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Tis paper presents a three-dimensional continuous time dynamical system of three species, two of which are competing preys and
one is a predator. We also assume that during predation, the members of both teams of preys help each other and the rate of
predation of both teams is diferent. Te interaction between prey and predator is assumed to be governed by a Holling type II
functional response and discrete type gestation delay of the predator for consumption of the prey. In this work, we establish the
local asymptotic stability of various equilibrium points to understand the dynamics of the model system. Diferent conditions for
the coexistence of equilibrium solutions are discussed. Persistence, permanence of the system, and global stability of the positive
interior equilibrium solution are discussed by constructing suitable Lyapunov functions when the gestation delay is zero, and there
is no periodic orbit within the interior of the frst quadrant of state space around the interior equilibrium. As we introduced time
delay due to the gestation of the predator, we also discuss the stability of the delayed model. It is observed that the existence of
stability switching occurs around the interior equilibrium point as the gestation delay increases through a certain critical
threshold. Here, a phenomenon of Hopf bifurcation occurs, and a stable limit cycle corresponding to the periodic solution of the
system is also observed.Tis study reveals that the delay is taken as a bifurcation parameter and also plays a signifcant role for the
stability of the proposed model. Computer simulations of numerical examples are given to explain our proposed model. We have
also addressed critically the biological implications of our analytical fndings with proper numerical examples.

1. Introduction

In population dynamics, prey-predator coordination con-
tributes a decisive responsibility through the last few decades
[1, 2]. Te dynamical relationship between predators and
their preys has been recognized as an important topic in
theoretical ecology since the discovery of the famous Lot-
ka–Volterra equation. In ecosystem, prey-predator re-
lationship contributes an imperative role. During the frst
World War, Lotka and Volterra symbolized mathematical
appearance of prey-predator system [2, 3]. Since then, a huge

number of research works have been carried out by fol-
lowing their mathematical expression. Hou [4] considered
the permeance for general Lotka–Volterra model along with
time delay, cooperation, and competition. Pal et al. [5]
studied one-prey and one-predator harvesting system with
the imprecise biological parameters. Te nonautonomous
Lotka–Volterra competition model is presented by Ahmed
[6] and May [7] who discussed some simple mathematical
models along with some complicated dynamics. Tere are
a few approaches to signify prey-predator relations, for
instance competition [8] and cooperation [3].
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Te stability and bifurcation investigation of prey-
predator structure are determined by the functional re-
sponse. In modelling the prey-predator structure, functional
response makes a crucial contribution. Tere are several
categories of functional responses in the subsistence liter-
ature [1, 2]. Holling category I functional response is cat-
egorized mathematically via a straight line through the
origin [9, 10]. In the same way, the mathematical expression
of Holling type II function is specifed by ex(f + x)− 1 where
e, x, and f have their respective meanings [9, 11–13].

A huge number of ecologists have premeditated prey-
predator scheme by means of Holling category I functional
response. In analysing the ecosystem, researchers have traced
more information on two-dimensional prey-predator structure
used for an elongated time. Food chain dynamics was discussed
by Kuznetsov et al. [14] and Li et al. [15]. Srinivasu et al. [16]
studied the consequences of assigning additional food on the
dynamical system. Bandyopadhyay et al. [17] elucidated the
dynamics of autotroph-herbivore ecosystem along with nu-
trient recycling. Teoretical ecologists were avoiding three or
more dimensional species model system for an elongated time.
It is mainly because higher dimensional models incorporate
a greater number of diferential equations which make it tricky
to study the model structure. However, in a real ecosystem,
higher dimensional models are very much imperative. Con-
sequently, especially three-dimensional models are becoming
more signifcant in diferent branches of ecology and eco-
system. Erbe et al. deals with the three-dimensional food chain
model where mutual interference among predators and time
delay due to gestation are proposed [18]. Fredman et al.
presented a competition model involving three species [19].
Te dynamical behavior of mussel and fsh population is
explained by Gazi et al. [20], and Maiti et al. [21] discussed the
tritrophic food chain system with discrete time lag. Maiti et al.
[22] extended the work and studied the efectiveness of bio-
control of pests in tea plants. Pal et al. [23] studied the infuence
of uncertainties in a food chain system. Pal et al. [24] presented
a one predator and two prey systems by using fuzzy number
and interval as biological parameters. Te dynamical behavior
of a one predator and two prey systems along with predator
harvesting is studied by Gakkhar et al. [25].

