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Rough set has an important role to deal with uncertainty objects. Te aim of this article is to introduce some kinds of gen-
eralization for rough sets through minimal neighborhoods using special kinds of binary relations. Moreover, four diferent types
of dual approximation operators will be constructed in terms of minimal neighborhoods. Te comparison between these types of
approximation operators is discussed. Some new kinds of topological structures induced by minimal neighborhoods are
established and some of their properties are studied. Finally, we give a comparison between these topologies that help for
determining the major components of COVID-19 infections. In this application, the components of infections help the expert in
decision making in medicine.

1. Introduction and Preliminaries

Topology is an area of mathematics that is very important,
whose defnitions and concepts exist inside branches of
mathematics and many applications. Topological spaces and
their generalizations [1] are considered as basic defnitions in
system analysis. Recently, topological structures have been
used to study graphs [2]. Also, many researchers suggested
topological models in analysis [3], chemistry [4], medicine
[5], and physics [6] and for determining COVID-19 [7].
Furthermore, Lashin et al. [8] have generated other topol-
ogies using a general binary relation. Some researchers have
used a topology to represent structures such as fractals [2] in
terms of binary relations.

Rough set theory (RST, for short) is initiated in 1982 by
Pawlak [9]. RST is a mathematical method to study the
uncertainty data, but not qualitatively. Also, Pawlak studied
the relation between topology and its generalization and
RST. Minimal structure in topology and rough sets are
studied in [10], and many applications are discussed in [11].
Te fundamental idea of RST is the common lower and
upper approximations, which have been constructed using
many types of neighborhoods, such as right and left

neighborhoods [12], minimal right [13], and minimal left
[14] neighborhoods. New kinds of neighborhoods called
Ej-neighborhoods are defned by Al-Shami et al. [15]. Al-
Shami has defned new kinds of neighborhoods called
Cj-neighborhoods and studied them in medical applications
[16]. Also, Al-Shami has defned maximal neighborhoods
and studied their characteristics and applications in the
medical feld [17].Te range of rough sets applications today
is far broader than it was in the past, and it has been used in
many science and engineering domains, including computer
network [18], solution of missing attribute values [19], and
medical application [16].

In this paper, some ideas of minimal neighborhoods in
topology are integrated. Other types of minimal structures
will be investigated from a view point of minimal neigh-
borhoods. We think that topological space will serve as
a crucial foundation for modifying information extraction
and processing. Several foundational ideas regarding to-
pology and RST are introduced. Finally, the present ap-
proximations will be applied to have the best tools for
determining the major components of COVID-19 in-
fections. Tis medical application may be useful for experts
in decision making.
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Defnition 1 (see [1]). If τ is a family from a nonempty
universal set U. τ is a topology on U if τ satisfes the fol-
lowing: (i) ϕ and U are in τ; (ii) if Bi ∈ τ for i ∈ I, then
∪ i∈IBi ∈ τ; and (iii) if B1,B2 ∈ τ, then B1 ∩B2 ∈ τ.

RSTemerged out of the necessity to depict subsets ofU in
units of equivalence classes as a partition, which defnes
a topological structure known as approximation space
symbolized by K � (U,ψ), where ψ ⊆U × U is an equiva-
lence relation [20, 21]. To represent the equivalence class
containing x, we will use [x]⊆U. RST has come from the
need to represent subsets from the universe set in terms of the
equivalence class called approximation space K � (U,ψ),
where ψ is a knowledge about an element of U. Te equiv-
alence class of ψ is also known as the granules, elementary
sets, or blocks.

Defnition 2 (see [21]). In K � (U,ψ) with B⊆U, the
ψ−lower and ψ−upper approximations of B are defned
by ψ (B) � x ∈ U: [x]⊆B{ } and ψ(B) � x ∈ U: [x]∩{

B≠ϕ}, respectively.

U is divided to three disjoint regions in K � (U,ψ) by
using Defnition 2; the boundary region (briefy Bψ(B)), the
positive region (briefy, Pψ(B)), and the negative region
(briefy Nψ(B)) are defned by Bψ(B) � ψ(B) − ψ (B),
Pψ(B) � ψ (B), and Nψ(B) � B − ψ(B), respectively.

Defnition 3 (see [9]). If K � (U,ψ) is an approximation
space with B⊆U, then the accuracy of B is defned by
ξ(B) � |ψ (B)|/|ψ(B)|, where |ψ(B)|≠ 0 and |.| denotes
the cardinality.

Te defnition of approximations uses the concept of
knowledge granules. ψ (B) is the set of all granules that exist
in B, ψ(B) is the set of all granules that have a nonempty
intersection withB, and Bψ(B) is the set of all granules that
exist in the upper approximation and do not exist in the
lower approximation. Tese defnitions of approximation
operators were given by Pawlak [9].

In K � (U,ψ), if A,B⊆U, then each of the following is
true [21], where Ac is the complement.

Defnition 4 (see [22]). Te binary relation ψ is called

(i) serial: ∀x ∈ U, ∃y ∈ U s.t xψy, RN(x)≠ϕ
(ii) inverse serial: ∀x ∈ U, ∃y ∈ U s.t yψx, ∪RN(x) � U

(iii) refexive: ∀x ∈ U, xψx

(iv) symmetric: ∀x ∈ U, if xψy, then yψx

Defnition 5 (see [23]). Let ψ be a binary relation and
x, y ∈ U. Ten, RN(x) � y ∈ U: xψy  and LN(x) �

y ∈ U: yψx  are called right neighborhood and left
neighborhood of x, respectively.

