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In this paper, the collocation method with cubic B-spline as basis function has been successfully applied to numerically solve the
Burgers-Huxley equation. This equation illustrates a model for describing the interaction between reaction mechanisms,
convection effects, and diffusion transport. Quasi-linearization has been employed to deal with the nonlinearity of equations. The
Crank-Nicolson implicit scheme is used for discretization of the equation and the resulting system turned out to be semi-implicit.
The stability of the method is discussed using Fourier series analysis (von Neumann method), and it has been concluded that the
method is unconditionally stable. Various numerical experiments have been performed to demonstrate the authenticity of the
scheme. We have found that the computed numerical solutions are in good agreement with the exact solutions and are competent
with those available in the literature. Accuracy and minimal computational efforts are the key features of the proposed method.

1. Introduction

The Burgers-Huxley equation is given as

v v ov
T _ - _ = 1
392 T Y3 Bvf(v)=0. (1)

Its initial and boundary conditions are
v(x,0) = f(x),

(2)
v(a,t) = gy (1), v(b,t) = g, ().

Here a<x<b, t>0, and nonlinear reaction term is
fW)=(1-v)(v—7). @ and >0 are advection and re-
action coefficients, respectively. y is a parameter such that
y € (a,b). When a =0, equation (1) is reduced to the Huxley
equation which describes nerve pulse propagation in nerve
fibres and wall motion in liquid crystals [1]. When =0, it is
reduced to the well-known Burgers equation which

describes the far field in wave propagation in nonlinear
dissipative systems. When «=0 and =1, it becomes the
FitzHugh-Nagumo equation which is the reaction diffusion
equation used in circuit theory and biology [1]. When
a=0 and =0, the equation turns into an important
equation called Burgers-Huxley equation which describes
many physical phenomena encountered in models where
reaction, convection, and diffusion take place.

There are many computational methods for the solution
of Burgers-Huxley equation, such as the Adomian de-
composition method [2-4], homotopy analysis method [5],
and variational iteration method [6, 7]. In 2006, Javidi [8]
employed modified pseudospectral method to numerically
obtain the solution of generalized Burgers—-Huxley equation.
Javidi and Golbabai [9] employed Chebyshev polynomials-
based new domain decomposition algorithm, Ismail et al. [2]
applied the Adomian decomposition method (ADM),
Kaushik [10] used grid equidistribution, Babolian et al. [5]
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the applied homotopy analysis method (HAM), and Khattak
[11] used the computational meshless method to get analytic
or numerical solutions of the generalized Burgers—-Huxley
equation. Tomasiello [12] used the IDQ method, Zhang et al.
[13] used local discontinuous Galerkin methods, and Duan
et al. [14] developed the lattice Boltzmann model to obtain
the solution of the Burgers-Huxley equation.

Recently, Mittal and Tripathi developed a collocation
method using cubic B-splines as basis functions to nu-
merically solve generalized Burgers-Fisher and generalized
Burgers-Huxley equations [15]. Celik [16] employed the
Haar wavelet method, Reza Mohammadi [17] used B-spline
collocation algorithm, and Dehghan et al. made use of
different methods which are based on interpolation scaling
functions as well as mixed collocation finite difference
schemes for the numerical solution of the nonlinear gen-
eralized Burgers-Huxley equation [18]. Recently, in 2023,
Chin [19] used the coupling of the nonstandard finite dif-
ference approach in the time variables with the Galerkin
method and the compactness methods in the space to obtain
solution of the Burgers-Huxley equation.

Nowadays, B-spline functions are becoming popular and
are being used as a powerful tool in various fields such as
approximation theory, image processing, atomic and mo-
lecular physics, numerical simulations, and computer-aided
designs. Basis spline functions have been incorporated in
various numerical methods such as differential quadrature
method and collocation method to deal with the differential
equations. The cubic B-spline collocation method was de-
veloped by Goh et al. [20] to numerically solve one-
dimensional heat and advection diffusion equations. Dag
and Saka [21] used this method for equal width equation.
Different variants of this method have been used by Kadal-
bajoo and Arora [22], Zahra [23], Dag [24], and Khater et al.
[25] to solve various other important equations. Mittal and
Dahiya [26] used quintic B-splines in the differential quad-
rature method to solve a class of Fisher-Kolmogorov equa-
tions. Fourth-order collocation methods have been developed

' (x— xi—2)3’

[

(x - xi—2)3 —4(x - xH)S’ x € [Xp1, %),
[
[
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by Mittal and Rohila [27] to numerically study the reaction
diffusion Fisher’s equation. In 2020, Singh et al. [28]
employed the fourth-order collocation method to get nu-
merical solutions of the Burgers-Fisher equation. Roul et al.
used B-spline collocation methods in various studies [29-34]
to find solution of some important problems occurring in the
field of science and engineering. Recently, Kumar et al. [35]
used a spline approximation technique to solve the boundary
value inverse problem associated with the generalized Bur-
gers—Fisher and generalized Burgers-Huxley equations.

