
Research Article
A Second-Order Finite-Difference Method for
Derivative-Free Optimization

Qian Chen,1 Peng Wang ,1,2 and Detong Zhu3

1Mathematics and Statistics College, Hainan Normal University, Haikou 570203, Hainan, China
2Key Laboratory of the Ministry of Education, Hainan Normal University, Haikou 570203, Hainan, China
3Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China

Correspondence should be addressed to Peng Wang; pengwang621@163.com

Received 30 July 2023; Revised 28 February 2024; Accepted 1 March 2024; Published 15 March 2024

Academic Editor: Nan-Jing Huang

Copyright © 2024 Qian Chen et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, a second-order fnite-diference method is proposed for fnding the second-order stationary point of derivative-free
nonconvex unconstrained optimization problems. Te forward-diference or the central-diference technique is used to ap-
proximate the gradient and Hessian matrix of objective function, respectively.Te traditional trust-region framework is used, and
weminimize the approximation trust region subproblem to obtain the search direction.Te global convergence of the algorithm is
given without the fully quadratic assumption. Numerical results show the efectiveness of the algorithm using the forward-
diference and central-diference approximations.

1. Introduction

1.1. Problem Description Motivation. In this paper, we
propose a trust region method for solving the derivative-free
nonconvex optimization problems of the following:

(P)min
x∈Rn

f(x), (1)

where f(x): Rn⟶ R is a general nonlinear nonconvex
twice Lipschitz continuously diferentiable function, but
none of its frst-order or second-order derivative is explicitly
available. Te problem (P) arises frequently in computa-
tional science, engineering, and industry.

Te problem (P) was widely applied in machine
learning, but the frst- and second-order derivatives were not
available in computational science and engineering. Nes-
terov and Polyak [1] introduced the cubic regularization
algorithm generating the iteration point converging to the
second-order stationary point of smooth optimization
problems. Te adaptive regularization cubic method was
introduced by Cartis, Gould, and Toint [2, 3]. Tey built
a local cubic model and solved the model for obtaining an
approximation solution in each iteration. Te complexity

rates are also given in this paper. Furthermore, Curtis,
Robinson, and Samadi [4] proved that the worst-case
complexity of the adaptive trust-region algorithm was
O(ε− 3/2) and O(max ε− 3/2

g , ε− 3
H􏽮 􏽯) when it achieved the ε-frst-

order stationary point and the (εg, εH)-second-order sta-
tionary point, respectively. Tey also introduced a new
updating rule for obtaining the trust-region radius. Curtis
and Robinson [5] proposed a new algorithm which obtained
the search direction and the step size for the dynamic choice
technique. Te algorithm chose a better direction from frst-
order and second-order descent directions such that the
objective function has more signifcant reduction. Lee,
Simchowitz, Jordan, and Recht [6] also proposed the vanilla
gradient descent method for fnding the strict saddle points
with the probability one. Du, Jin, Lee, Jordan, Singh, and
Poczos [7] proved this method converged to the second-
order stationary point in an exponential number of steps.

In recent years, some authors study the fnite-diference
methods for solving the nonsmooth optimization, smooth
stochastic convex optimization, and noisy derivative-free
optimization. Auslender and Teboulle [8] identifed a simple
line search mechanism using the interior gradient and

Hindawi
Journal of Mathematics
Volume 2024, Article ID 1947996, 12 pages
https://doi.org/10.1155/2024/1947996

https://orcid.org/0000-0002-5421-3920
mailto:pengwang621@163.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

proximal methods such that the method has the global
convergence results. Tey also showed that the rate of the
convergence of the algorithm is O(k− 2). Tseng and Yun [9]
introduced the block coordinate gradient descent method
for solving the smooth and separable convex functions
combinatorial problem. Te method generated a search
direction by block coordinate descent and ensured sufcient
descent and reiterated by the inexact line search. Te local
Lipschitzian error bound assumption was used for proving
global and linear convergence of the algorithm. Auslender
and Teboulle [10] solved the derivative-free convex opti-
mization problems by the subgradient projection method.
Te non-Euclidean projection-like maps were proposed for
obtaining the interior trajectories which relied on a single
projection. Villa, Salzo, Baldassarre, and Verri [11] proposed
an accelerated forward-backward splitting method for
solving the composite optimization problem. Under a suf-
fciently fast decay condition, they proved that the method
achieved the 1/k2 convergence rate. Furthermore, they
accounted the cost of the algorithm to achieve an approx-
imate optimal solution and gave global complexity analysis
of the method. Keskar and Wachter [12] proposed the
limited-memory quasi-Newton algorithm which contained
the L-BFGS quasi-Newton approximation and the weak
Wolfe line search technique. For avoiding the shortsight-
edness which the gradient was not obtained for a nonsmooth
function, the ε-minimum norm subgradient was introduced
to obtain the search directions in iterative corrective loop.
Lewis and Overton [13] introduced a quasi-Newton algo-
rithm to obtain the optimal solution of nonsmooth opti-
mization problems. Te analysis of the case of the Euclidean
norm was given, which used the inexact line search in one
variable and assumed that the line search was exact in two
variables. Te Clarke stationary point of the problem was
found by the BFGS method with the inexact line search. At
the same time, they also showed that the algorithm has R-
linear convergence.

Berahas et al. [14] minimized noisy functions by pre-
senting the fnite-diference quasi-Newton method. Te
noise estimation techniques were given by More and Wild
[15]. Tey presented a new EC noise algorithm for solving
noise-level calculation functions. Te convergence analysis
of the algorithm was based on stochastic noise without the
assumption of specifc distribution for the noise. Tey also
used the search direction to update the fnite parameter
when the line search technique was invalid for producing an
acceptable point such that the method converged to the
optimal solution faster. Hamming [16] used BFGS update
for obtaining diferencing intervals. Brekelmans et al. [17]
analyzed diferent gradient estimate methods for noisy
functions. Trough estimating the diferent gradient of error
criterion, they converted the total error into the sum of
deterministic error and stochastic error. Tey derived op-
timal step sizes for deterministic errors and stochastic errors,
respectively, such that the total error was minimized. Beraha
et al. [18] analyzed fnite diferences, linear interpolation,
Gaussian smoothing, and smoothing on a unit sphere which
only used the function values for approximating the gradient
of the objective function.