Defnition 6 (see [24]). If ψ is a binary relation and x ∈ U,
then minimal right neighborhood is MNr(x) � ∩ y RN{

(y): yψx}.

2. Generalization for Rough Sets Based on
Minimal Neighborhood Systems

Tis section aims to investigate RST based on the minimal
neighborhood system. Four types of approximation oper-
ators are generated. In addition, a comparison between our
study and another approach is investigated.

Defnition 7. If ψ is a binary relation, then four kinds of
minimal neighborhood systems are defned as follows:

(i) Minimal right neighborhood MNr(x) � ∩ y RN{

(y): yψx}

(ii) Minimal left neighborhood MNl(x) � ∩ y LN{

(y): xψy}

(iii) Minimal of union neighborhood MNu(x) � MNr

(x)∪MNl(x)
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(iv) Minimal of intersection neighborhood MNi(x) �

MNr(x)∩MNl(x)

Remark 8. It is clear that ∀x ∈ U,

MNr(x) �
∩

x∈RN(y)
RN(y), if  ∃y  s.t yψx,

ϕ, otherwise,

⎧⎪⎨

⎪⎩

MNl(x) �
∩

x∈LN(y)
LN(y) if  ∃y  s.t xψy,

ϕ, otherwise,

⎧⎪⎨

⎪⎩

(1)

Defnition 9. Let MNj(x) be minimal neighborhood sys-
tems with binary relation ψ, where x ∈ U and j ∈ J �

r, l, u, i{ }. Ten, (U,ψ, MNj) is an approximation space
(briefy, MNj−approximation space).

Remark 10. In Defnition 9, MNj(x) is the same for all
j ∈ J, when ψ is an equivalence relation.

Lemma 11. If y ∈ MNj(x), then MNj(y)⊆MNj(x), where
x, y ∈ U and j ∈ r, l, i{ }.

Proof. Consider j � r. Let y ∈ MNr(x) and z ∈ MNr(y).
Ten, z ∈ MNr(x). Terefore, MNr(y)⊆MNr(x). By the
same manner, the proof is verifed for j � l. In the case j � i,
if y ∈ MNi(x), then y ∈ MNr(x) and y ∈ MNl(x). Tus,
MNr(y)⊆MNr(x) and MNl(y)⊆MNl(x). Hence, MNr

(y)∩MNl(y)⊆MNr(x)∩MNl(x). Terefore, MNi(y)⊆
MNi(x).

Lemma 11 does not hold for j � u, in general. □

Example 1. If U � e, f, g, h  with ψ � (e, e), (g, g), (e, f),

(f, f), (f, g), (g, f)}, then RN(U,ψ) � e, f , f, g , ϕ  and
LN(U,ψ) � e{ }, e, f, g , f, g , ϕ . Hence, MNr(e) � e, f ,
MNr(f) � f , MNr(g) � f, g , MNr(h) � ϕ, MNl(e) � e{ },
MNl(f) � MNl(g) � f, g , MNl(h) � ϕ, MNu(e) � e, f ,
MNu(f) � MNu(g) � f, g , MNu(h) � ϕ, MNi(e) � e{ },
MNi(f) � f , MNi(g) � f, g , and MNi(h) � ϕ. Clearly,
f ∈ MNu(e), but MNu(f)⊈MNu(e).

Te proof of Lemma 12 is clear, so it is omitted.

Lemma 12. Let ψ be a symmetric relation and y ∈ MNu(x).
Ten, MNu(y)⊆MNu(x) for each x, y ∈ U.

Lemma 13. If ψ is an inverse serial and a serial relation, then
MNr(x)≠ ϕ and MN l(x)≠ϕ, respectively.

Proof. Let ψ be a serial relation. Ten, ∀x ∈ U, ∃y ∈ U s.t
xψy. Hence, x ∈ LN(y) for some y ∈ U. Terefore,
MNl(x)≠ϕ. □

Let ψ be an inverse serial and serial relation. Ten,
MNl(x)≠ ϕ and MNr(x)≠ϕ are not true, in general.

Example 2. IfU � e, f, g  and ψ1 � (e, f), (f, f), (g, f) , then
RN(U,ψ1) � f   and LN(U,ψ1) � ϕ, e, f, g  . Hence,
MNr1

(e) � MNr1
(g) � ϕ,MNr1

(f) � f  and MNl1
(e) �

MNl1
(f) � MNl1

(g) � e, f, g . Clearly, ∀ x ∈ U, ψ1 is serial
and MNl1

(x)≠ ϕ, but MNr1
(e) � ϕ. Now, let ψ2 � (g, e),

(g, f), (g, g)}. Ten, (U,ψ2) � ϕ, e, f, g   and LN(U,ψ2)

� g  . Hence, MNr2
(e) � MNr2

(f) � MNr2
(g) � e, f, g ,

MNl2
(e) � MNl2

(f) � ϕ, and MNl2
(g) � g . Clearly, ∀x ∈

U, ψ2 is inverse serial and MNr2
(x)≠ϕ, but MNl2

(e) � ϕ.