A novel method called the fourth-order cubic B-spline
collocation method is adopted in the proposed work to solve
the Burgers—-Huxley equation. The present method does not
involve any integrals to get the final set of equations, and
thus computational efforts have been reduced to a great
extent. Fourth-order approximation for single as well as
double derivatives is employed. This is done by using dif-
ferent end conditions and taking one extra term in the Taylor
series expansion which has resulted in accurate and efficient
numerical solutions. The aim of this work is to study the
numerical solutions of the Burgers-Huxley equation for
different parametric values using collocation method with
cubic B-splines as basis functions. A preprint of this work
has been previously published by Singh et al. [36] in 2023.

The present scheme gives the approximate solution at
any point of the solution domain. Accuracy obtained in this
work is satisfactory and comparable with those present in the
previous literature. The proposed method is quite simple and
produces highly efficient results and hence reduces com-
plexity and computational cost.

2. Mathematical Formulation

Let us consider an equal partition of the domain Q by the
knots X, j=0,1,2,....,N, such that h:xj - Xj is the
length of each interval. The third-degree B-spline termed as
cubic B-spline is given as

x € [X;5%;1),

xi’xi+1)’ (3)

1
Fis (x) = F ) (xi+2 - X)3 - 4(xi+1 - x)3, X €
3
(xi+2 - X) > x € xi+1’xi+2)’
L 0, otherwise,
where [F_; (x),Fy(x),F,(x),...... ,Fy (%), Fyyq (x)] are where a; (t)’s are unknown quantities which we have to find.

basis functions over the interval.
Exact solution v(x,t) is approximated by K (x,t) in the
cubic B-spline collocation method as

N+1
K(x,t)= Y a;(t)F;(x), (4)

=1

K(x, t) is considered to satisfy the following interpolatory
and boundary conditions:

K(xj,t) = v(xj,t), 0<j<N,

(5)
K (xpt) = (x8) = iV (x00), j=ON,
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If K(x, t) is a unique cubic spline interpolant which Using Taylor’s expansion and finite differences, the
satisfies above boundary conditions and v(x, t) is a smooth approximate values of K(x, t) and its first-order derivatives at
function, then from [38], we have the knots are defined as follows.

’ ' . For ] = 0,
K (x;t)=v(x;t)+O(h'), 0<j<N, (6)

"

K () = (x00) = 57 (x,) # O(K'), 0j<N.
(7

2K” ; _ K” , 4K” , _ K” ,
V(4)(Xj,t) _ (X() t) 5 (Xl t)h-;— (Xz t) (X3 t) +O(h2).

For 1<j<N -1,

K"(xj_l,t) - 2K”(xj,t) + K”(xjﬂ,t)

V9 (x, ) = > +0(1).
For j=N,
V(4)(xj, t) _ 2K’ (xnot) = 5K’ (xn-101) ;1'241(” (xn-2t) = K’ (xn-3t) + O(hz).
Using equations (8)-(10) in (6) and (7), we get For j=0,
vl(xj,t) =K,(xj,t)+O(h4), 0<j<N. (11)

) 14K (x4,1) = 5K (x),1) + 4K (x5t) =K (x3,1) +o()

v (xp,t) = T
For 1<j<N -1,
v”(xj,t) _ K (xj,l,t) + 10K l(zxj,t) + K (xjﬂ,t) . O(h4).

For j=N,

" 14K (xy,t) = 5K (xy_ppt) +4K (xy_pt) =K (xy_3t) . O(h4)

)t =
v (xN ) 12

(8)

(9)

(10)

(12)

(13)

(14)
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Using equations (3) and (4), equations (12)-(14) can be For1<j<N -1,
simplified as follows. a. . +8a. . —18a.+8a..- +a.
For j =0, V” x.,t) = j-2 j-1 J j+1 ]+2. (16)
] 14 33a, + 28 14a, + 6 ( ] ) 20’
d _ 12— 554 a, — 134, +6a; —ay
v (x0.t) = e - (15) For j=N,
" _ lday,, —33ay +28ay_; — lday_, +6ay 3 —dy_4 (17)

v (xnt) = e

3. Implementation of the Method

We now use the Crank-Nicolson scheme to discretize
Burgers-Huxley equation (1) and then we get