Nesterov and Spokoiny [19] proposed the method in
which the search directions were normally distributed
random Gaussian vectors. Tey proved new complexity
bounds of the methods based on computation of the
function value. Tey also proved the conclusion that the
methods need at most n times iterations, where n was the
dimension of problem. An accelerated scheme with the
expected rate and a zero-order scheme with the expected rate
for stochastic optimization were given. Gorbunov et al. [20]
proposed an accelerated derivative-free algorithm for un-
constrained smooth convex functions with noisy. Te noise
consisted of the combination of stochastic nature and un-
known nature cases with absolute value bounded con-
straints. Tey also proposed a nonaccelerated derivative-free
method similar to the stochastic-gradient-based method and
proved an l1-norm proximal setup has better complexity
bound than the Euclidean proximal setup. Bellavia et al. [21]
presented evaluation complexity bounds in the framework
of a deterministic trust-region method. Tey also showed
that the presence of intrinsic noise might dominate the
bound and provided estimates of the optimality level
achievable, should noise cause early termination. Finally,
they shed some light on the impact of inexact computer
arithmetic on evaluation complexity.

1.2. Contribution of Tis Paper. In order to solve the
derivative-free nonconvex unconstrained optimization
problem (P) in which the frst-order or second-order de-
rivative cannot be explicitly available, the new trust-region
method is introduced in this paper. Te main contributions
of this paper are as follows:

(i) Te fnite-diference trust-region method is pro-
posed for fnding second-order stationary points of
derivative-free nonconvex optimization. We prove
that the method globally converges to a second-
order stationary point of the derivative-free non-
convex optimization problem (P).

(ii) Te proposed algorithm uses the forward-diference
or central-diference techniques approximating the
gradients and Hessian matrix of objective function
to build the trust-region subproblem. Hence, the
trust-region subproblem of the algorithm is more
accurate than the BFGS update. Te algorithm can
obtain better search directions.

(iii) Te new fnite-diference parameter update tech-
nique ensures that the algorithm generates a sub-
sequence converging to the second-order stationary
point of original nonconvex optimization problem
(P) without the fully quadratic approximation.

Tis paper is organized into 6 sections: Te fnite-
diference trust-region subproblems and the defnition of
second-order stationary points are introduced in Section 2.
Te fnite diference trust-region algorithm is introduced in
Section 3. We prove that there is a sequence generated by the
algorithm converging to the second-order stationary point
of problem (P) under the bounded approximation of the
level set in Section 4. Numerical experiments illustrating the

2 Journal of Mathematics

practical performance of the algorithm are reported in
Section 5. Te fnal conclusion of this paper is given in
Section 6.

1.3. Notation. In this paper, the derivative-free nonconvex
unconstrained optimization problem are solving by the
trust-region algorithm with forward-diference or central-
diference technique. x ∈ Rn denotes the variables of
problem (P), and x∗ is the optimal solution of objective
function f(x). ‖ · ‖ denotes the Euclidean norm. ∇h(xk) and
∇2h(xk) denote the gradient and the Hessian matrix of any
scalar function h(x) on iteration point xk, respectively.

2. The Trust-Region Subproblem and the
Definition of Second-Order Stationary Point

In this paper, we propose the fnite-diference trust-region
method solving derivative-free nonconvex optimization
problem (P). Te trust-region subproblem needs the in-
formation of gradient and the Hessian matrix of objective
function f(x). But this information is not obtained. Hence,
we will use the fnite-diference method approximating this
information. Te fnite-diference method relies on the
computation of the fnite-diference parameter t.

We applied the defnition of the fnite-diference method
given in [15]. We defne the i th component of the forward-
diference approximate at x as follows:

[g(x)]i �
f x + t

1
FDei􏼐 􏼑 − f(x)

t
1
FD

, (2)

where ei, i ∈ 1, 2, . . . , n{ } is the n-dimensional unit vector in
which i th element is 1.

Te central-diference approximate is given as

[g(x)]i �
f x + t

1
CDei􏼐 􏼑 − f x − t

1
CDei􏼐 􏼑

2t
1
CD

. (3)

In the general fnite-diference algorithm, the approxi-
mation of the Hessian matrix does not use the information
of the original objective function of problem (P), so the
calculation error is large. In order to reduce the error be-
tween the symmetric matrix of the trust-region subproblem
and the Hessian matrix of the original problem, similar to
estimating the gradient of f(x), the second-order forward-
diference technique by the objective function is expressed as
follows:

[H(x)]ij �
f x + t

1
FDei + t

2
FDej􏼐 􏼑 − f x + t

2
FDej􏼐 􏼑􏼐 􏼑 − f x + t

1
FDei􏼐 􏼑 − f(x)􏼐 􏼑

t
1
FDt

2
FD

, (4)

and the second-order central diference approximate is given
by

[H(x)]ij �
f x + t

1
CDei + t

2
CDej􏼐 􏼑 − f x − t

1
CDei + t

2
CDej􏼐 􏼑􏼐 􏼑 − f x + t

1
CDei − t

2
CDej􏼐 􏼑 − f x − t

1
CDei − t

2
CDej􏼐 􏼑􏼐 􏼑

4t
1
CDt

2
CD

, (5)

where [H(x)]ij is the element in row i and column j of
matrix H(x) and ei, i ∈ 1, 2, . . . , n{ } and ej, j ∈ 1, 2, . . . , n{ }

are n-dimensional unit vectors whose i th and j th elements
are 1, respectively.

For obtaining the second-order stationary point of
problem (P), we will give the approximation trust-region
subproblem of problem (P) as follows:

minf xk(􏼁 + g
T
k d +

1
2
d

T
Hk + 2 λmin Hk(􏼁􏼂 􏼃+I(􏼁d

s.t. ‖d‖≤∆k,

(6)

where gk � g(xk) and Hk � H(xk), g(x) generate by (2) or
(3) and H(x) generate by (4) or (5). λmin(Hk) is the min-
imum eigenvalue of symmetric matrix Hk and [λmin(Hk)]+

� max − λmin(Hk), 0􏼈 􏼉.
Before introducing the fnite-diference trust-region al-

gorithm, we introduce the defnition of the second-order
stationary point of problem (P).