Stage-structure-based prey-predator demonstrations by
way of gestation time lag due to adulthood of the species are
ornately discussed by numerous researchers. Bifurcation
analysis of predator-prey models with the time lag is elu-
cidated by Pal et al. [26] and Zhang [27]. Prey-predator
system with discrete time lag and harvesting of the predator
species is studied by Misra et al. [28], and stage-structured
system of prey-predator with time lag for gestation is pre-
sented by Bandyopadhyay et al. [29]. Freedman et al. [30]
presented Gauss prey-predator system including mutual
interference and gestation time lag. Tis type of depiction is
ended by inserting time delay in the diferential equation.
Generally, when predator species munch through the prey
species, alteration of prey biomass into predator biomass is
not instant. Tis necessitated some time lag for the alter-
ation. Consequently, prey-predator-based holdup co-
ordination is very much indispensable in mathematical
ecology.

Naik et al. [31] recently introduced a two-dimensional
discrete time chemical model with the subsistence of its fxed
points; along with this, the fip and generalised fip bi-
furcations are identifed for this system. Te 1- and 2-
parameter bifurcations of discrete time predator-prey
model with the mixed functional response are discussed
by Naik et al. [32]. Naik et al. [33] investigated the complex
dynamical aspects of discrete-time Bazykin–Berezovskaya
predator-prey system along with strong Allee efect.

A three-dimensional prey-predator model where two
prey groups help each other from the predator group is
discussed by Elettreby [3] and Tripathi et al. [34, 35] ex-
tended the work adding the competitive interaction among
prey groups when there is no predator group present.

Following the works of Elettreby [3] and Tripathi
[34, 35], in this contemporary circumstance, we deem
a three-dimensional prey-predator (two prey teams and
one predator team) structure with help and discrete type
gestation delay of the predator. Holling type II functional
rejoinder is used for interface amid prey squads and
predator squad. In nonappearance of predator, the prey
teams fght with apiece other for widespread food
wherewithal. Once more, when prey teams are assaulted
by the predator, then two prey species help each other for
defensing them from predator. Also, after chomp through
the prey, the escalation of predator species is not im-
mediate, and it requires some time insulate for the
exchange.

In this paper, we have discussed a three-dimensional
predator-prey model with logistic equation where the prey
species are competing with each other for the essential el-
ements, e.g., food and space, and also, two teams of prey
species are helping each other at the time of predation. To
the best of our knowledge, all these above factors, at the same
time, have not yet used.

Rest of the paper is presented in the following manner:
research gaps are presented in Section 2. Mathematical
portrayal of our projected structure is carried out in Section
3. Section 4 presents the positivity, boundedness, and per-
manence of our planned model. Behavior of the model in
nonappearance of delay is described in Section 5. Behavior of
our planned model in presence of delay is depicted through
Section 6. Numerical illustrations through graphical staging
are presented in Section 7. General discussion about our
proposed model system is conducted in Section 8. Con-
cluding remark is delivered in Section 9.

2. Research Gaps

Diferent types of prey-predator models along with diferent
types of factors are analysed by many researchers. To discuss
their work in a simplifed way, we have presented a table
which briefy explains the work carried out till now. In this
table, the comparative discussion has been carried out in
a tabular form which gives a quick overview about the re-
search gaps. We have categorised the work on six main
terms, viz., competition, mutualism, time delay, one
predator-two preys, logistic equation, and Holling type-II
functional response. From Table 1, it is clear that all the
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factors have never been used at the same time by any re-
searchers, but all these conditions are used in our
proposed model.

3. Mathematical Portrayal of the
Model Structure

Our anticipated mathematical model is supported in the
subsequent suppositions:

(i) In nonexistence of the predator, both the preys are
budding logistically

(ii) In nonattendance of the predator, two teams of
preys fght with each other for widespread
wherewithal

(iii) Two teams of preys are plateful themselves for the
fortifcation from their attackers

(iv) Prey populace augmentation rate is abridged due
to the consequence of predation which is deliberate
by a term comparative to the prey and predator
populations

(v) Predator’s death is cropped up due to non-
appearance of any prey teams

(vi) Tere might be antagonism amid the predator
individuals due to insufcient quantity of food
supply

(vii) For the development of predators, a time lag l is
assumed

(viii) Our wished-for model is reserved only by two
preys and one widespread predator

According to the suppositions (i)–(viii), our anticipated
model structure can be articulated mathematically in the
subsequent approach.

dXp(t)

dt
� ζ1Xp(t) 1 −

Xp(t)

ξ1
􏼠 􏼡 − ζ2

Xp(t)