Lemma 14. If ψ is a refexive relation, then y ∈MNj(y) and
MNj(y)≠ϕ, ∀y ∈ U and j ∈ J.

Proof. Assume that ψ is refexive and y ∈ U. Ten, y ∈ RN
(y) and y ∈ LN(y).Tus, y ∈MNj(y).Terefore,MNj(y)

≠ϕ, ∀j ∈ J. □

Proposition 15. If ψ is a refexive relation and y ∈ U, then

(i) MNr(y)⊆RN(y)

(ii) MNl(y)⊆ LN(y)

(iii) MNi(y)⊆RN(y)

(iv) MNi(y)⊆ LN(y)

(v) MNu(y)⊆RN(y)∪ LN(y)

Proof. (i) Let ψ be a refexive relation. Ten, y ∈ RN(y)

for all y ∈ U. Consider x ∈MNr(y). Ten, x ∈ RN(y).
Terefore,MNr(y)⊆RN(y). By the samemanner, proofs of
(ii), (iii), (iv), and (v) are verifed. □

Te converse of Proposition 15 and equality are not true,
in general.

Example 3. In Example 1, all properties of Proposition 15
are satisfed. However, ψ is not refexive relation, since
(h, h) ∉ ψ. Also, MNr(f)≠RN(f), MNl(f)≠ LN(f), MNi

(f)≠RN(f)≠ LN(f), and MNu(f)≠RN(f)∪ LN(f).

Proposition 16. Let ψ be a refexive and symmetric relation.
Ten, MNj(y)⊆RN(y) and MNj(y)⊆ LN(y), ∀y ∈ U and
j ∈ J.

Proof. Suppose that ψ is refexive and symmetric relation.
Ten, y ∈ RN(y) � LN(y), ∀y ∈ U. Hence, the proof is
clear by Proposition 15. □

Defnition 17. In (U,ψ, MNj) withB⊆U, the MNj−lower
and MNj−upper approximations of B are defned by
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ψ
j
(B) � x ∈ U: MNj(x)⊆B and ψj(B) � x ∈ U: M

Nj(x)∩B≠ϕ, respectively.

Defnition 18. For all j ∈ J, if ψ
j
(B) � ψj(B), then the set

B is called MNj−exact. Otherwise, the set B is called
MNj−rough.

Defnition 19. For each j ∈ J, the MNj−boundary set, the
MNj−positive set, and the MNj−negative set are defned by
Bj(B) � ψj(B) − ψ

j
(B), Pj(B) � ψ

j
(B), and Nj(B) �

B − ψj(B), respectively.

Theorem 20. Let ψ be a binary relation and A,B⊆U. Ten,
MNj−lower approximation and MNj−upper approximation
have the following characteristics, where Ac is the complement.

Proof. Te properties (L1), (L4), (H2), and (H4) are clear.
Terefore, the remaining properties can be proved as follows:

(L5) ψ
j
(Ac) � x ∈ U: MNj(x)⊆Ac  � x ∈ U: M{

Nj (x)∩A � ϕ � x ∈ U: MNj(x)∩A≠ ϕ 
c

� [ψj

(A)]c.
(L6) Let y ∈ ψ

j
(ψ

j
(A)), where j≠ u. Ten, MNj

(y)⊆ψ
j
(A) � x ∈ U: MNj(x)⊆A . Hence, MNj

(y)⊆A. So, y ∈ ψ
j
(A). Terefore, ψ

j
(ψ

j
(A))⊆ψ

j

(A). Conversely, let x ∈ ψ
j
(A), where j≠ u. Ten,

MNj(x)⊆A. We want to show that MNj(x)⊆ψ
j
(A).

Let y ∈M Nj(x). Ten, by Lemma 11, we have MNj

(y)⊆MNj(x). Tus, MNj (y)⊆A. Hence, y ∈ ψ
j

(A) and then MNj(x)⊆ψ
j
(A). So, x ∈ ψ

j
(ψ

j
(A))

and ψ
j
(A)⊆ψ

j
(ψ

j
(A)). Terefore, ψ

j
(ψ

j
(A)) � ψ

j

(A).

(H6) Similar to the proof of (L6).
(L7) Let A⊆B. Ten,

ψ
j
(A) � x ∈ U: MNj(x)⊆A ⊆

x ∈ U: MNj(x)⊆B  � ψ
j
(B).

(H7) Similar to the proof of (L7).
(L8) and (H8) can be proved directly by using (L7)
and (H7).
Properties (L2), (L3), (H1), and (H3) are not true, in
general. □

Example 4. In Example 1, if X � e, f, g  and Y � e, g, h ,
then ψ

r
(X) � ψ

l
(X) � ψ

u
(X) � ψ

i
(X) � U⊈X, Y⊈ψr(Y)

� ψi(Y) � e, g , Y⊈ψl(Y) � ψu(Y) � e, f, g , ψ
r
(ϕ) �

ψ
l
(ϕ) � ψ

u
(ϕ) � ψ

i
(ϕ) � h ≠ϕ, and ψr(U) � ψl(U) �

ψu(U) � ψi(U) � e, f, g ≠U.