Defnition 1. For derivative-free nonconvex optimization
problem (P), if there exists a point x∗ ∈ Rn, for all vector
d ∈ Rn, such that

∇f x
∗

(􏼁
T
d≥ 0,

d
T∇2f x

∗
(􏼁d≥ 0,

(7)

then x∗ is said to be second-order stationary point.

According to Defnition 1, if let σ̂ � max ‖∇f(x∗)‖,􏼈

− λmin(∇2f(x∗))} � 0, then it is obviously that x∗ is the
second-order stationary point of problem (P) according to
Defnition 1.

3. Algorithm

In this section, a trust-region method is introduced for
fnding the approximation of the second-order stationary
point of problem (P).

Journal of Mathematics 3

4. Convergence Analysis

In this section, we will provide the global convergence
analysis of Algorithm 1; hence, we require the model to
satisfy the following assumption.

Assumption 2. We defne the level set as follows:

L x0(􏼁 � x ∈ Rn
, f(x)≤f x0(􏼁􏼈 􏼉. (8)

Suppose that the level set is bounded.

As an important result, the following lemma shows the
boundedness of oneself, the gradient, and the Hessianmatrix
of the objective function.

Lemma 3. Under Assumption 2, for ∀x ∈ L(x0), there exist
positive constants κf, κg and κH such that

|f(x)|≤ κf,

‖∇f(x)‖≤ κg,

∇2f(x)
����

����≤ κH.

(9)

Proof. Similar proof can be found in Lemma 3.2 of [22].
Te boundedness of gk and Hk is important for the

convergence of Algorithm 1; hence, we will prove the
boundedness of the approximation gradient gk of objective
function and the approximationHessianmatrixHk of objective
function on iteration point xk in the following lemma. □

Lemma 4. Under Assumption 2, there exist κ̂g > 0 and κ̂H > 0
such that

gk

����
����≤ κ̂g,

Hk

����
����≤ κ̂H.

(10)

Proof. Similar proof can be found in [23].
Te following lemma shows the error is bounded be-

tween ∇f(xk) and the fnite-diference gradient gk and the
error is bounded between the fnite-diference Hessian
matrix of the objective function on the iteration point xk

generated by Algorithm 1. □

Lemma 5. Under Assumption 2, for any iteration point xk

generated by Algorithm 1, we have that

∇f xk(􏼁 − gk

����
����≤

n

2
κHt

1
k, (11)

∇2f xk(􏼁 − Hk

����
����≤

n
2
LH

2
3t

1
k + t

2
k􏼐 􏼑, (12)

where n denotes the dimension of problem (P) and LH is the
Lipchitz constant of ∇2f(x).

Proof. Similar proof can be found in [23].
According to Lemma 5 and the method of selecting t in

step 1 of Algorithm 1, we have

∇f xk(􏼁 − gk

����
����≤

n

2
κH∆

2
k,

∇2f xk(􏼁 − Hk

����
����≤

n
2
LH

2
3∇max + 1(􏼁∆k.

(13)

In order to avoid the frst-order and second-order de-
scent assumptions in [24], we demonstrate that the search
direction generated by our Algorithm 1 satisfes frst-order
and second-order descent. □

Lemma 6. Under Assumption 2, there exists constant
κm ∈ (0,1/2) such that

mk(0) − mk dk(􏼁≥ κm max gk

����
����min ∆k,

gk

����
����

3κ̂H

􏼨 􏼩, − τk∆
2
k􏼨 􏼩,

(14)

where τk � λmin(Hk) is the minimum eigenvalue of
matrix Hk.

Proof. If dk is obtained by (5), then

mk(0) − mk dk(􏼁≥ κm gk

����
����min ∆k,

gk

����
����

Hk + 2 λmin Hk(􏼁􏼂 􏼃+I
����

����
􏼨 􏼩

≥ κm gk

����
����min ∆k,

gk

����
����

Hk

����
���� + 2 λmin Hk(􏼁􏼂 􏼃+I

����
����

􏼨 􏼩

� κm gk

����
����min ∆k,

gk

����
����

Hk

����
���� + 2 λmin Hk(􏼁􏼂 􏼃+

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼨 􏼩.

(15)

Te proof of (15) can be found in [25].
Because |[λmin(Hk)]+| � max − λmin(Hk), 0􏼈 􏼉≤ ‖Hk‖≤

κ̂H, by (16), we have that

mk(0) − mk dk(􏼁≥ κm gk

����
����min ∆k,

gk

����
����

3κ̂H

􏼨 􏼩. (16)

If dk is obtained by (5), then we have that there exists
μ≥ 0 such that

Hk + 2 − τk(􏼁I(􏼁dk + μdk � − gk,

μ dk

����
���� − ∆k􏼐 􏼑 � 0,

dk

����
���� − ∆k � 0,

(17)

hence, we can obtain that

− g
T
k dk −

1
2
d

T
k Hk − 2τkI(􏼁dk �

1
2
d

T
k Hk − 2τkI(􏼁dk + μ dk

����
����
2

≥
1
2
d

T
k Hk − 2τkI(􏼁dk ≥

1
2

− τk(􏼁 dk

����
����
2 ≥ κm − τk(􏼁 dk

����
����
2

� κm − τk(􏼁∆2k.

(18)

4 Journal of Mathematics

Combining (16) and (18), we have that

mk(0) − mk dk(􏼁≥ κm max gk

����
����min ∆k,

gk

����
����

3κ̂H

􏼨 􏼩, − τkΔ
2
k􏼨 􏼩.

(19)

In order to establish the global convergence of Algo-
rithm 1, we frst introduce the following notations,

σm(x) � max ‖g(x)‖, max − λmin(H(x)), 0􏼈 􏼉􏼈 􏼉,

σ(x) � max ‖∇f(x)‖, max − λmin ∇
2
f(x)􏼐 􏼑, 0􏽮 􏽯􏽮 􏽯.

(20)

Te following lemma shows that the error is bounded
between the smallest eigenvalues of Hessian matrix of objective
function and a corresponding fnite-diference model. □

Lemma 7. UnderAssumption 2, ifHk is generated by (4) or (5),
then

λmin ∇
2
f xk(􏼁􏼐 􏼑 − λmin Hk(􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
n
2
LH

2
3∆max + 1(􏼁∆k. (21)

Proof. Let s be a normalized eigenvector of smallest ei-
genvalue of matrix (∇2f(xk) − Hk), then

λmin ∇
2
f xk(􏼁􏼐 􏼑 − λmin Hk(􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ s
T ∇2f xk(􏼁 − Hk􏽨 􏽩s

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ 􏽘
n

i�1
λi ∇

2
f xk(􏼁 − λi Hk(􏼁􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ 􏽘
n

i�1
λi ∇

2
f xk(􏼁 − Hk􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ n ∇2f xk(􏼁 − Hk

����
����

≤
n
3
LH

2
3t

1
k + t

2
k􏼐 􏼑.