μ + μ1Xp(t)
Xr(t) − ζ3Xp(t)Xq(t) + ζ4Xp(t)Xq(t)Xr(t),

dXq(t)

dt
� 81Xq(t) 1 −

Xq(t)

ξ2
􏼠 􏼡 − 82

Xq(t)

ρ + ρ1Xq(t)
Xr(t) − 83Xp(t)Xq(t) + 84Xp(t)Xq(t)Xr(t),

dXr(t)

dt
� − ϕ1Xr(t) − ϕ2X

2
r(t) + ϕ3

Xp(t − l)

μ + μ1Xp(t − l)
Xr(t) + ϕ4

Xq(t − l)

ρ + ρ1Xq(t − l)
Xr(t),

(1)

by means of the preliminary conditions

Xp(θ) � ψ1(θ) ≥ 0, θ ∈ [− l, 0); ψ1(0)> 0,

Xq(θ) � ψ2(θ) ≥ 0, θ ∈ [− l, 0); ψ2(0)> 0,

Xr(θ) � ψ3(θ) ≥ 0,

(2)

where Xp(t) denotes the population density of the frst prey,
Xq(t) denotes that of the second prey, and Xr(t) denotes the
population density of predator species; ξ1 and ξ2 are envi-
ronmental carrying capacity of prey species Xp and Xq,
respectively; ζ1 and 81 put up intrinsic augmentation rates of
Xp and Xq correspondingly; ζ2 and 82 correspond to the per

capita decrease rate of Xp and Xq correspondingly; μ and ρ
give the environment defense for the species Xp and Xq,
respectively; μ1 and ρ1 stand for the efect of handing time
for predators; ζ3, 83 and ζ4, 84 denote the competition rates
in the absence of predator species and cooperation co-
efcients for the prey species Xp and Xq, respectively; ϕ1, ϕ2,
ϕ3, and ϕ4 stand for natural death rate of predator; Xr,
density dependence rate of the predator, exchange rate of Xp

and Xq into new ofspring of predator species, respectively;
l≥ 0 designates the requisite time taken by the prey species to
become an adult. Finally, we consider that the coefcients ζ1,
ζ2, ζ3, ζ4, 81, 82, 83, 84, ϕ1, ϕ2, ϕ3, ϕ4, ξ1, ξ2, μ, ρ, μ1, and ρ1 are
all positive numbers.

Table 1: Summary of the research gap based on literature review.

Authors Competition Mutualism Time delay One predator-two
preys Logistic equation Holling type-II

functional response
Kar and Batabyal [36] ✓ ✕ ✓ ✓ ✓ ✓
Reddy et al. [37] ✓ ✕ ✓ ✓ ✓ ✕
Xie and Xu [38] ✕ ✕ ✓ ✕ ✓ ✓
Zhang et al. [39] ✓ ✕ ✓ ✓ ✓ ✓
Arifah and Krisnawan [40] ✕ ✕ ✓ ✕ ✓ ✓
Savitri et al. [41] ✓ ✕ ✕ ✕ ✓ ✕
Savitri et al. [42] ✕ ✕ ✓ ✓ ✓ ✓
Mondal and Samnata [43] ✓ ✕ ✓ ✓ ✓ ✓
Naji and Majeed [44] ✓ ✕ ✓ ✓ ✕ ✕
Ikbal [45] ✓ ✕ ✕ ✓ ✓ ✓
Present paper ✓ ✓ ✓ ✓ ✓ ✓
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Our wished-for mathematical model is fne ftted for the
group of Gazelles and Zebra which serve as two teams of
prey and their attacker Tiger or Lion play the task of
predator.

4. Positivity, Boundedness, and Permanence of
Our Anticipated Model

Te intention of this segment is to confer about the posi-
tivity, boundedness, and permanence of our anticipated
representation (1) amid preliminary settings (2). To ascertain
the afrmed behavior of our wished-for model, we state
a foremost Lemma.

Lemma 1. Under the conditions α> 0, β> 0, and
dΩ/ dt≤ (≥)Ω(t)(β − αΩ(t)), Ω(t0)> 0, afterward limt⟶∞
supΩ(t)≤ β/α(limt⟶∞inf Ω(t)≥ β/α).

Consequent Hale [46] and Jordan [47], we afrm the
subsequent theorem.

Theorem  . Te coefcients ζ1, ζ2, ζ3, ζ4, 81, 82, 83, 84, ϕ1,
ϕ2, ϕ3, ϕ4, ξ1, ξ2, μ, ρ, μ1, and ρ1 are bounded positive
quantities. Subsequently, the model structure (1) has a sole
solution on [0, +∞) by means of opening conditions (2).