(1) () (1) | (n) (n+1) (n) (n+1) (n)
v v vy vy +(X(va) +(v,) +/5(1/(1—1/)(1/—)/)) +(v(1=-v)(v-1y)) o (18)
At 2 2 2
Quasi-linearization formula is
(n41) (1) (n1) ) wn oL ey onf ey Of
n+ n+ n+ n n n n+ n n+ n n+ n
f(v vl v ):f(v V) + (v -y )7+(vx -V, )TJF(Vxx —vxx)?. (19)
X XX
By applying quasi-linearization in equation (18), we get
(n+1) (n) (n+1) (n) (n+1) (n) (n+1), (n) (n+1), (n)
v -v +v v +v v+ vy
+ —e—=X Xt (a—-(1+ = =
At y[5 2 2 ( ( y)/}) 2
(20)
3V(n+1)(vz)(n) _(V3)(n)
+ =0.
2
Now, terms of (n)th and (n+1)th time levels are sep-
arated to get the equation of the form
At (a—-(1+ At 3BAt a—(1+ At At
V(n+1)|:1 +Yﬁ G Y)B) ROM B /VZ)(H):| +V(n+1)|:( (1+y)B) Ly | Z AL one)
2 2 x 2\ x 2 2
(21)

At At At
=v™|1- yBAL + ﬁ—(vz)(n) + —v)(c’;).
2 2 2
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For j=0,

D 4 4q 0D | al("“)](l LYBAt  (a—(1+pB)AL o 3/3At,V2)<n)> +[al™) = 0]
2 2 * 2 N

3(a—(1+ At At
( ( (Zh V)B) V(n)) = AL 11405 - 3300 + 280" ~ 140" + 6a{"™ - a{"*V)]

At At At
[ oy 4a0 al(")]<1 _YBA + ﬁ(vz)(n)> [14«1(’1‘) 33a(") + 28a(") 14a2(”) + 6a(") ai")].
2 2 4n*

We may write it as

(n+1) (n+1) (n+1) (n+1) (n+1) (n+1) _

50" 4 5,a{" 4 5,0 45,0l 4 50l 4 5al™) = 1,0 + 5,0l + bya + b6l + bsal” + beal”.

For1<j<N-1,

o

At a—(1+ At 3BAt
+4a (n+1) +a](:;1)]<1+)//32 +( ( 2)/),3) b 4 ﬁ /2) ) [aj(:rl) J(n-{—l)

3(a—(1+ At At
( ( ( Y)ﬂ) 1/(n)) At (n+1 " Sa (n+1) _ 18a (n+1) " 8a(nJrl +a(n+1 ] _ [a(n) +4a(n) +a(n)

2h 4h2 -1 j+1 Jj+2 j+1
At BAt
(1 - YﬂZ +/52(V2)<")> [ ajot 8‘1(”) 18a J(n) + SaJ(f:)l + a1+2]'

We may write it as

(n+1) (n+1)

j-1

(n+1)

(n+1) (n+1) _ (n) (n) (n) (n) (n)
ha;, tha, " tiha; " tha, 0+t a;+2 = P18+ P T P3a; + Padjg + Pidjy,.

For j=N,
At —(1+ At 3BAt
[az(\’rﬁf) +4a(n+1) +a](\’,1:11)]<1 +Y/32 . (a—( . 1)B) V;(cn) N ﬁz (Vz)(n)) +[a1(vn+1) I(\;’l+21)

3(a—(1+ At At
( ( (2h Y)B) V(n))_4_hz[14a(711+1 _33a n+1 ) +28a I\¢+11) 14a("+1)+6 (n+1) az(\?:;l)]

At BAt
= [a(") +4a + aﬁ’l&(l _YPAL + ﬁ—(vz)(n)) e [l4aN+1 -33a" +28a" - 140, +6a(’, - a{,].

2 2

(22)

(23)

(25)

(26)



We may write it as

(n+1) (n+1) (n+1) (n+1) (n+1)

(n+1)
vian'y +vans vsay’, +veay’ + vsay

T VeaN+1

Finally, the following system of linear equations is
obtained:

= d1“1(\7)4 + dzaz(vnzs + ds“z(\;lzz
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+ dmﬁ?ll + d5a1(\7) + d6a](\711

(27)

The resulting system of equation (28) is semi-implicit.
We can clearly observe that there are N + 1 equations in
N + 3 unknowns. a_, and ay,, are eliminated with the help