Proposition 21. Let ψ be a refexive relation. Ten,
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Proof. It is sufcient to prove (L3) and proofs of (L2), (H1),
and (H3) are similar. Assume that ψ is refexive and
y ∈ ψ

j
(A) for all y ∈ U. Tus, MNj(y)⊆A. However,

y ∈MNj(y). Hence, y ∈ A. Terefore, ψ
j
(A)⊆A.

Properties (L6) and (H6) are not true, for j � u with
refexive relation, in general. □

Example 5. Let U � e, f, g, h  and � (e, e), (f, f), (g, g),

(h, h), (e, g), (e, h), (f, h), (g, f)}. Ten, RN(U,ψ) �

e, g, h , f, h , f, g , h   and LN(U,ψ) � e{ }, f, g ,

e, g , e, f, h . Hence, MNr(e) � e, g, h , MNr(f) � f ,
MNr(g) � g , MNr(h) � h , MNl(e) � e{ }, MNl(f) �

f , MNl(g) � g , MNl(h) � e, f, h , MNu(e) � e, g, h ,
MNu(f) � f , MNu(g) � g , MNu(h) � e, f, h , MNi(e)

� e{ }, MNi(f) � f , MNi(g) � g , and MNi(h) � h .
However, ψ

u
(ψ

u
( e, g, h )) � g ≠ψ

u
( e, g, h ) � e, g 

and ψu(ψu( g )) � e, g, h ≠ψu( g ) � e, g .

Proposition 22. If ψ is a symmetric relation andA ⊆U, then

Proof. Te proof is obvious using Lemma 12 and
Teorem 20.

Equality in the properties (L6) and (H6) are not true, in
general. □

Example 6. In Example 1, consider X � e, f , Y � g , and
Z � e, g . Ten, ψ

r
(X)∪ψ

r
(Y) � e, f, h ≠ψ

r
(X∪Y) �

U, ψ
l
(X)∪ψ

l
(Y) � e, h ≠ψ

l
(X∪Y) � U, ψ

u
(X)∪ψ

u

(Y) � e, h ≠ψ
u
(X∪Y) � U, ψ

i
(X)∪ψ

i
(Y) � e, f, h ≠

ψ
i
(X∪Y) � U, ψr(X∩Z) � e{ }≠ψr(X)∩ψr(Z) � e, g ,

ψl(X∩Z) � e{ }≠ψl(X)∩ψl(Z) � e, f, g , ψu(X∩Z) �

e{ }≠ψl(X)∩ψu(Z) � e, f, g , and ψi(X∩Z) � e{ }≠ψi(X)

∩ψi(Z) � e, g .

To satisfy themajority of Pawlak’s approximations qualities
from Teorem 20 and Proposition 21, ψ must be a refexive
relation. Terefore, minimal approximations are a generaliza-
tion for rough approximations. In Table 1, we compare our
study with other techniques of rough approximations. Te
symbol √ indicates that Pawlak’s property is verifed.

Defnition 23. Let ψ be a refexive relation with B⊆U and
j ∈ J. Ten, MNj−accuracy of approximation of the subset
B is ξj(B) � |ψ

j
(B)|/|ψj(B)|, where |ψj(B)|≠ 0 and |.|

denotes the cardinality.

Corollary 24. From Defnition 23 and Proposition 21, we
deduce that with a refexive relation ψ, (i) 0≤ ξj(B)≤ 1; (ii) if
ξj(B) � 1, then the subset B is MNj−exact. Otherwise, B is
MNj−rough.

3. Relationship between
MNj−Approximation Operators

In this section, several kinds of MNj−approximation op-
erators are compared. Also, boundary and accuracy of
MNj−approximations are investigated.

Remark 25. From Tables 2 and 3 and Example 5, diferent
kinds of MNj−approximations operators, MNj−boundary
and MNj−accuracy, are compared. ξi(A) is the best accuracy.

Theorem 26. If ψ is a binary relation and A⊆U, then

(i) ψ
u
(A)⊆ψ

r
(A)⊆ψ

i
(A)

(ii) ψ
u
(A)⊆ψ

l
(A)⊆ψ

i
(A)

(iii) ψi(A)⊆ψr(A)⊆ψu(A)

(iv) ψi(A)⊆ψl(A)⊆ψu(A)

Proof. (i) If x ∈ ψ
u
(A), then MNu(x) � [MNr(x)∪M

Nl(x)]⊆A. Tus, MNr(x)⊆A. Hence, x ∈ ψ
r
(A).

Terefore, ψ
u
(A)⊆ψ

r
(A). Now, let x ∈ ψ

r
(A). Ten,

MNr (x) ⊆A. However, MNi(x) � [MNr(x)∩M Nl

(x)]⊆A. Hence, x ∈ ψ
i
(A). Terefore, ψ

r
(A)⊆ψ

i
(A). (ii)

If x ∈ ψi(A), then MNi(x)∩A≠ϕ. However, MNi(x) �

MNr(x)∩MNl(x) and thus MNr(x)∩A≠ ϕ. Hence,
x ∈ ψr(A). Terefore, ψi(A)⊆ψr(A). Now, let x ∈ ψr(A).
Ten, MNr(x)∩A≠ϕ. However, MNu(x) � MNr(x)∪M

Nl(x). Tus, MNu(x)∩A≠ ϕ. Hence, x ∈ ψu(A). Tere-
fore, ψr(A)⊆ψu(A). By the same manner, the proof is
verifed for (ii) and (iv).