Theorem 3. Solutions of the model scheme (1) through
preliminary conditions (2) are always greater than zero for all
positive values of t.

Proof. We stumble on the fact that the right hand side of the
model system (1) is absolutely continuous in addition to
locally Lipschitzian on the space of continuous functions.
Terefore, the solution (Xp(t), Xq(t), Xr(t)) of (1) by way
of primary conditions (2) subsists and is unique on [0, ζ) for
all ζ ∈ (0, +∞). Equation of one of the model systems (1)
gives

Xp(t) � Xp(0) exp − 􏽚
t

0
ζ1Xp(s)ξ− 1

1 − ζ1 + ζ2Xr(s) μ + μ1Xp(s)􏼐 􏼑
− 1

+ ζ3Xq(s) − ζ4Xq(s)Xr(s)􏼒 􏼓ds􏼨 􏼩> 0. (3)

Next equation of the model scheme (1) provides

Xq(t) � Xq(0) exp − 􏽚
t

0
81Xq(s)ξ− 1

2 − 81 + 82Xr(s) ρ + ρ1Xq(s)􏼐 􏼑
− 1

+ 83Xp(s) − 84Xp(s)Xr(s)􏼒 􏼓ds􏼨 􏼩> 0. (4)

In the same way, the last equation of the model structure
(1) afords

Xr(t) � Xr(0) exp − 􏽚
t

0
ϕ1 + ϕ2Xr(s) − ϕ3Xp(s − l) μ + μ1Xp(s − l)􏼐 􏼑

− 1
− ϕ4Xq(s − l) ρ + ρ1Xq(s − l)􏼐 􏼑

− 1
􏼒 􏼓ds􏼨 􏼩> 0, (5)

which concludes the proof of the theorem. □

Theorem 4. Let Q � (Xp, Xq, Xr): Xp ∈ [0, Z1],􏽮

Xq ∈ [0, Z2] andXr ∈ [0, Z3]} where Z1 � max Xp(0), ξ1􏽮 􏽯,
Z2 � max Xq(0), ξ2􏽮 􏽯, Z3 � max Xr(0), ξ3􏼈 􏼉, and ξ3 �

(ϕ3Z1ρ + ϕ4Z2μ − ϕ1μρ)(ϕ2μρ)− 1. As a result of that, Q is
invariantly positive.

Proof. If it is assumed that (Xp(0), Xq(0), Xr(0)) ∈ Q, then
(Xp(t), Xq(t), Xr(t)) is always positive. If we can prove that
Xp(t)≤Z1, Xq(t)≤Z2, and Xr(t)≤Z3, then it is clear that
(Xp(t), Xq(t), Xr(t)) ∈ Q for all values of t greater than or
equal to zero. In the frst attempt, we try to prove that
Xp(t)≤Z1. For avoiding the population outburst, it is as-
sumed that the assistance term is dominated by competition

amid prey species as well as interface among prey Xp and
predator species Xr. Using the said deliberation and
positive values of Xp, Xq, and Xr, the frst equation of the
model scheme (1) bestows that

dXp(t)

dt
≤ ζ1Xp(t) 1 − Xp(t)ξ− 1

1􏼐 􏼑. (6)

From (6), we get Xp(t) � max Xp(0), ξ1􏽮 􏽯 � Z1 for all
values of greater than or equal to zero. Again, next equation
of (1) bestows that

dXq(t)

dt
≤ 81Xq(t) 1 − Xq(t)ξ− 1

2􏼐 􏼑. (7)

Again from (7), we have Xq(t) � max Xq(0), ξ2􏽮 􏽯 � Z2
for all values greater than or equal to zero. Also, the third
equation of (1) bestows that
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dXr(t)

dt
≤Xr(t) ϕ3Z1μ

− 1
+ ϕ4Z2ρ

− 1
− ϕ1 − ϕ2Xr(t)􏼐 􏼑. (8)

Using (8), we have Xr(t)≤max Xr(0), ξ3􏼈 􏼉 � Z3 for all
values of greater than or equal to zero, where
ξ3 � (ϕ3Z1ρ + ϕ4Z2μ − ϕ1μρ)(ϕ2μρ)− 1. Tis completes
the proof. □

Theorem 5. If the conditions ζ2ξ3μ− 1 + ζ3ξ2 < ζ1, 83ξ3
ρ− 1 + 83ξ1 < 81, and ζ2ϕ3f1ξ1N + ζ1ϕ4f2ξ2M> ζ1ζ2ϕ1MN

are contented, then the model scheme (1) is permanent. M, N,
f1, and f2 are defned in the proof given underneath.