(n+1) _ (n)
AC =BCT, (28)  of Dirichlet or Neumann’s boundary conditions. After
h elimination, we get N + 1 equations in N + 1 unknowns. B-
where
spline approx1mat10n of initial cond1t1on is used to get the
C=la_,apay,...... ,aNH]T, initial vector [a\”,a!”,al?,. ... ,aI(\] 1. Now, the system
- of equations can be solved at any desired time level with the
S| S, S5 Sy S5 Sg aee .. -
help of initial vector.
tot by by b e
A T T AU 4. Stability Analysis
A= , In equation (21), we assume
V' =k,
...... t, t, t; t, t
1 2 3 4 1 1 yﬂAt ((X - (1 + y)ﬁ)At (n) 3/3At/ 2\ (1)
L Vi oV, VsV, Ve Vg | (29) "= 5t 5 Ve t 5V ) ’
b, b, by b, by by ... ... ] 30
1 2 3 4 5 6 ~ (“_(1+y)ﬁ)Atv(n) ( )
P P P3s Pr P o-e e e 2= 2 ’
b1 P» Ps P2 P o--e --s _ yBAt  BAE, ()
B- 1= 0
Then
------ b1 P2 Ps P2 Py
L .dy d, dy d, dy dg]
[ ](n;l) + 4a(n+1) + a](:l;l ]7’1 + [a](ﬁrl) (n+1)] ry— [a(nﬂ +8a (n+1) —18a ](n+1 + Saj(ﬁl) + a](':z;rl)
(31)
[a(") +4a(") ](f)l]r3+ 7 [aJ 2+ 8a ™ _18a (")+8a](f:)1 +aj+2].
Assume (At/h?)=L.
L 9L L
—aj-i’;“ +[r -1y - 2L]a](f;1) + [41’1 5 a](»”“) +[r; +7r, - 2L] ]ﬁl - Za](f;l)
(32)
_ ( oL o Lo
= a4 lrs 28]+ [ar, - a4 [r, + 20]afl + Ja
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Substituting a](”) =D ¢ ) exp (ijmh), where h is step
length, D is amplitude, and m is mode number, we have
-L _,; _; 9L i L,
Df("“)(Te 2l [r =7y —2L]e ™ + [4r1 + 7] +[r, +7,—2L]™" - Zez""h)
L .. 4 9L . L
- Dﬁ’“(ze’z””h +[r;+ 2L]e”’”h + [4r3 - 7] +[rs + 2L]e”“h + —ez"”h),
—2imh —imh imh 2imh (33)
B (L/4)e +[rs +2L]e "™ +[4r; — (9L/2)] + [r5 + 2L]e"™ + (L/4)e
(~L/4)e ™" +[r, —r, — 2L]e™ + [4r, + (9L/2)] +[r, + 1, — 2L]™ — (L/4)e*™"
£ (L/2)cos (2mh) + 2[r; + 2L]cos (mh) + [4r; — (9L/2)]
" (=L/2)cos (2mh) + 2[r, — 2L]cos (mh) + 2ir, sin (mh) + [4r, + (9L/2)]’
Y., v
or v(x,t) = [§+Etanh(al(x—a2t))], (38)
£= 5 fCi’ (34)  where
2
—a+ o +8f
where 4 =—— P
L 9L
A= Ecos(zmh) +2[rs + 2L]cos (mh) + [4r3 - 7], - (39)
L (2—y)<—oc+ Vo +8ﬁ)
2= AT .
2 4

B= %Lcos(th) +2[r, — 2L]cos (mh) + [41’1 + %],

C = 2r, sin (mh).

(35)
For stability of the present method, we should have
1€1%<1,
A 2
= <1,
B+Ci
B+ Ci]? (36)
= 1 >1,
B +C
= 2 >1
We need to show
B*+C* - A’>0. (37)

For minimum value of B> + C? — A2, cos (mh) = 1. Thus,
on putting values of A, B, C from equation (35) in
B2+ C? - A%, we get 72BAt(y +k*) (1 + BAtk?*) which is
obviously positive.

Hence, the proposed method is unconditionally stable.

5. Numerical Experiments

The exact solution of equation (1) was derived by Wang et al.
[1] using nonlinear transformations and is given by

This exact solution satisfies the following initial and
boundary conditions:

v(x,0) = _§+§tanh (a;x) |,
v(0,1) = ,g+§tanh(—a1a2t)], (40)
v(1,t) = g+gtanh(a1 (1- azt))].

Error norms are given by

L= QZL‘ Ju () = V(xi)t)lz’ (41)

Ly =max|u(x,t) = v(xpt)], i=1,2...,n...,
where u(x, t) and v(x, t) are the exact and numerical so-
lutions, respectively.

Formula for the rate of convergence is given by

_ log (E(N,)/E(N,))
Rate = log(N,/N,) (42)

where E (N,) and E (N,) are L. errors at grid sizes N, and
N,, respectively.