Equality in Teorem 26 does not hold, in general. □

Example 7. In Example 1, ψ
u
( f ) � h ≠ψ

r
( f ) � f, h ,

ψ
r
( e{ }) � h ≠ψ

i
( e{ }) � e, h , ψ

u
( e{ }) � h ≠ψ

l
( e{ }) �

e, h , ψ
l
( f ) � h ≠ψ

i
( f ) � f, h , ψi( f ) � f, g ≠ψr

( f ) � e, f, g , ψr( g ) � g ≠ψu( g ) � f, g , ψi( g ) �

g ≠ψl( g ) � f, g , and ψl( f ) � f, g ≠ψu( f ) �

e, f, g .

Theorem 2 . Let ψ be a refexive relation and A⊆U. Ten,

(i) ψ
u
(A)⊆ψ

r
(A)⊆ψ

i
(A)⊆A⊆ψi(A)⊆ψr(A)⊆ψu

(A)
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Table 1: A comparison between various techniques of rough set properties.

Pawlak’s properties Yao and Lin [23] Yu et al. [25] Mareay [26] Our technique
(L1) √ √ √
(H1) √ √ √
(L2) √ √
(H2) √ √
(L3) √ √
(H3) √ √ √
(L4) √ √ √
(H4) √ √ √ √
(L5) √ √ √
(L6) √ √
(H6) √
(L7) √ √ √ √
(H7) √ √ √ √
(L8) √ √ √ √
(H8) √ √ √ √

Table 2: A comparison between several kinds of MNj−approximations.

A ψ
r
(A) ψr(A) Br(A) ξr(A) ψ

l
(A) ψl(A) Bl(A) ξl(A)

e{ } ϕ e{ } e{ } 0 e{ } e, h  h  1/2
f  f  f  ϕ 1 f  f, h  h  1/2
g  g  e, g  e{ } 1/2 g  g  ϕ 1
h  h  e, h  e{ } 1/2 ϕ h  h  0
e, f  f  e, f  e{ } 1/2 e, f  e, f, h  h  2/3
e, g  g  e, g  e{ } 1/2 e, g  e, g, h  h  2/3
e, h  h  e, h  e{ } 1/2 e{ } e, h  h  1/2
f, g  f, g  e, f, g  e{ } 2/3 f, g  f, g, h  h  2/3
f, h  f, h  e, f, h  e{ } 2/3 f  f, h  h  1/2
g, h  g, h  e, g, h  e{ } 2/3 g  g, h  h  1/2
e, f, g  f, g  e, f, g  e{ } 2/3 e, f, g  U h  3/4
e, f, h  f, h  e, f, h  e{ } 2/3 e, f, h  e, f, h  ϕ 1
e, g, h  e, g, h  e, g, h  ϕ 1 e, g  e, g, h  h  2/3
f, g, h  f, g, h  U e{ } 3/4 f, g  f, g, h  h  2/3
U U U ϕ 1 U U ϕ 1

Table 3: A comparison between several kinds of MNj−approximations.

A ψ
u
(A) ψu(A) Bu(A) ξu(A) ψ

i
(A) ψi(A) Bi(A) ξi(A)

e{ } ϕ e, h  e, h  0 e{ } e{ } ϕ 1
f  f  f, h  h  1/2 f  f  ϕ 1
g  g  e, g  e{ } 1/2 g  g  ϕ 1
h  ϕ e, h  e, h  0 h  h  ϕ 1
e, f  f  e, f, h  e, h  1/3 e, f  e, f  ϕ 1
e, g  g  e, g, h  e, h  1/3 e, g  e, g  ϕ 1
e, h  ϕ e, h  e, h  0 e, h  e, h  ϕ 1
f, g  f, g  U e, h  1/2 f, g  f, g  ϕ 1
f, h  f  e, f, h  e, h  1/3 f, h  f, h  ϕ 1
g, h  g  e, g, h  e, h  1/3 g, h  g, h  ϕ 1
e, f, g  f, g  U e, h  1/2 e, f, g  e, f, g  ϕ 1
e, f, h  f, h  e, f, h  e{ } 2/3 e, f, h  e, f, h  ϕ 1
e, g, h  e, g  e, g, h  h  2/3 e, g, h  e, g, h  ϕ 1
f, g, h  f, g  U e, h  1/2 f, g, h  f, g, h  ϕ 1
U U U ϕ 1 U U ϕ 1
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(ii) ψ
u
(A)⊆ψ

l
(A)⊆ψ

i
(A)⊆A⊆ψi(A)⊆ψl(A)⊆ψu

(A)

Proof. By using Proposition 21 andTeorem 26, the proof is
obvious.

Te equality in Teorem 27 is not true, in general. □

Example 8. In Example 5 and Tables 2 and 3, ψ
u
( e, h )≠

ψ
r
( e, h )≠ψ

i
( e, h ), ψi( f, g )≠ψr( f, g )≠ ψu( f, g ),

ψ
u
( e, h )≠ψ

l
( e, h )≠ψ

i
( e, h ), and ψi( f, g ) ≠ψl

( f, g )≠ψu ( f, g ).