Proof. Due to amply bulky t, equation (6) provides
Xp(t) ∈ (0, ξ1). Furthermore, for amply bulky t, equations
(7) and (8) provide Xq(t) ∈ (0, ξ2) and Xr(t) ∈ (0, ξ3). As
Xp, Xq, and Xr are positive, the frst equation of (6)
furnishes

dXp(t)

dt
� Xp(t) ζ1 − ζ1Xp(t)ξ− 1

1 − ζ2Xr(t) μ + μ1Xp(t)􏼐 􏼑
− 1

− ζ3Xq(t) + ζ4Xq(t)Xr(t)􏼒 􏼓

≥Xp(t) ζ1 − ζ1Xp(t)ξ− 1
1 − ζ2k3μ

− 1
− ζ3ξ2􏼐 􏼑

� Xp(t) f1 − ζ1Xp(t)ξ− 1
1􏼐 􏼑,

(9)

due to amply bulky t, where f1 � ζ1 − ζ2ξ3μ− 1 − ζ3ξ2. If
f1 > 0, i.e., ζ2k3μ− 1 + ζ3ξ2 < ζ1 is satisfed, then Lemma 1
provides

lim
t⟶+∞

inf Xp(t)≥f1ξ1ζ
− 1
1 ≡ θ1. (10)

Tus, for any arbitrary value of ϵ1 > 0, there exists
a number X1(>0) such that Xp(t)≥ θ1 − ϵ1 for all values of t

greater than X1. In a similar fashion, second equation of (1)
provides

dXq(t)

dt
� Xq(t) 81 − 81ξ

− 1
2 Xq(t) − 82 ρ + ρ1Xq(t)􏼐 􏼑

− 1
Xr(t) − 83Xp(t) + 84Xp(t)Xr(t)􏼒 􏼓

≥Xq(t) 81 − 81ξ
− 1
2 Xq(t) − 82k3ρ

− 1
− 83ξ1􏼐 􏼑

� Xq(t) f2 − 81ξ
− 1
2 Xq(t)􏼐 􏼑,

(11)

for sufciently large t, where f2 � 81 − 82ξ3ρ− 1 − 83ξ1. If
f2 > 0, i.e., 82ξ3ρ− 1 + 83ξ1 < 81 is satisfed, then Lemma 1
gives

lim
t⟶+∞

inf Xq(t)≥f2ξ28
− 1
1 ≡ θ2. (12)

Hence, for any arbitrary ϵ2 > 0, there exists a number
X2(>0) such that Xq(t)≥ θ2 − ϵ2 for all values of t greater
than X2. Again, last equation of (1) provides

dXr(t)

dt
� − ϕ1 − ϕ2Xr(t) + ϕ3 μ + μ1Xp(t)􏼐 􏼑

− 1
Xp(t) + ϕ4 ρ + ρ1Xq(t)􏼐 􏼑

− 1
Xq(t)􏼒 􏼓Xr(t)

≥Xr(t) − ϕ1 − ϕ2Xr(t) + ϕ3 μ + μ1Xp(t)􏼐 􏼑
− 1

f1ξ1ζ
− 1
1 − ϵ1􏼐 􏼑 + ϕ4 ρ + ρ1Xq(t)􏼐 􏼑

− 1
f2ξ28

− 1
1 − ϵ2􏼐 􏼑􏼒 􏼓.

(13)

As an upshot of arbitrary ϵ1 > 0 and ϵ2 > 0, the above
diferential inequality can be expressed as

dXr(t)

dt
≥Xr(t) ϕ3f1ξ1ζ

− 1
1 M

− 1
+ ϕ4f2ξ28

− 1
1 N

− 1
− ϕ1 − ϕ2Xr(t)􏼐 􏼑 � Xr(t) f3 − ϕ2Xr(t)( 􏼁, (14)
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where M � μ + μ1ξ1, N � ρ + ρ1ξ2, and f3 � ϕ3f1ξ1ζ
− 1
1