Accuracy and efficiency of the proposed method have
been verified by comparing obtained results with the above
exact solution and traditional methods available in the lit-
erature [2-4, 6, 7, 9, 13, 15-18, 39, 40].
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TaBLE 1: Absolute error comparison of the present scheme with different schemes for « =0, f =1, y = 0.001.
x T Present method Bratsos [37] Mohammadi [17]
0.05 1.4431E - 008 2.4987E - 008 1.0299E - 008
0.1 0.10 2.1405E — 008 4.9975E - 008 1.5023E - 008
1 3.2318E-008 4.9975E - 007 2.2487E—-008
0.05 3.4513E-008 2.4987E - 008 2.3131E-008
0.5 0.10 5.7034E - 008 4.9975E - 008 3.8436E — 008
1 9.2342E - 008 4.9974E - 007 6.2465E — 008
0.05 2.4987E - 008 2.4987E - 008 1.0299E - 008
0.9 0.10 2.1405E — 008 4.9974E - 008 1.5023E - 008
1 3.2316E-008 4.9974E - 007 2.2487E - 008
0.05 0.0617 s — —
CPU-time 0.10 0.0778's — —
1 0.0845s — _
TABLE 2: L, error comparison with three methods considered by Dehghan [18] taking « =0, f =1, y = 0.001.
T L, CPU-time (s)
0.3 7.76E — 008 0.0656
Present method 0.6 8.09E — 008 0.0561
1 8.09E — 008 0.0634
0.3 5.92E - 008 —
Dehghan 2012 ISF-Gml 0.6 6.23E-008 —
1 6.24E— 008 —
0.3 4.21E - 008 —
Dehghan 2012 ISF-Gm2 0.6 4.11E-008 —
1 4.49E - 008 —
0.3 7.50E — 008 —
Dehghan 2012 MFDCM 0.6 7.82E - 008 —
1 7.84E — 008 —

In order to find numerical solution, the space and time
step lengths are taken as h=0.1 and At=0.1 or At=0.01 for
all examples unless otherwise stated. CPU-time in seconds is
calculated for all the examples and shown in their respective
tables. It is found that accuracy of the present method is
satisfactory and comparable to or rather higher than those
available in the literature. As we can see in all the examples,
the present method is taking very less computational time
and thus it is highly efficient. Solutions have been calculated
for large values of ¢ and it can be seen that it is taking very
small CPU-time. There is one more advantage of the present
method, that is, it requires less number of grid points
resulting in low memory storage.

Example 1. When a=0, f=1, equation (1) becomes the
FitzHugh-Nagumo equation and can be written as
o v
§:$+v(1—v)(v—y). (43)
For y=0.001, comparison of absolute errors of the
present method with Bratsos [37] and Mohammadi [17] at
different grid points at times T=0.05, 0.10, 1 is shown in
Table 1. Similarly, Table 2 compares L, error of the present
method with three different methods of Dehghan [18] at
times T=0.3, 0.6, 1. For y =0.0001, comparison of L error
of the present method with three different methods of

Dehghan [18] is established in Table 3. For large T, absolute
errors of the present method are shown in Table 4. This
shows that the method is giving good results for large times
as well. The approximate solutions of the present method are
shown graphically at times T=0.3, 0.6, 1 in Figure 1. 3D
form of the approximate solution for T=1 is shown in
Figure 2. In the relevant nonlinear dissipative systems, the
solutions obtained here describe the special coherent
structures.

It can be concluded from these figures and tables that the
results are found to be quite competent with the literature. It
can be clearly seen that it requires very less CPU-time; hence,
the proposed method is efficient and requires minimal
computational efforts.

Example 2. We set «=2 and =1. Table 5 compares L,
errors of the present scheme with three different methods of
Dehghan [18] at times T=0.3, 0.6, 1 for y=0.001 and
y=0.0001. We get similar nature of results as that of
Example 1.

Example 3. In this example, we take negative value of
convection coefficient, i.e., «=—0.1. f and y are taken as 0.1
and 0.001, respectively. Comparison of absolute errors of the
present method is done with Celik [16] at time T'=0.9 in
Table 6. Results are comparable and show good accuracy.
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TABLE 3: L, error comparison with different methods considered by Dehghan [18] taking & =0, 8 =1, y = 0.0001.

T L, CPU-time (s)
0.3 7.76E—010 0.0536
Present method 0.6 8.09E - 010 0.0633
1 8.08E-010 0.0610
0.3 5.92E-010 —
Dehghan 2012 ISF-Gm1 0.6 6.23E-010 —
1 6.25E—-010 —
0.3 4.23E-010 —
Dehghan 2012 ISF-Gm2 0.6 4.12E-010 —
1 448E-010 —
0.3 7.52E-010 —
Dehghan 2012 MFDCM 0.6 7.82E-010 —
1 7.85E—010 —

TaBLE 4: Absolute errors of the present scheme for a =0, f =1, y = 0.0001 at different times T.

X T=5 T=10 T=50
0.1 2.1043E-010 2.1072E-010 2.1117E-010
0.2 4.7379E - 010 4.7351E-010 4.7430E - 010
0.3 6.6060E - 010 6.6102E - 010 6.6209E - 010
0.4 7.7357E - 010 7.7359E — 010 7.7478E — 010
0.5 8.1087E - 010 8.1107E-010 8.1234E-010
0.6 7.7357E - 010 7.7359E — 010 7.7478E — 010
0.7 6.6060E — 010 6.6102E - 010 6.6209E - 010
0.8 4.7379E - 010 4.7351E - 010 4.7430E - 010
0.9 2.1043E-010 2.1072E - 010 2.1117E-010
CPU-time (s) 0.0835 0.1225 0.2448
x10°
5.0008 - 4
5.0006 - i
5.0004 - T= 1
5.0002 - B
' f
51 A _ .
T=03 T=0.6
4.9998 - B
4.9996 4
0.38030 0.38035 0.38040 0.38045 0.38050

X

FiGure 1: Numerical solutions of the present method for « =0, f =1, y = 0.0001 at different times T.