(22)

And

λmin Hk(􏼁 − λmin ∇
2
f xk(􏼁􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
n
3
LH

2
3t

1
k + t

2
k􏼐 􏼑, (23)

then the result follows.
According to step 1 of Algorithm 1, we have that

λmin Hk(􏼁 − λmin ∇
2

xk(􏼁􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
n
3
LH

2
3∆max + 1(􏼁∆k. (24)

Input: Given initial iteration x0 ∈ Rn, the constants ∆max >∆0 > 0, ε> 0, 1> β> 0, c2 > 1> c1 > 0 and η2 > η1 > 0. Set k � 0.
Main Step:

(1) Choose t1k ∈ (0,∆2k), calculate the approximate gradient gk using (3) or (2). Choose t2k ∈ (0,∆k), calculate the approximate Hessian
matrix Hk using (5) or (4) and calculate σm(xk) � max ‖gk‖, − λmin(Hk)􏼈 􏼉, where λmin(Hk) is the minimum eigenvalue of
symmetric matrix Hk.

(2) If ‖σm(xk)‖≤ ε, then let ∆k � β∆k. If ∆k ≤ ε, then stop, xk is the second-order stationary point, else go to 1.
(3) If ‖σm(xk)‖> ε, then calculate the following subproblem,

minmk(d) � f(xk) + g
T
k d + (1/2)d

T
(Hk + 2[λmin(Hk)]+I)d

s.t. ‖d‖≤∆k

where [λmin(Hk)]+ � max − λmin(Hk), 0􏼈 􏼉 and obtain the search direction dk.
(4) Calculate

ρk � f(xk) − f(xk + dk)/mk(0) − mk(dk).

(5) If ρk ≥ η1 then xk+1 � xk + dk, else let xk � xk.
(6) Update the trust-region radius as follows:

∆k �

c1∆k if  ρk < η1
∆k if  η1 ≤ ρk < η2
min c2∆k,∆max􏼈 􏼉 if  ρk ≥ η2

⎧⎪⎨

⎪⎩

Let k � k + 1, go to 1.

ALGORITHM 1: Finite-diference algorithm.

Journal of Mathematics 5

After the error is bounded between λmin(∇2f(xk)) and
λmin(Hk), the error boundedness of σ(xk) and σm(xk) is
given in the following lemma. □

Lemma 8. Under Assumption 2, there exists κσ > 0 such that

σ xk(􏼁 − σm xk(􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ κσ∆k. (25)

Proof. Similar proof can be found in Lemma 7.2 of [24].
We now show that an iteration must be successful for

sufciently small trust-region radius with respect to
σm(xk). □

Lemma 9. If g(x) is generated by (2) or (3) and H(x) is
generated by (4) or (5) and

ε1 λmin Hk(􏼁􏼂 􏼃+≤∆k ≤min
1

3κ̂H

,
κm 1 − η1(􏼁

nκH/2 + κσ + LH(􏼁∆max
,

κm 1 − η1(􏼁

nκH/2 + κσ + LH(􏼁
􏼢 􏼣σm xk(􏼁, (26)

where ε1≪ min[1/3κ̂H, κm(1 − η1)/(nκH/2 + κσ + LH) ∆max,

κm(1 − η1)/(nκH/2 + κσ + LH)], then xk is a successful
iteration.

Proof. First, according to the fractions of Cauchy and
eigenstep decrease,

mk(0) − mk dk(􏼁≥ κm max gk

����
����min ∆k,

gk

����
����

3κ̂H

􏼨 􏼩, − τk∆
2
k􏼨 􏼩.

(27)

Tere are two cases for σm(xk): either ‖gk‖ � σm(xk) or
− τk � − λmin(Hk) � σm(xk).

If ∆k ≤ σm(xk)/κ̂H, then

mk(0) − mk dk(􏼁≥ κσ gk

����
����∆k � κσσm xk(􏼁Δk. (28)

Hence, from (11), (12), and (28), we have that

ρk − 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
f xk(􏼁 − f xk+1(􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

mk(0) − mk dk(􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
f xk(􏼁 − f xk+1(􏼁 − mk(0) + mk dk(􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

κmσm xk(􏼁∆k

≤
∇f xk(􏼁 − gk

����
���� dk

����
���� + 1/2 ∇2f xk(􏼁 − Hk

����
���� dk

����
����
2

+ λmin Hk(􏼁􏼂 􏼃+ dk

����
����
2

+ LH dk

����
����
3

κmσm xk(􏼁∆k

≤
nκH/2∆

3
k + κσ∆

3
k + λmin Hk(􏼁􏼂 􏼃+∆

2
k + LH∆

3
k

κmσm xk(􏼁∆k

�
nκH/2 + κσ + LH(􏼁∆3k + λmin Hk(􏼁􏼂 􏼃+∆

2
k

κmσm xk(􏼁∆k

≤
nκH/2 + κσ + LH(􏼁∆max + λmin Hk(􏼁􏼂 􏼃+

κmσm xk(􏼁
∆k ≤ 1 − η1.

(29)

If − τk � σm(xk), then

mk(0) − mk dk(􏼁≥ − κmτk∆
2
k � − κmσm xk(􏼁∆2k. (30)

Similar to the proof of (29), we deduce from (11), (12),
and (30) that

6 Journal of Mathematics

ρk − 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
f xk(􏼁 − f xk+1(􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

mk(0) − mk dk(􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
f xk(􏼁 − f xk+1(􏼁 − mk(0) + mk dk(􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

κmσm xk(􏼁∆k

≤
nκH/2 + κσ + LH + 1/ε1(􏼁∆3k

κmσm xk(􏼁∆2k
≤ 1 − η1.