M− 1 + ϕ4f2ξ28− 1
1 N− 1 − ϕ1. If the condition f3 > 0, i.e.,

ϕ3f1ξ1ζ
− 1
1 M− 1 + ϕ4f2ξ28− 1

1 N− 1 >ϕ1 is fulflled, then Lemma
1 provides

lim
t⟶+∞

inf Xr(t)≥
1
ϕ2

ϕ3f1ξ1ζ
− 1
1 M

− 1
+ ϕ4f2ξ28

− 1
1 N

− 1
− ϕ1􏽨 􏽩 ≡ θ3, (15)

for sufciently large t. Also, from inequalities (6)–(8), to-
gether with Lemma 1, we have

lim
t⟶+∞

supXp(t)≤ ξ1, lim
t⟶+∞

supXq(t)≤ ξ2 and lim
t⟶+∞

supXr(t)≤ ξ3. (16)

Now, choosing η1 � min(θ1, θ2, θ3) and η2 � max
(θ1, θ2, θ3), we obtain the permanence of the system (1). □

5. Model Structure with Nonappearance of
Time Lag

Model system (1) captures the subsequent structure in
nonappearance of time lag l

dXp(t)

dt
� ζ1Xp(t) 1 −

Xp(t)

ξ1
􏼠 􏼡 − ζ2

Xp(t)

μ + μ1Xp(t)
Xr(t) − ζ3Xp(t)Xq(t) + ζ4Xp(t)Xq(t)Xr(t),

dXq(t)

dt
� 81Xq(t) 1 −

Xq(t)

ξ2
􏼠 􏼡 − 82

Xq(t)

ρ + ρ1Xq(t)
Xr(t) − 83Xp(t)Xq(t) + 84Xp(t)Xq(t)Xr(t),

dXr(t)

dt
� − ϕ1Xr(t) − ϕ2X

2
r(t) + ϕ3

Xp(t)

μ + μ1Xp(t)
Xr(t) + ϕ4

Xq(t)

ρ + ρ1Xq(t)
Xr(t),

(17)

together with preliminary stipulations

Xp(0)> 0, Xq(0)> 0 as well asXr(0)> 0. (18)

5.1. Subsistence of Equilibrium Points and Local Stability
Investigation. Te probable equilibrium points are specifed
underneath:

(i) Γ1(0, 0, 0) (ii) Γ2(ξ1, 0, 0) (iii) Γ3(0, ξ2, 0) (iv) Γ4 (Xp,

Xq, 0) (v) Γ5(0, Xq
′, Xr
′) (vi) Γ6(Xp

″, 0, Xr
″)(vii) Γ7 (X∗p, X∗q ,

X∗r ).
It is palpable that the equilibrium points Γ1, Γ2, and Γ3

subsist forever. Our only task is to authenticate the existence
of lingering equilibrium points.

5.1.1. Subsistence of Γ4. By solving the frst two linear si-
multaneous equations

ζ1 − ζ1Xpξ
− 1
1 − ζ3Xq � 0, 81 − 81ξ

− 1
2 Xq − 83Xp � 0, (19)

we get Xp � ξ181(ζ3ξ2 − ζ1)(ζ383ξ1ξ2 − ζ181)
− 1 and Xq �

ξ2ζ1(83ξ1 − 81)(ζ383ξ1ξ2 − ζ181)
− 1. Terefore, Γ4 exists

provided ζ3ξ2 > ζ1 and 83ξ1 > 81.

Remark 6. If ξ1 � 81/83 is considered, then Γ4 and Γ2 are
equal. Again if ξ2 � ζ1/ζ3 is satisfed, then Γ4 and Γ3 are
the same.

5.1.2. Subsistence of Γ5. Consider two nonlinear equations

81 − 81ξ
− 1
2 Xq
′ − 82 ρ + ρ1Xq

′􏼐 􏼑
− 1

Xr
′ � 0, (20)

− ϕ1 − ϕ2Xr
′ + ϕ4 ρ + ρ1Xq

′􏼐 􏼑
− 1

Xr
′ � 0. (21)

From (21), we get

Xq
′ �

ρ ϕ1 + ϕ2Xr
′( 􏼁

ϕ4 − ρ ϕ1 + ϕ2Xr
′( 􏼁

. (22)

Putting the value of Xq
′ in (20), we have

A1X
′3
r + A2X

′2
r + A3Xr

′ + A4 � 0, (23)

where A1 � ρ21ϕ
2
282ξ2 > 0, A2 � 2ρ182ξ2ϕ2(ρ1ϕ1 − ϕ4), A3 �

ρρ181ξ2ϕ1ϕ4 + ρ281ϕ1ϕ2 + 82ξ2(ρ1ϕ1 − ϕ4)
2 > 0, and A4 �

ρ81ϕ4(ϕ1(ρ1ξ2 + ρ) − ξ2ϕ4). For the positive and unique
solution of the (23), the stipulations specifed underneath
must be satisfed.
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A2 > 0 andA4 < 0 i.e., if ρ1ϕ1 >ϕ4 and ϕ1 ρ1ξ2 + ρ( 􏼁< ξ2ϕ4.
(24)

Terefore, the equilibrium point subsists Γ5 if the above
supposed stipulations (24) are fulflled.