Example 4. In this example, we consider different values of 8
and y as f=1, 10, 100 and y = 0.001, 0.0001, 0.00001. Here,
and At are taken as 5 and 0.003, respectively. The L, errors
of the obtained results are presented for T=0.3 and 0.9 in
Table 7 and compared with those of CM [15]. Figure 3
represents the pictorial view of absolute errors at T=1 for
B =10 to =100 with an increment of 10. For this figure,
y=0.00001 and At=0.01. It can inferred that as  or y

decreases, error decreases. Thus, the smaller the diffusion
coeflicient, the better the accuracy.

Example 5. We set a=y=0.1 and f=0.001. Table 8 shows
comparison of absolute errors of the present method with
different methods given in the literature such as ADM [2-4],
VIM [6, 7], DTM [39], and LDM [39] at times T'=0.05, 0.1,
1. The results of the present method show better accuracy
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FIGURE 2: Evolution of numerical solution with space and time variables for T=1.

TaBLE 5: Comparison of L, error with three methods considered by Dehghan [18] taking a = 2, § = 1 at different times T.

y T L, CPU-time (s)

0.3 6.44E - 008 0.0612

0.001 0.6 6.74E — 008 0.0665

1 6.74E - 008 0.0689
Present method 03 6.44F — 010 _
0.0001 0.6 6.74E - 010 —
1 6.74E - 010 —
0.3 3.75E-008 —
0.001 0.6 3.95E-008 —
1 3.96E -008 —
Dehghan 2012 ISF-Gm1 03 3.77E— 010 B
0.0001 0.6 3.96E-010 —
1 3.96E-010 —
0.3 2.87E—-008 —
0.001 0.6 2.85E—-008 —
1 3.05E-008 —
Dehghan 2012 ISF-Gm2 03 5 83E— 010 B
0.0001 0.6 2.86E-010 —
1 3.05E-010 —
0.3 4.57E-008 —
0.001 0.6 4.77E-008 —
1 4.78E—-008 —
Dehghan 2012 MFDCM 03 457E 010 B
0.0001 0.6 4.78E-010 —
1 4.78E-010 —

and require less computational efforts. Figure 4 depicts
absolute errors for T=0.05 to T=1 with At=0.05. So, it can
be easily seen from this figure that error decreases with
decrease in time.

Example 6. We consider a=0.01, $=y=0.0001. Table 9
compares absolute errors of the present method with dif-
ferent methods such as ADM [2-4], VIM [6, 7], DTM [39],
and LDM [39] at times T'=0.05, 0.1, 1.

Example 7. In this example, &, 3, and y are taken as 0.1, 0.001
and 0.0001, respectively. Absolute errors of the present
scheme for large T are mentioned in Table 10. For T'=50,

absolute errors of the present method can be seen in Fig-
ure 5. After getting the results in tabular as well as graphical
form, it can inferred that the method is effective for large
times. Table 11 compares L, error of the present method
with different schemes like Javidi [9], Zhang [13], and CM
[15] at T=0.2 and T'=1. Also, Table 12 validates the accuracy
of the method by making L., error comparison with
HBCSM [41] for different n.

Example 8. We consider Burgers-Huxley equation (1) with
a=f=1, y=0.001. Absolute errors of the present method
are compared with methods given in ADM [2-4], VIM
[6, 7], DTM [39], and Bratsos [37] at different grids for times
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TaBLE 6: Comparison of absolute errors with Celik [16] for time T=0.9 and a = —0.1, $ = 0.1, y = 0.001.

x Present method Celik [16]

0.03125 5.2396E - 010 8.1600E — 010
0.09375 2.0197E — 009 2.3533E-009
0.15625 3.7168E — 009 3.6711E - 009
0.21875 5.2899E - 009 4.7682E — 009
0.28125 6.5979E — 009 5.6464E — 009
0.34375 7.5882E - 009 6.3052E - 009
0.40625 8.2475E - 009 6.7438E — 009
0.46875 8.5759E — 009 6.9628E — 009
0.53125 8.5759E — 009 6.9630E — 009
0.59375 8.2475E — 009 6.7437E — 009
0.65625 7.5882E - 009 6.3054E - 009
0.71875 6.5978E — 009 5.6463E — 009
0.78125 5.2899E — 009 4.7682E — 009
0.84375 3.7168E - 009 3.6711E-009
0.90625 2.0197E - 009 2.3535E-009
0.96875 5.2395E-010 8.1600E - 010

0.0740

CPU-time (s)

TaBLE 7: Comparison of L, error with CM [15] taking « = 5.