In the following implications, several kinds of
MNj−approximations operators with a refexive relation ψ
and A⊆U are compared.

Theorem 2 . If ψ is a refexive relation and A⊆U, then

(i) Bi(A)⊆Br(A)⊆ Bu(A)

(ii) Bi(A)⊆Bl(A)⊆Bu(A)

Proof. (i) Consider y ∈ Bi(A). Tus, y ∈ ψi(A) and
y ∉ ψ

i
(A). By using Teorem 30, y ∈ ψr(A) and

y ∉ ψ
r
(A). Hence, y ∈ Br(A). Terefore, Bi(A)⊆Br(A).

Now, let y ∈ Br(A). Ten, y ∈ ψr(A) and y ∉ ψ
r
(A). By

using Teorem 27, y ∈ ψu(A) and y ∉ ψ
u
(A). Hence,

y ∈ Bu(A). Terefore, Br(A)⊆Bu(A). By the same manner,
(ii) is verifed. □

Corollary 29. Let ψ be a refexive relation and A⊆U. Ten,

(i) ξu(A)⩽ξr(A)⩽ξi(A)

(ii) ξu(A)⩽ξl(A)⩽ξi(A)

Teproof ofTeorem 30 is clear. So, the proof is omitted.

Theorem 30. Let ψ be a refexive relation and A⊆U. Ten,

(i) A is MNu−exact ⇒A is MNr−exact ⇒A is
MNi−exact

(ii) A is MNu−exact ⇒A is MNl−exact ⇒A is
MNi−exact

Te equality in Teorem 28 and Corollary 29 does not
hold, in general.

Example 9. In Example 5 and Tables 2 and 3, Bi( e{ })

≠Br( e{ })≠Bu( e{ }), Bi( e{ })≠Bl( e{ })≠Bu( e{ }), ξu( h )≠ ξr

( h )≠ ξi( h ), and ξu( e{ })≠ ξl( e{ })≠ ξi( e{ }).

Te converse in Teorem 30 is not true, in general.

Example 10. In Example 5 and Tables 2 and 3, we have h  is
MNi−exact, but h  is neither MNr−exact nor MNu−exact.
Also, f  is MNr−exact, but f  is not MNu−exact. Fur-
thermore, h  is MNi−exact, but h  is neither MNl−exact
nor MNu−exact. Finally, g  is MNl−exact, but g  is not
MNu−exact.

4. Topological Spaces Induced by
Minimal Neighborhoods

In this section, various topologies are created by using the
minimal of neighborhoods. Te comparison between these
new types of topologies is studied.

It is easy to prove the conditions of topology for the class
τj in Teorem 31, so the proof must be omitted.

Theorem 31. If (U,ψ, MNj) is MNj−approximation space
and ψ is a binary relation, then the families
τj � B⊆U: MNj(x)⊆B, x ∈ B  are topologies on U, for
all j ∈ J.

Example 11. In Example 1, we have

τr � U, ϕ, f , h , e, f , f, g , f, h , e, f, g , e, f, h , f, g, h  ,

τl � U, ϕ, e{ }, h , e, h , f, g , e, f, g , f, g, h  ,

τu � U, ϕ, , h  f, g , e, f, g , f, g, h  ,

τr � U, ϕ, e{ }, f , h , e, f , e, h , f, g , f, h , e, f, g , e, f, h , f, g, h  .

(2)
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Theorem 32. If τj are topologies and ψ is a binary relation, then

(i) τu ⊆ τr ⊆ τi

(ii) τu ⊆ τl ⊆ τi

Proof. IfB ∈ τu, then MNu(x)⊆B for all x ∈ B. However,
MNu(x) � MNr(x)∪MNl(x) and then MNr(x)⊆B for
all x ∈ B. Hence,B ∈ τr. Terefore, τu ⊆ τr. Now, letB ∈ τr,
then MNr(x)⊆B for all x ∈ B. However,
MNi(x) � MNr(x)∩MNl(x) and then MNi(x)⊆B for
all x ∈ B. Hence, B ∈ τi. Terefore, τr ⊆ τi. By the same
manner, the proof is true for (ii).

Te equality in Teorem 32 is not true, in general. □

Example 12. In Example 11, we have τu ≠ τr ≠ τl ≠ τi.

FromTeorem 32, it is easy to proveTeorem 33. So, we
omit the proof.

Theorem 33. If τj are topologies and ψ is a symmetric re-
lation, then τu � τr � τl � τi.

5. Applications: COVID-19 Infections and
Heart Attacks

In this section, some suggested methodologies to practical
issues are presented and particularly in the area of patient
diagnostics where more precise judgments are required.
Terefore, medical applications are examined for the proposed
approximations characteristics in terms of minimal neigh-
borhoods. Tese examples show how the generalization of
rough sets usingminimal neighborhoods can efectively handle
and represent a variety of real-world issues. It is illustrated that
the utilization of minimal neighborhoods in the context of RST
aids in the elimination of data uncertainty and ambiguity.

Example 13. Tis example aims to illustrate the signifcance
of present approximations in order to obtain the best tools
for determining the major components of COVID-19 in-
fections in humans. Te World Health Organization and
medical organizations with expertise in COVID-19 gathered
the data in Table 4 [27]. Due to the similar properties in the
rows (objects), data from 500 patients were reduced to 10
patients. Terefore, the set of objects is
U � q1, q2, q3, q4, q5, q6, q7, q8, q9, q10 .