(31)

Combining (29) and (31), we have that xk is a successful
iteration. □

Lemma 10. Under Assumption 2, if for constants κ1 > 0, we
have σm(xk)≥ κ1 for all k. Ten,

∆k ≥ κ2, (32)

for all k, where κ2 > 0 is a constant.

Proof. By Lemma 9 and σm(xk)≥ κ1 for all k, if ∆k satisfes
the following condition

ε1κ1 ≤∆k ≤ κ2 � min
κ1
3κ̂H

,
κmκ1 1 − η1(􏼁

nκH/2 + κσ + LH(􏼁∆max
,

κmκ1 1 − η1(􏼁

nκH/2 + κσ + LH(􏼁
􏼢 􏼣, (33)

then k th iteration must be successful, and from step 6 of
Algorithm 1, we have∆k+1 ≥∆k ≥ κ2 � κ2; the conclusion holds.

Te following lemma shows that Algorithm 1 can
generate a second-order stationary point under fnitely
successful iterations. □

Lemma 11. If the number of successful iterations is fnite,
then

lim
k⟶+∞

σ xk(􏼁 � 0. (34)

Proof. Because there is a fnite number of successful itera-
tion, then there is an infnite unsuccessful iteration that such
that the trust region is reduced. Hence, ∆k is decreased and
converges to zero.

Let us consider that

σ xk(􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � σ xk(􏼁 − σm xk(􏼁 + σm xk(􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ σ xk(􏼁 − σm xk(􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + σm xk(􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ κσ∆k + σm xk(􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(35)

If |σm(xk)|> ε> 0 for a subsequence, then for sufciently
small ∆k, the index k is successful, which yields a contra-
diction. Hence, we have

lim
k⟶+∞

σ xk(􏼁 � 0. (36)
□

Lemma 12. Under Assumption 2, if the sequence ∆k is
generated by Algorithm 1, then

lim
k⟶+∞
Δk � 0. (37)

Proof. Similar proof can be found in Lemma 7.7 of [24].
Next, we give the important conclusion as a corollary. □

Lemma 13. Under Assumption 2, we have that

liminf
k⟶+∞

σm xk(􏼁 � 0. (38)

Proof. First, we assume that there exists κ1 > 0 such that

σm xk(􏼁≥ κ1, (39)

for all k. By Lemma 10, we have that ∆k ≥ κ2 > 0 for all k. Tis
is a contradiction with Lemma 11.

We prove that there exists a subsequence generated by
Algorithm 1 convergent to a second-order stationary point
of problem (P). □

Lemma 14. Under Assumption 2, if

lim
i⟶+∞

σm xki
􏼐 􏼑 � 0, (40)

for any subsequence ki􏼈 􏼉 holds, then

lim
i⟶+∞

σ xki
􏼐 􏼑 � 0. (41)

Proof. By (40), we have that σm(xki
)≤ ε for large enough i,

and then, by Lemma 12, we have ∆ki
⟶ 0 as ki⟶∞. By

(19), we have that

σ xki
􏼐 􏼑 � σ xki

􏼐 􏼑 − σm xki
􏼐 􏼑􏼐 􏼑 + σm xki

􏼐 􏼑≤ κσ∆ki
+ σm xki

􏼐 􏼑.

(42)

Combining (40) and (42), we have that (41) holds.
According to Lemmas 13 and 14, we can obtain the

following global convergence of Algorithm 1. □

Theorem 15. Under Assumption 2, we obtain that

liminf
k⟶+∞

σ xk(􏼁 � 0. (43)

Teorem 15 shows that Algorithm 1 generates a sub-
sequence converging to second-order critical of problem
(P). Next, we prove that the total sequence generated by
Algorithm 1 converges to second-order critical of
problem (P).

Journal of Mathematics 7

Theorem 16. Under Assumption 2, we can obtain that

lim
k⟶+∞

σ xk(􏼁 � 0. (44)

Proof. Similar proof can be found in Teorem 7.11
of [24]. □

5. Numerical Results

In this section, in order to test the efciency of our algo-
rithm, we choose 49 unconstrained optimization test
problems from [22]. Te dimension and name of test
problems are reported in Table 1. Before solving the
problems in Table 1, we will introduce the parameters se-
lected in the actual calculation of the algorithm proposed in
this paper:

∆0 � 1,

δ � 0.8,

η1 � 0.3,

η2 � 0.7,

∆max � 5,

c1 � 0.8,

c2 � 1.5.

(45)

In order to solve the test problems in Table 1 by using the
algorithm in this paper, we use MATLAB (2014a) to write
the computer program, and the computer is HP (CPU is i7-
8700, main frequency is 3.2Hz, and memory is 16G). Te
termination accuracy of the algorithm is ε � 10− 5.

In order to draw a comparison diagram of the results of
the algorithms, we use the performance comparison formula
of the algorithm proposed by Dolan and More [27] to
calculate the computational efciency between diferent
algorithms. Here are the specifc formulas:

rp,s �
τp,s

min τp,u: u ∈ S􏽮 􏽯
, (46)

where S denotes the set of algorithms. Let P denotes problem
sets, ns � |S| and np � |P|. For ∀t≥ 1, let

ρs(t) �
1
np

size p ∈ P: rp,s ≤ t􏽮 􏽯, (47)

where ρs(t) represents the efciency of each solver.
In order to further test the efectiveness of our algo-

rithm, we will select some derivative-free optimization
problems for testing and calculate these problems using
existed derivative-free algorithms. Te calculation results
are recorded in Figure 1. We will frst introduce the tested
problems. We list all the test problems in Table 1, which
shows the name of the problem, dimension n, and the
source of the problems. From Table 1, we can see that all
test problems are the nonsmooth problems, and their
derivatives are not obtained directly. Hence, it is more
appropriate to use our algorithm to solve the problems in
Table 1.

In Table 1, many objective functions are given in the
form of max, and in the actual calculation process, we
equivalently rewrite the objective function into the form of
a single objective function. If the objective function is
f(x) � max f1(x), f2(x)􏼈 􏼉, then we can obtain the equiv-
alent single objective function as

f(x) �
f1(x) + f2(x) − f1(x) − f2(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
. (48)

If there are more than two functions in the objective
function of the original problem compared in size, we will
repeatedly apply (48) to obtain a single objective function.
For example, if the objective function is f(x) � max
f1(x), f2(x), f3(x)􏼈 􏼉, we can obtain the single objective
function as follows:

f(x) �
f1(x) + f2(x) − f1(x) − f2(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌/2 + f3(x) − f1(x) + f2(x) − f1(x) − f2(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌/2 − f3(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2

�
f1(x) + f2(x) − f1(x) − f2(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 2f3(x) − f1(x) + f2(x) − f1(x) − f2(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 2f3(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

4
.