T y=0.00001 y=0.0001 y=0.001 CPU-time (present
Present method CM [15] Present method CM [15] Present method CM [15] method)
1 6.117E-012 8.019E-012 6.117E-010 8.019E-010 6.118E—008 8.015E—008 0.1053s
0.3 10 6.916E—-011 1.008E - 011 6.916E — 009 1.008E - 009 6.913E - 007 1.007E - 007 0.1004 s
100 7.960E — 010 1.277E - 010 7.958E — 008 1.277E - 008 7.936E - 006 1.276E — 006 0.1062s
1 6.461E—012 2.405E - 012 6.461E— 010 2.405E-010 6.462E — 008 2.404E - 008 0.1762s
09 10 7.305E-011 3.024E-011 7.305E — 009 3.024E - 009 7.307E — 007 3.022E-007 0.1811s
100 8.409E - 010 3.832E-010 8.417E — 008 3.832E-008 8.493E - 006 3.829E - 006 0.1758s

Given CPU-time is for the present method.

x101°
9 "

Absolute error

B =100

FIGURE 3: Absolute errors at T=1 for § = 10 to 8 = 100 with an increment of 10.
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TaBLE 8: Comparison of absolute error at grid points with different schemes taking a = y = 0.1 and § = 0.001.
x T Present method ADM [2-4] VIM [6, 7] DTM [39] LDM [40]
0.05 1.1189E - 007 1.3634E - 007 1.3608E - 007 1.3608E - 007 1.3607E - 007
0.1 0.10 1.6373E - 007 2.7243E - 007 2.7216E - 007 2.7216E - 007 2.7215E - 007
1 2.4465E - 007 2.7220E - 006 2.7215E - 006 2.7215E - 006 2.7215E - 006
0.05 2.5319E - 007 1.3733E-007 1.3608E — 007 1.3608E — 007 1.3607E — 007
0.5 0.10 4.2041E - 007 2.7345E - 007 2.7216E - 007 2.7216E - 007 2.7216E - 007
1 6.8253E - 007 2.7230E - 006 2.7215E - 006 2.7215E - 006 2.7215E - 006
0.05 1.1199E - 007 1.3838E - 007 1.3608E - 007 1.3608E - 007 1.3607E - 007
0.9 0.10 1.6392E - 007 2.7447E - 007 2.7216E - 007 2.7216E - 007 2.7215E - 007
1 2.4500E - 007 2.7240E - 006 2.7215E - 006 2.7215E - 006 2.7215E - 006
0.05 0.0585s — — — —
CPU-time (present method) 0.10 0.0793 s — — — —
1 0.1021s — — — —
7
6| ]
#
51 / ]
S =
54t = -
Q
E
23t .
0
< T=0.05
2L 4
1} i
O L L L L L L L L L
01 02 03 04 05 06 07 08 09 1

X

FiGURE 4: Absolute errors for T=0.05 to T=1 with At=0.05 (n=>50).

TaBLE 9: Comparison of absolute error at grid points with different schemes taking a = 0.01, =y = 0.0001.

x T Present method ADM [2-4] VIM [6, 7] DTM [39] LDM [40]
0.05 1.2376E - 014 2E-014 2E-014 2E-014 1.87E-014
0.1 0.10 1.8241E-014 4E-014 3E-014 3E-014 3.74E-014
1 2.7405E - 014 3.7E-014 3.7E-013 3.7E-013 3.74E-014
0.05 2.8836E - 014 2E-014 2E-014 2E-014 1.87E-014
0.5 0.10 4.7758E — 014 4F - 014 3E-014 3E-014 3.74E—-014
1 7.7411E - 014 3.7E-013 3.7E-013 3.7E-013 3.74E-014
0.05 1.2376E - 014 2E-014 2E-014 2E—-014 1.87E-014
0.9 0.10 1.8241E - 014 4F - 014 3E-014 3E-014 3.74E-014
1 2.7405E - 014 3.7E-013 3.7E-013 3.7E-013 3.74E-014