Remark 7. In the same way, we easily prove that equilibrium
point Γ5 subsists under the conditions μ1ϕ1 >ϕ3 and
ϕ1(μ1ξ1 + μ)> ϕ3ξ1.

5.1.3. Subsistence of Γ7. Clearly, (X∗p, X∗q , X∗r ) is achieved by
solving the set of nonlinear simultaneous equations pre-
arranged by

ζ1 − ζ1ξ
− 1
1 X
∗
p − ζ2 μ + μ1X

∗
p􏼐 􏼑

− 1
X
∗
r − ζ3X

∗
q + ζ4X

∗
q X
∗
r � 0,

(25)

81 − 81ξ
− 1
2 X
∗
q − 82 ρ + ρ1X

∗
q􏼐 􏼑

− 1
X
∗
r − 83X

∗
p − 84X

∗
pX
∗
r � 0,

(26)

ϕ1 + ϕ2X
∗
r − ϕ3 μ + μ1X

∗
p􏼐 􏼑

− 1
X
∗
p − ϕ4 ρ + ρ1X

∗
q􏼐 􏼑

− 1
X
∗
q � 0.

(27)

Solving (25) and (27), we have

g X
∗
p, X
∗
q􏼐 􏼑 ≡ 82 ρ + ρ1X

∗
q􏼐 􏼑

− 1
M X
∗
p, X
∗
q􏼐 􏼑 + X

∗
p 83 − 84M X

∗
p, X
∗
q􏼐 􏼑􏼐 􏼑 − 81 1 − X

∗
qξ

− 1
2􏼐 􏼑, (28)

where M(X∗p, X∗q ) � ζ1(1 − X∗pξ
− 1
1 ) − ζ3X∗q􏽮 􏽯 μ + μ1X∗p􏽮 􏽯

(ζ2 − ζ4X∗q (μ + μ1X∗p))− 1. From (28), if X∗p⟶ 0, then
X∗q⟶ X∗qa, where

L1X
∗3
qa + L2X

∗2
qa + L3X

∗
qa + L4 � 0, (29)

where L1 � ζ481ρ1μ, L2 � ζ481μ(ρ − ξ2ρ1), L3 � ξ2(ζ382
− ζ481μρ) + ζ281(ρ1ξ2 − ρ), and L4 � ξ2(ζ281ρ − ζ182μ). As
L1 > 0; therefore, the (29) has a positive solution if L2 > 0,
L3 > 0, and L4 < 0.

From (28), one can obtain

dX
∗
q

dX
∗
p

� −
zg/zX

∗
p

zg/zX
∗
q

� n1m
− 1
1 (say). (30)

It is evident that dX∗q /dX∗p � n1m
− 1
1 > 0 if either

n1 > 0 andm1 > 0 or n1 < 0 andm1 < 0 (31)

From (26), we calculate X∗r and substitute it in (27), and
we acquire

κ1 X
∗
p, X
∗
q􏼐 􏼑 ≡ ϕ1 + ϕ2M X

∗
p, X
∗
q􏼐 􏼑 − ϕ3X

∗
p μ + μ1X

∗
p􏼐 􏼑

− 1
− ϕ4X

∗
q ρ + ρ1X

∗
q􏼐 􏼑

− 1
. (32)

From (32), one can observe that, when X∗p⟶ 0, then
X∗q⟶ X∗qb, where

C1X
∗2
qb + C2X

∗
qb + C3 � 0, (33)

where C1 � (ζ4ϕ1 + ζ3ϕ3)ρ1μ − ζ4ϕ4μ, C2 � (ζ4ϕ1 + ζ3ϕ2)
μρ + ζ4ϕ4 − ζ2ρ(ϕ1 + ϕ2), and C3 � − ζ2ρ(ϕ1 + ϕ2). Since
C3 < 0, the (33) has a positive solution if C1 > 0 and C2 > 0.