Te attributes (most common symptoms) of COVID-19
are given as follows: {Difculty breathing� s1, Chest
pain� s2, High Headache� s3, Dry cough� s4, Temper-
ature� s5, Loss of smell or taste� s6} and Decision COVID-
19, as shown in Table 4.

From Table 4, the symptoms are given as follows:
F(q1) � s1, s2, s4, s5, s6 , F(q2) � s1, s2, s3, s4, s5, s6 ,
F(q3) � s1, s2, s4, s6 , F(q4) � s1, s2 , F(q5) � s1, s2,

s4}, F(q6) � s1, s3, s4, s5 , F(q7) � F(q8) � s4, s5 ,
F(q9) � s6 , and F(q10) � s3, s4, s5 .

Te relation is given as follows: qnψqm⇔F(qn)⊆F(qm).
Consequently, ψ � (q1, q1), (q1, q2), (q2, q2), (q3, q1),

(q3, q2), (q3, q3), (q4, q1), (q4, q2), (q4, q3), (q4, q4), (q4, q5),

(q5, q1), (q5, q2), (q5, q3)}, (q5, q5), (q6, q2), (q6, q6),
(q7, q1), (q7, q2), (q7, q6), (q7, q7), (q7, q8), (q7, q10),
(q8, q1), (q8, q2), (q8, q6), (q8, q7), (q8, q8), (q8, q10),
(q9, q1), (q9, q2), (q9, q3), (q9, q9), (q10, q2), (q10, q6), and
(q10, q10).

Ten, RN(U,ψ) � q1, q2 , q2 , q1, q2, q3}, q1, q2, q3,

q4, q5}, q1, q2, q3, q5}, q2, q6 , q1, q2, q6, q7, q8, q10 , q1, q2,

q3, q9}, q2, q6, q10 , and LN(U,ψ) � q1, q3, q4, q5,

q7, q8, q9},U, q3, q4, q5, q9 , q4 , q4, q5 , q6, q7, q8, q10 ,

q7, q8 , q9 , q7, q8, q10 }.
Hence, MNr(q1) � q1, q2 , MNr(q2) � q2 , MNr(q3)

� q1, q2, q3 , MNr(q4) � q1, q2, q3, q4, q5 , MNr(q5) �

q1, q2, q3, q5 , MNr(q6) � q2, q6 , MNr(q7) � MNr

(q8) � q1, q2, q6, q7, q8, q10 , MNr(q9) � q1, q2, q3, q9 ,
MNr(q10) � q2, q6, q10 , MNl(q1) � q1, q3, q4, q5, q7, q8,

q9}, MNl(q2) � U, MNl(q3) � q3, q4, q5, q9 , MNl(q4)

� q4 , MNl(q5) � q4, q5 , MNl(q6) � q6, q7, q8, q10 ,
MNl(q7) � MNl(q8) � q7, q8 , MNl(q9) � q9 , MNl

(q10) � q7, q8, q10 , MNu(q1) � q1, q2, q3, q4, q5, q7, q8,

q9}, MNu(q2) � U, MNu(q3) � q1, q2, q3, q4, q5, q9 ,
MNu(q4) � MNu(q5) � q1, q2, q3, q4, q5 , MNu(q6) �

q2, q6, q7, q8, q10 , MNu(q7) � MNu(q8) � q1, q2, q6, q7,

q8, q10}, MNu(q9) � q1, q2, q3, q9 , MNu(q10) � q2, q6, q7,

q8, q10},MNi(q1) � q1 ,MNi(q2) � q2 ,MNi(q3) � q3 ,
MNi(q4) � q4 , MNi(q5) � q5 , MNi(q6) � q6 ,
MNi(q7) � MNi(q8) � q7, q8 , MNi(q9) � q9 , and
MNi(q10) � q10 .

Patients with confrmed COVID-19 infections are A �

q1, q2, q6, q7, q9, q10  and then (i) ψ
r
(A) � q1, q2, q6, q10 ,

ψr(A) � U, Br(A) � q3, q4, q5, q7, q8, q9 , and ξr(A) � 2/5;
(ii) ψ

l
(A) � q9 , ψl(A) � q1, q2, q3, q6, q7, q8, q9, q10 ,

B(A)l � q1, q2, q3, q6, q7, q8, q10 , and ξl(A) � 1/8; (iii)
ψ

u
(A) � ϕ, ψu(A) � U, B(A)u � U, and ξu(A) � 0; and

(iv) ψ
i
(A) � q1, q2, q6, q9, q10 , ψi(A) � q1, q2, q6, q7,

q8, q9, q10}, B(A)i � q7, q8 , and ξi(A) � 5/7.
According to the proposed fourth type, patients

q1, q2, q6, q9, and q10 are unquestionably infected with
COVID-19 using the current technique, as shown in Table 4.