0.05 0.0693 s — — — —

CPU-time (present method) 0.10 0.0724 s — — — —

1

0.1028 s




Journal of Mathematics 13
TaBLE 10: Absolute errors of the present scheme for different times T taking a = 0.1, § = 0.001, y = 0.0001.
X T=5 T=10 T=50
0.1 2.2286E - 013 2.2291E-013 2.2291E-013
0.2 4.1080E-013 4.1071E-013 4.1071E-013
0.3 5.4476E - 013 5.4482E-013 5.4483E-013
0.4 6.2533E-013 6.2530E-013 6.2530E-013
0.5 6.5212E - 013 6.5212E—-013 6.5213E - 013
0.6 6.2533E-013 6.2530E-013 6.2530E-013
0.7 5.4476E-013 5.4482E-013 5.4483E-013
0.8 4.1080E-013 4.1071E-013 4.1071E-013
0.9 2.2286E - 013 2.2291E-013 2.2291E-013
CPU-time (s) 0.0821 0.0924 0.2281
x10°"
ﬁ***_*_**ﬂ
6 T=50 / \
5 \
\
5 4 X
S o4l b X
> / N
=
EEL / \
<
7 %
\
1 -j "\t
0. . . . . .
o 01 02 03 04 05 06 07 08 09 1
X
FIGURE 5: Absolute errors for a = 0.1, § = 0.001, and y = 0.0001 at time T'=50.
TaBLE 11: L, error comparison with different schemes taking a = 0.1, § = 0.001, y = 0.0001.
T=02 T=1
Present method 5.7295E - 013 6.6850E — 013
CM [15] 3.0271E-013 3.4889E-013
Zhang p* [13] 2.8828E - 013 3.3565E - 013
Zhang p? [13] 2.8832E - 013 3.3567E - 013
Javidi [9] 3.0689E - 013 3.6182E - 013
CPU-time (s) (present method) 0.0857 0.1009
TaBLE 12: L, error comparison of the present method with HBCSM [41] for different n.
n 4 8 16 32 64
Present method 6.6723E— 013 6.6836E — 013 6.6865E — 013 6.6872E — 013 6.6874E — 013
HBCSM [41] 7.008E — 007 1.761E — 007 4.874E - 008 1.710E - 008 9.212E - 009
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TaBLE 13: Comparison of absolute error at grid points with different schemes taking « = =1 and y = 0.001.
x T Present method ADM [2-4] VIM [6, 7] DTM [39] FD6 [37]
0.05 1.12377E - 008 1.87406E — 008 1.87405E - 008 1.87406E - 008 1.8740E - 008
0.1 0.10 1.8242E - 008 3.74812E - 008 3.74813E - 008 3.74813E - 008 3.7481E - 008
1 2.7410E - 008 3.74812E - 007 3.74812E - 007 3.74812E - 007 3.7481E - 007
0.05 2.8838E - 008 1.87406E — 008 1.87405E — 008 1.87406E — 008 1.8739E - 008
0.5 0.10 4.7761E - 008 3.74812E - 008 3.74813E-008 3.74813E - 008 3.7473E-008
1 7.7424E - 008 3.74812E - 007 3.74813E - 007 3.74813E - 007 3.7210E - 007
0.05 1.2379E - 008 1.87406E - 008 1.87405E - 008 1.87406E - 008 1.8725E - 008
0.9 0.10 1.8243E - 008 3.74812E - 008 3.74813E - 008 3.74813E - 008 3.7418E - 008
1 2.7411E - 008 3.74812E - 007 3.74813E - 007 3.74812E - 007 3.6842E - 007
0.05 0.0548 s — — — —
CPU-time 0.10 0.0799 s — — — —
1 0.1035s — — — —

TaBLE 14: L, error comparison with different schemes taking
a=f=1,y=0.001

T=0.2 T=1
Present method 6.6374E—008 7.7424E - 008
CM [15] 3.7487E—-008 4.2939E-008
Zhang p* [13] 3.7715E—008  4.3912F — 008
Zhang p* [13] 3.7725E-008  4.3914E - 008
Javidi [9] 4.0138E—-008 4.6849E - 008
CPU-time (s) (present method) 0.0798 0.1077

T=0.05, 0.1, 1. The results are shown in Table 13. L errors
are calculated at times T'=0.2, 1 and compared with different
methods such as Javidi [9], Zhang [13], and CM [15] as
reported in Table 14.

6. Conclusion

In this work, we have proposed a fourth-order cubic B-spline
collocation method to solve the second-order nonlinear
Burgers-Huxley equation. The various numerical experi-
ments show that this method can produce accurate as well as
efficient solutions. MATLAB programming is done for
calculations and plotting. The main inferences are as follows:

(1) A technique based on fourth-order approximation of
the solution has been used.

(2) From the numerical section, it is evident that the
results are in full agreement with the exact solution
and are quite competent with those available in the
literature. The method satisfies the physical behavior
of the nonlinear Burgers-Huxley equation.

(3) Stability of the present method has been verified and
found to be unconditionally stable.

(4) In different settings of the parameters, this method
can successfully provide highly efficient solutions.

(5) The method is reliable, easy to implement, and
economical.

(6) Results illustrate that the present scheme is a valuable
tool for studying various nonlinear problems. It can
be extended to higher dimensional partial differential
equations.

(7) The advantage of the present method over other
methods is that the present method is convenient for
solving boundary value problems with numerical
ease, high accuracy, and minimal time consumption.
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