(49)

Te case where more functions are included is similar to
the calculation in (49), which can result in a single objective
function form. It is obvious that (48) and (49) are also
nonsmooth, and their derivatives cannot be obtained
directly.

Our algorithm mainly provides a dynamic method for
adjusting the diference coefcient, so that in the actual
calculation process, our algorithm does not use the tradi-
tional fxed diference coefcient calculation method but
dynamically adjusts the diference coefcient based on the
actual descent of the objective function. Tis approach can
avoid the problem of fxed coefcients causing slow descent

of the objective function, especially to overcome the problem
of poor robustness caused by fxed diference coefcients in
the algorithm.

DEO-TRNS and NOMAD are both famous derivative-
free algorithms used to solve nonsmooth black-box opti-
mization problems. Tey are based on the trust-region
framework and construct derivative-free algorithms. Tey
obtain the search direction by solving the approximate trust
region subproblem and update the trust region radius by the
actual degree of the descent of the objective function to
obtain the optimal solution of the problem. By using our
algorithm, DEO-TRNS, and NOMAD to calculate the

8 Journal of Mathematics

Table 1: Test problem.

Name n Te form of the problem

Crescent [26] 2 f(x) � max x2
1 + (x2 − 1)2 + x2 − 1, − x2

1 − (x2 − 1)2 + x2 + 1􏽮 􏽯

CB2 [26] 2 f(x) � max x2
1 + x4

2, (2 − x1)
2 + (2 − x2)

2, 2e− x1+x2􏽮 􏽯

CB3 [26] 2 f(x) � max x4
1 + x2

2, (2 − x1)
2 + (2 − x2)

2, 2e− x1+x2􏽮 􏽯

DEM [26] 2 f(x) � max 5x1 + x2, − 5x1 + x2, x2
1 + x2

2 + 4x2􏼈 􏼉

QL [26] 2 f(x) � max x2
1 + x2

2, x2
1 + x2

2 + 10(− 4x1 − x2 − 4), x2
1 + x2

2 + 10(− x1 − 2x2 + 6)􏼈 􏼉

LQ [26] 2 f(x) � max − x1 − x2, − x1 − x2 + (x2
1 + x2

2 − 1)􏼈 􏼉

Mifin 1 [26] 2 f(x) � − x1 + 20max 0, x2
1 + x2

2 − 1􏼈 􏼉

Mifin 2 [26] 2 f(x) � − x1 + 2(x2
1 + x2

2 − 1) + 1.75|x2
1 + x2

2 − 1|

Rosen-Suzuki [26] 4

f(x) � max f1(x), f1(x) + 10f2(x), f1(x) + 10f3(x), f1(x) + 10f4(x)􏼈 􏼉

f1(x) � x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4
f2(x) � x2

1 + x2
2 + x2

3 + x2
4 + x1 − x2 + x3 − x4 − 8

f2(x) � x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10
f4(x) � x2

1 + x2
2 + x2

3 + 2x1 − x2 − x4 − 5

Shor [26] 5 f(x) � max1≤i≤10 bi􏽐
5
j�1(xj − 5)2􏽮 􏽯,where aijand bi are given in [26]

Colville [26] 5

f(x) � 􏽐
5
j�1djx

3
j + 􏽐

5
i�1􏽐

5
j�1cijxixj + 􏽐

5
j�1ejxj

+50max 0,max1≤i≤10(bi − 􏽐
5
j�1aijxj)􏽮 􏽯

where aij, cij, ej  and bi are given in [26]

HS78 [26] 5

f(x) � x1x2x3x4x5 + 10􏽐
3
i�1|fi(x)|

f1(x) � x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10

f2(x) � x2x3 − 5x4x5
f3(x) � x3

1 + x3
2 + 1

El-Attar [26] 6
f(x) � 􏽐

51
i�1|x1e

− x2ti cos(x3ti + x4) + x5e
− x6ti − yi|

yi � 0.5e− ti − e− 2ti + 0.5e− 3ti + 1.5e− 1.5ti sin 7ti + e− 2.5ti sin 5ti

ti � 0.1(i − 1), 1≤ i≤ 51

Maxquad [26] 10
f(x) � max1≤i≤5(xTAix − xTbi), Ai

kj � Ai
jk � ej/k cos(jk)sin(i), j< k

Ai
jj � j/10|sin(j)| + 􏽐k≠j|A

i
jk|, bi

j � ej/i sin(ij)

Gill [26] 10

f(x) � max f1(x), f2(x), f3(x)􏼈 􏼉

f1(x) � 􏽐
10
i�1(xi − 1)2 + 10− 3􏽐

10
i�1(x2

i − 1/4)2

f2(x) � 􏽐
30
i�2[􏽐

10
j�2xj(j − 1)(i − 1/29)j− 2 − (􏽐

10
j�1xj(i � 1/29)2 − 1)2 + x2

1

+(x2 − x2
1 − 1)2]

f3(x) � 􏽐
10
i�2[100(xi − x2

i− 1)
2 + (1 − xi)

2]

Maxl [26] {10, 20, 30} f(x) � max1≤i≤n |xi|􏼈 􏼉

TR48 [26] {10, 20, 30} f(x) � 􏽐n
j�1djmax1≤i≤n(xi − aij) − 􏽐

n
j�1sixiaij, si and dj are given in [26]

L1HILB [26] {10, 20, 30} f(x) � 􏽐n
i�1|􏽐

n
j�1xj/i + j − 1|

Shell Dual [26] 15

f(x) � 2| 􏽐
5
i�1 dix

3
i+10| + 􏽐

5
i�1 􏽐

5
j�1 cijxi+10xj+10 − 􏽐

10
i�1 bixi + 100 (􏽐

5
i�1 max

(0, Pi(x)) − Q(x))

Pi(x) � 􏽐
10
j�1 ajixj − 2􏽐

5
j�1 cijxj+10 − 3dix

2
i+10 − ei, 1≤ i≤ 5

Q(x) � 􏽐
15
i�1 min(0, xi), where aij, cij, ei, di and bi are given in [26]

