx





2
dx,

(103)

where L1 � δ3L + cδ3E∼E. Choosing ε sufciently small, we
get

L1(t)≤ − cδ3E
κ̂+1

(t) + cδ3E
κ̂


t

0
μ1(s) ηx



2
2ds + cδ3 

∞

t
μ1(s) ηx



2
dx

+ cδ3 
∞

0
μ2(s) ηx





2
dx.

(104)
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Using (21), (21) and the fact that ξ1 and μ1 are non-
increasing, we fnd that

cξ1(t) 
t

0
μ1(s) ηx

����
����
2
ds≤ − c 

t

0
μ1′(s) ηx

����
����
2
ds

≤ − cE′(t), ∀t ∈ R+
.

(105)

Since ξ2 ≡ c, we have

cξ2 
∞

0
μ2(s) ηx

�����

�����
2
ds≤ − c 

∞

0
ξ2μ2′(s) ηx

�����

�����
2
ds

≤ − cE′(t), ∀t ∈ R+
.

(106)

Now, multiplying (104) by (δ3)
κ̂(ξ1ξ2)

κ̂+1 and using
(105) and (106), we get

Z′(t)≤ − c ξ1ξ2δ3( 
κ̂+1

E
κ̂+1

(t)

+ cζ ξ1ξ2δ3( 
κ̂


∞

t
μ1(s) ηx



2
2ds,

(107)

where Z � (δ3)
κ̂(ξ1ξ2)

κ̂+1L1 + cδ3E∼E.
Recalling (21) and (25) and putting c(t) � c(ξ1ξ2

δ3)(t) 
+∞
t

μ1(s)ds. Ten, (107) becomes

Z′(t)≤ − c ξ1ξ2δ3( 
κ̂+1

(t)E
κ̂+1

(t) + c ξ1ξ2δ3( 
κ̂
(t)c(t).

(108)

Setting χ ≔ ξ1ξ2δ3 which is a positive nonincreasing,
then we get

Z′(t)≤ − cχκ̂+1
(t)Z

κ̂+1
(t) + c(χ)

κ̂
c(t). (109)

Using Young’s inequality, with q � κ̂ + 1 and
q∗ � (κ̂ + 1/κ̂), we get some positive constant c1 and c2

Z′(t)≤ − c1χ
κ̂+1

(t)Z
κ̂+1

(t) + c2c
κ̂+1

(t). (110)

Repeating the procedures outlined in the last part of the
proof of Teorem (58), substituting κ with κ̂ � (m2 − 2/2),
concludes the verifcation of the decay (101). □

5. Examples and Remarks

In this section, we provide examples and remarks to illus-
trate and compare our stability results from Teorems 9–11
with some earlier fndings in the literature.

Example 1. For, i � 1, 2, let gi(s) � ae−
�
s

√

. Terefore,
ξi(s) � (1/2

�
s

√
). Ten, in case if κ � (2 − m1/2m1 − 2)> 0,

the energy decay (73) becomes for δ3(t) � (1 + t)− λ,

0≤ λ≤ 1,

E(t)≤C(1 + t)
− 2m1− 2/2− m1( )(1 + t)

m1/4− 2m1( )− λ 1 + 
t

0
(1 + s)

5m1− 4/2 2− m1( )( )− λ
(ξβ)

m1/2− m1( )(s)h
m1/2− m1( )ds . (111)

Tus, we achieve polynomial stability in the form of

E(t)≤C(1 + t)
4− 3m1/2 2− m1( )( )− λ

. (112)

For λ � 0 and m1 > (4/3), it is evident that
lim

t⟶∞
E(t) � 0. In the case of λ � 1, for any 1<m1 < 2, we

observe lim
t⟶∞

E(t) � 0.

In the second scenario, when κ � (m2/2) − 1> 0, and
considering gi(s) � ae−

�
s

√

, ξi(s) � (1/2
�
s

√
), and δ3(t) �

(1 + t)− λ, we obtain polynomial stability in the form of

E(t)≤C(1 + t)
m2− 4/2 m2− 2( )( )− λ

. (113)

Notably, for λ � 0 and m1 <m2 < 4, we have
lim

t⟶∞
E(t) � 0. Similarly, for λ � 1 and any 1<m1 ≤m2, we

fnd lim
t⟶∞

E(t) � 0.

Remark 12

(1) If ξ1 � c, then the decay (57) becomes

E(t)≤ δ1 1 + 
t

0
μ2(s)( 

1− δ0ds e
− δ0 

t

0
δ3ξ2( (s)ds

+
c
ζ
δ0


+∞

t
μ2(s)ds. (114)
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(2) If ξ1 and ξ2 are functions of t, then the decay (57)
becomes

E(t)≤ δ1 1 + 
t

0
(μ(s))

1− δ0ds e
− δ0 

t

0
δ3ξ( (s)ds

+
cζ
δ0


+∞

t
μ(s)ds, (115)

where ξ � max ξ1, ξ2 , μ � max μ1, μ2 , and
ζ � max ζ, ζ .

(3) Te proofs of (114) and (115) are similar to the proof
of decay in (57).

Remark 13

(1) In the case where ξ1 � c, the energy decay estimate
mirrors the decay (73), with the only diference being
c(t) � c(ξ1ξ2δ3)(t) 

+∞
t

μ2(s)ds. Te proof remains
the same.

(2) If ξ1 and ξ2 are functions of t, then the energy decay
will be the same as the decay (73) except c(t) �

c(ξδ3)(t) 
+∞
t

μ(s)ds where ξ � max ξ1, ξ2  and μ �

max μ1, μ2  and the proof will be the same.

Remark 14

(1) If ξ1 � c, the energy decay aligns with the decay (101),
with the only diference being c(t) � c(ξ1ξ2δ3)(t)


+∞
t

μ2(s)ds. Te proof remains the same.
(2) If ξ1 and ξ2 are functions of t, then the energy decay

will be the same as the decay (101) except c(t) �

c(ξδ3)(t) 
+∞
t

μ(s)ds where ξ � max ξ1, ξ2  and
μ � max μ1, μ2 . Te proof will be the same.
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