Example 14. Te presented methodologies are used to make
decisions on heart attacks. Table 5 shows the set of objects
(patients) as q1, q2, q3, q4, q5, q6, q7, q8, q9, q10  collected
from Al-Azhar University’s cardiology department (Hos-
pital of Sayed Glal University, Cairo, Egypt) [11]. It was
shortened to U � q1, q2, q3, q4, q5, q8, q9  since the prop-
erties in rows (objects) are same. Te study covered patients
with a variety of symptoms, and the set of attributes�

{Breathlessness� s1, Orthopnea� s2, Paroxysmal nocturnal
dyspnea� s3, Reduced exercise tolerance� s4, Ankle
swelling� s5} and decision of heart attacks is ruled out or
confrmed�D as illustrated in Table 5.

From Table 5, the symptoms are given as follows:
F(q1) � s1, s2, s3, s4 , F(q2) � s4, s5 , F(q3) � s1, s2, s3,

s4, s5}, F(q4) � s4 , F(q5) � s1, s4, s5 , F(q8) � s1,

s2, s4, s5}, and F(q9) � s1, s3, s4 .
Te relation is given as follows: qnψqm⇔F(qn)⊆F(qm).

Consequently, ψ � (q1, q1), (q1, q3), (q2, q2), (q2, q3), (q2,
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q5), (q2, q8), (q3, q3), (q4, q1), (q4, q2), (q4, q3), (q4, q4), (q4,

q5), (q4, q8)}, (q4, q9), (q5, q3), (q5, q5), (q5, q8), (q8, q3),
(q8, q8), (q9, q1), (q9, q3), and (q9, q9).

Ten, RN(U,ψ) � q1, q3 , q2, q3, q5, q8 ,U, q3, q5,

q8}, q3 , q3, q8 , q1, q3, q9 } and LN(U,ψ) � q1, q4,

q9}, q2, q4 ,U, q4 , q2, q4, q5 , q2, q4, q5, q8 , q4, q9 }.
Hence, MNr(q1) � q1, q3 , MNr(q2) � q2, q3, q5, q8 ,

MNr(q3) � q3 , MNr(q4) � U, MNr(q5) � q3, q5, q8 ,
MNr(q8) � q3, q8 , MNr(q9) � q1, q3, q9 , MNl(q1)

� q1, q4, q9 , MNl(q2) � q2, q4 , MNl(q3) � U, MNl

(q4) � q4 , MNl(q5) � q2, q4, q5 , MNl(q8) � q2,

q4, q5, q8}, MNl(q9) � q4, q9 , MNu(q1) � MNu(q9) �

q1, q3, q4, q9 , MNu(q2) � MNu(q5) � MNu(q8) � q2,

q3, q4, q5, q8}, MNu(q3) � MNu(q4) � U, MNi(q1) � q1 ,
MNi(q2) � q2 , MNi(q3) � q3 , MNi(q4) � q4 ,
MNi(q5) � q5 , MNi(q8) � q8 , and MNi(q9) � q9 .

In Table 5, patients with confrmed heart attacks are
A � q1, q3, q8, q9 . Ten,

(i) ψ
r
(A) � A, ψr(A) � U, Br(A) � q2, q4, q5 , and

ξr(A) � 4/7
(ii) ψ

l
(A) � ϕ, ψl(A) � A, Bl(A � A), and ξl(A) � 0

(iii) ψ
u
(A) � ϕ, ψu(A) � U, Bu(A) � U, and

ξu(A) � 0
(iv) ψ

i
(A) � A, ψi(A) � A, Bi(A) � ϕ, and ξi(A) � 1

From the proposed frst and fourth types, the patients
q1, q3, q8, and q9 have certainly undergone heart attacks,
which is consistent with Table 5. In addition, the fourth type
is a best accuracy and the topology which constructed by
MNi is the best choice for decision making.

6. Conclusion and Future Work

Te current paper examines four diferent kinds of gener-
alization for rough sets which contain four diferent types of
lower and upper approximations that construct by minimal
neighborhoods. Te properties of these approximations are
discussed. Many comparisons have been made between our
generalization and other generalizations.Te approximation
operators pave the way for additional topological advances
to RST and applications. Tere are four topologies estab-
lished through our study. Medical applications are shown in
two examples and used for decision making. In a future
work, these results can be studied in bi-neighborhoods. Also,
this research will be helpful and will open new doors in the
study of topologies which approach rough sets through
minimal neighborhoods, as well as applications for graphs
[2] and in the study of minimal neighborhoods as appli-
cations of these new concepts.
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Table 4: Decision data set.

Patients
Serious symptoms Most common symptoms

Decision COVID-19
s1 s2 s3 s4 s5 s6

q1  Yes Yes No Yes Yes Yes Yes
q2  Yes Yes Yes Yes Yes Yes Yes
q3  Yes Yes No Yes No Yes No
q4  Yes Yes No No No No No
q5  Yes Yes No Yes No No No
q6  Yes No Yes Yes Yes No Yes
q7  No No No Yes Yes No Yes
q8  No No No Yes Yes No No
q9  No No No No No Yes Yes
q10  No No Yes Yes Yes No Yes

Table 5: Decision information data set.

Patients s1 s2 s3 s4 s5 D

q1  Yes Yes Yes Yes No Yes
q2  No No No Yes Yes No
q3  Yes Yes Yes Yes Yes Yes
q4  No No No Yes No No
q5  Yes No No Yes Yes No
q8  Yes Yes No Yes Yes Yes
q9  Yes No Yes Yes No Yes
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