Chained LQ [28] {10, 20, 30} f(x) � 􏽐
n− 1
i�1 max − xi − xi+1, − xi − xi+1 + (x2

i + x2
i+1 − 1)􏼈 􏼉

Chained CB3 I [28] {10, 20, 30} f(x) � 􏽐
n− 1
i�1 max x4

i + x2
i+1, (2 − xi)

2 + (2 − xi+1)
2, 2e− xi+xi+1􏽮 􏽯

Chained CB3 II [28] {10, 20, 30} f(x) � max 􏽐
n− 1
i�1 (x4

i + x2
i+1), 􏽐

n− 1
i�1 ((2 − xi)

2 + (2 − xi+1)
2)􏽮 􏽯, 􏽐

n− 1
i�1 (2e− xi+xi+1)

Number of active faces [28] {10, 20, 30} f(x) � max1≤i≤n ln(| − 􏽐
n
i�1 xi| + 1), ln(|xi| + 1)􏼈 􏼉

Journal of Mathematics 9

problems in Table 1, we obtained the corresponding cal-
culation results and recorded the results in Figure 1.

According to (46) and (47), from the subgraphs in the
upper left and right corners of Figure 1, it can be seen that
our algorithm can efectively solve the problem in Table 1 by
approximating the derivative of the problem using either
central-diference or forward-diference techniques. Te
main manifestation is that at t � 0, the red curve repre-
senting our algorithm using forward-diference has achieved
0.9, but the blue curve representing DEO-TRNS and the
green curve representing NOMAD only achieved 0.18 and
0.17, respectively. When using the central-diference tech-
nique, the red curve representing our algorithm has achieved
0.95, but the blue curve representing DEO-TRNS and the

green curve representing NOMAD only achieved 0.22 and
0.19. Te red curve representing our algorithm is much
higher than the blue curve representing DEO-TRNS and the
green curve representing NOMAD. Moreover, the speed at
which the red curve tends to 1 is generally higher than that of
the blue and green curves.Tis means that our algorithm can
solve most problems with minimal iteration costs. From the
subgraphs in the lower left and right corners of Figure 1, we
can also see that both red curves have achieved 0.95 when
t � 0, but the values corresponding to the blue and green
curves are much lower than those corresponding to the red
curve. Te speed at which the red curve tends to 1 is gen-
erally higher than that of the blue and green curves. From the
values in the abscissa, it can be seen that our algorithm

Table 1: Continued.

Name n Te form of the problem
Nonsmooth generalization of brown
function 2 [28] {10, 20, 30} f(x) � 􏽐

n− 1
i�1 (|xi|

x2
i+1+1 + |xi+1|

x2
i
+1)

Chained Mifin2 [28] {10, 20, 30} f(x) � 􏽐
n− 1
i�1 (− xi + 2(x2

i + x2
i+1 − 1) + 1.75|x2

i + x2
i+1 − 1|)

Chained crescent I [28] {10, 20, 30} f(x) � max 􏽐 􏽐
n− 1
i�1 x2

i + (xi+1 − 1)2 + xi+1 − 1, 􏽐
n− 1
i�1 (− x2

i − (xi+1 − 1)2 + xi+1 + 1)􏽮 􏽯

Chained crescent II [28] {10, 20, 30} f(x) � 􏽐
n− 1
i�1 max x2

i + (xi+1 − 1)2 + xi+1 − 1, − x2
i − (xi+1 − 1)2 + xi+1 + 1􏽮 􏽯

1

0.8

0.6

0.4

0.2

0

p
(t)

2 4 6 8 10 12 14 16 18 20
t

Our Algorithm with forward-difference
DEO-TRNS
NOMAD

(a)

1

0.8

0.6

0.4

0.2

0

p
(t)

t
10 20 30 40 50 60 70

Our Algorithm with forward-difference
DEO-TRNS
NOMAD

(b)

1

0.8

0.6

0.4

0.2

0

p
(t)

2 4 6 8 10 12 14 16 18
t

Our Algorithm with central-difference
DEO-TRNS
NOMAD

(c)

1

0.8

0.6

0.4

0.2

0

p
(t)

t
20 40 60 80 100 120

Our Algorithm with central-difference
DEO-TRNS
NOMAD

(d)

Figure 1: (a)Te comparison results of the number of iterations of forward-diference with DEO-TRNS and NOMAD. (b)Te comparison
results of CPU time of forward-diference with DEO-TRNS and NOMAD. (c):Te comparison results of the number of iterations of central-
diference with DEO-TRNS and NOMAD. (d) Te comparison results of CPU time of central-diference with DEO-TRNS and NOMAD.

10 Journal of Mathematics

spends far fewer CPU time solving the problems in Table 1
than DEO-TRNS and NOMAD. Tis indicates that our
algorithm is very efective in solving the actual problems in
Table 1.

6. Concluding Remarks

Tis paper proposes a trust-region method with forward-
diference or central-diference approximation techniques for
obtaining the second-order stationary points of derivative-free
nonconvex optimization problem (P). Te fnite-diference
technique is used to approximate the gradient and Hessian
matrix of the objective function. Te search direction is ob-
tained by solving the trust-region subproblem.We prove global
convergence of the algorithm proposed by this paper without
the fully quadratic approximation; i.e., the algorithm generates
a sequence converging to the second-order stationary point of
the problem (P). In the numerical calculation section, frst, we
compute 49 test problems using our algorithm, NOMAD, and
DEO-TRNS, respectively. Te results show that our algorithm
spent fewer iterations andCPU time than other algorithms.We
also compute 46 test problems using forward-diference and
central-diference techniques. Te results of comparing itera-
tions and CPU time show that the central-diference ap-
proximation uses smaller iteration than the forward-diference
approximation in solving most problems.

Data Availability

Te data supporting this meta-analysis are from previously
reported studies and datasets, which have been cited.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Te author thanks the support of the National Natural
Science Foundation (11371253), the Hainan Natural Science
Foundation (120MS029) and and Hainan Provincial Natural
Science Foundation (120MS028).

References

[1] Y. Nesterov and B. T. Polyak, “Cubic regularization of
Newton method and its global performance,” Mathematical
Programming, vol. 108, no. 1, pp. 177–205, 2006.

[2] C. Cartis, N. I. Gould, and P. L. Toint, “Adaptive cubic
regularisation methods for unconstrained optimization. part
i: motivation, convergence and numerical results,” Mathe-
matical Programming, vol. 127, no. 2, pp. 245–295, 2011.

[3] C. Cartis, N. I. Gould, and P. L. Toint, “Adaptive cubic
regularisation methods for unconstrained optimization. part
ii: worst-case function-and derivative-evaluation complexity,”
Mathematical Programming, vol. 130, no. 2, pp. 295–319,
2011.

[4] F. E. Curtis, D. P. Robinson, and M. Samadi, “A trust region
algorithm with a worst-case iteration complexity of $\mathcal
{O}(\epsilon̂{-3/2})$ for nonconvex optimization,” Mathe-
matical Programming, vol. 162, no. 1-2, pp. 1–32, 2017.

[5] F. E. Curtis and D. P. Robinson, “Exploiting negative cur-
vature in deterministic and stochastic optimization,” 2017,
https://arxiv.org/abs/1703.0041.

[6] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht, “Gra-
dient descent converges to minimizers,” 2016, https://arxiv.
org/abs/1602.04915.

[7] S. S. Du, C. Jin, J. D. Lee, M. I. Jordan, A. Singh, and B. Poczos,
“Gradient descent can take exponential time to escape saddle
points,” in Advances in Neural Information Processing Sys-
tems, p. 1067C1077, MIT Press, Cambridge, MA, USA, 2017.

[8] A. Auslender and M. Teboulle, “Projected subgradient
methods with non-Euclidean distances for non-diferentiable
convex minimization and variational inequalities,” Mathe-
matical Programming, vol. 120, no. 1, pp. 27–48, 2009.

[9] P. Tseng and S. Yun, “A coordinate gradient descent method
for nonsmooth separable minimization,” Mathematical Pro-
gramming, vol. 117, no. 1-2, pp. 387–423, 2009.

[10] A. Auslender and M. Teboulle, “Interior gradient and prox-
imal methods for convex and conic optimization,” SIAM
Journal on Optimization, vol. 16, no. 3, pp. 697–725, 2006.

[11] S. Villa, S. Salzo, L. Baldassarre, and A. Verri, “Accelerated
and inexact forward-backward algorithms,” SIAM Journal on
Optimization, vol. 23, no. 3, pp. 1607–1633, 2013.

[12] N. S. Keskar and A. Wächter, “A limited-memory quasi-
Newton algorithm for boundconstrained non-smooth opti-
mization,” Optimization Methods and Software, vol. 34, no. 1,
pp. 150–171, 2019.

[13] A. S. Lewis and M. L. Overton, “Nonsmooth Optimization via
BFGS,” 2008.

[14] A. S. Berahas, R. H. Byrd, and J. Nocedal, “Derivative-free
optimization of noisy functions via quasi-Newton methods,”
SIAM Journal on Optimization, vol. 29, no. 2, pp. 965–993, 2019.

[15] J. J. Moré and S. M. Wild, “Estimating computational noise,”
SIAM Journal on Scientifc Computing, vol. 33, no. 3,
pp. 1292–1314, 2011.

[16] R. W. Hamming, Introduction to Applied Numerical Analysis,
Courier Corporation, Chelmsford, MA, USA, 2012.

[17] R. C. M. Brekelmans, L. T. Driessen, H. J. M. Hamers, and
D. D. Hertog, “Gradient estimation schemes for noisy
functions,” Journal of Optimization Teory and Applications,
vol. 126, no. 3, pp. 529–551, 2005.

[18] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg, “A
theoretical and empirical comparison of gradient approxi-
mations in derivative-free optimization,” 2019, https://arxiv.
org/abs/1905.01332.

[19] Y. Nesterov and V. Spokoiny, “Random gradient-free mini-
mization of convex functions,” Foundations of Computational
Mathematics, vol. 17, no. 2, pp. 527–566, 2017.

[20] E. Gorbunov, P. Dvurechensky, and A. Gasnikov, “An
accelerated method for derivative-Free smooth stochastic
convex optimization,” Optimization and Control, vol. 20,
pp. 1–38, 2020.

[21] S. Bellavia, G. Gurioli, B. A. Morini, and P. L. Toint, “Te
impact of noise on evaluation complexity: the deterministic
trust-region case,” Journal of Optimization Teory and Ap-
plications, vol. 196, no. 2, pp. 700–729, 2023.

[22] K. Schittkowski, “More test examples for nonlinear pro-
gramming codes,” Lecture Notes in Economics and Mathe-
matical Systems, vol. 282, pp. 1–261, 1981.

[23] F. H. Clarke, Optimization and Nonsmooth Analysis, Society
for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 1987.

[24] A. R. Conn, K. Scheinberg, and L. N. Vicente, “Global con-
vergence of general derivative-free trust-region algorithms to

Journal of Mathematics 11

https://arxiv.org/abs/1703.0041
https://arxiv.org/abs/1602.04915
https://arxiv.org/abs/1602.04915
https://arxiv.org/abs/1905.01332
https://arxiv.org/abs/1905.01332

frst- and second-order critical points,” SIAM Journal on
Optimization, vol. 20, no. 1, pp. 387–415, 2009.

[25] M. J. D. Powell, “A new algorithm for unconstrained opti-
mization,” in Nonlinear Programming, J. B. Rosen,
O. L. Mangasarian, and K. Ritter, Eds., pp. 31–36, Academic
Press, New York, NY, USA, 1971.

[26] L. Luks�an and J. Vlc�ek, “Test problems for nonsmooth un-
constrained and linearly constrained optimization,” Technical
report 798, Institute of Computer Science, Academy of Sci-
ences of the Czech Republic, Prague, Czech Republic, 2000.

[27] E. D. Dolan and J. J. More, “Benchmarking optimization
software with performance profles,” Mathematical Pro-
gramming, vol. 91, no. 2, pp. 201–213, 2002.

[28] N. Karmitsa, Test Problems for Large-Scale Nonsmooth Min-
imization, Reports of the Department of Mathematical In-
formation Technology, Series B, Scientifc Computing, No. B.4,
Department of Mathematical Information Technology, Uni-
versity of Jyväskylä, Jyväskylä, Finland, 2007.

12 Journal of Mathematics