From (32), one can obtain that

dX
∗
q

dX
∗
p

� −
zκ1/zX

∗
p

zκ1/zX
∗
q

� − n2m
− 1
2 (say). (34)

It is obvious that dX∗q /dX∗p < 0 if either

n2 > 0 andm2 > 0 or n2 < 0 andm2 < 0. (35)

Terefore, the meeting point of (28) and (29) is unique.
Also, the conditions (31) and (35) and the inequality
X∗qa <X∗qb are fulflled. Again, by placing the values of X∗p
and X∗q in (27), we have achieved the value of X∗r . So, the
subsistence of positive inner equilibrium point Γ7 is verifed.

At present, we are in the situation to talk about the local
stability behavior of the model structure (17) at each pro-
posed equilibrium points.

Theorem 8. Nature of equilibrium point Γ1(0, 0, 0) is
saddle point.

Proof. At the equilibrium point Γ1(0, 0, 0), the variational
matrix of the model structure (17) has obtained the form

JΓ1 �

ζ1 0 0

0 81 0

0 0 − ϕ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (36)

Te eigenvalues of JΓ1 are λ1 � ζ1, λ2 � 81, and λ3 � − ϕ1
and ζ1 > 0, 81 > 0, and ϕ1 > 0. Terefore, Γ1(0, 0, 0) is the
saddle point in nature in conjunction with unstable mani-
fold in Xp and Xq directions, respectively, and stable
manifold in the Xr direction. □

Theorem 9. If the conditions ξ1 > 81/83 and ϕ3ξ1 < ϕ1(μ +

μ1ξ1) are satisfed, then axial equilibrium point Γ2(ξ1, 0, 0) is
stable in nature.

Proof. At the equilibrium point Γ2(ξ1, 0, 0), the variational
matrix JΓ2 of the model structure (17) takes the form
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JΓ2 �

− ζ1 − ζ3ξ1 − ζ2ξ1 μ + μ1ξ1( 􏼁
− 1

0 81 − 83ξ1 0

0 0 − ϕ1 + ϕ3ξ1 μ + μ1ξ1( 􏼁
− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (37)

Te eigenvalues of JΓ2 are λ1 � − ζ1 < 0, λ2 � 81 − 83ξ1,
and λ3 � ϕ3ξ1(μ + μ1ξ1)

− 1 − ϕ1. Now if λ2 < 0 and λ3 < 0, i.e.,
if ξ1 > 81/83 and ϕ3ξ1 <ϕ1(μ + μ1ξ1), then Γ2(ξ1, 0, 0) is
stable in nature. □

Theorem 10. Γ3(0, ξ2, 0) is stable if ξ2 > ζ1/ζ3 and
ϕ4ξ2 <ϕ1(ρ + ρ1ξ2)

Proof. In the same way as above, this theorem can be
proved. □

Remark 11. From the previous three theorems, ecologically
it can be interpreted that the co-operating coefcients ζ4 and
84 do not give any participation for establishing the stability
behavior of Γ1, Γ2, and Γ3. Te intercompetition coefcients
83 and ζ3 and the interference coefcients μ1 and ρ1 provide
positive efect on the stability behavior of Γ2 and Γ3
correspondingly.

Theorem 1 . Te predator-free equilibrium point
Γ4(Xp, Xq, 0) is stable if the conditions ϕ3Xp(μ + μ1Xp)− 1 +

ϕ4Xq(ρ + ρ1Xq)− 1 <ϕ1 and ζ1ϕ1 > ζ383ξ1ξ2 are contented.

Proof. Analogous to Γ4, one of eigenvalues of the matrix JΓ4
is specifed by ϕ3Xp(μ + μ1Xp)− 1 + ϕ4Xq(ρ + ρ1Xq)− 1 − ϕ1.
Since JΓ4 is a 3× 3 matrix, the remaining two eigenvalues are
the solutions of the following equation:

λ2 + a11λ + a12 � 0, (38)

where a11 � ξ− 1
1 ζ1Xp + ξ− 1

2 81Xq > 0 and a12 � (ξ1ξ2)
− 1

XpXq(ζ181 − ζ383ξ1ξ2). As a11 > 0, according to
Routh–Hurwitz criterion [1], the (38) has negative real part
solutions if a12 > 0, i.e., ζ181 > ζ383ξ1ξ2. Hence, if the con-
ditions ϕ3Xp(μ + μ1Xp)− 1 + ϕ4Xq(ρ + ρ1Xq)− 1 <ϕ1 and
ζ1ϕ1 > ζ383ξ1ξ2 are contented, then Γ4 is stable in nature.

At Γ5(0, Xq
′, Xr
′), matrix JΓ5 takes the form

JΓ5 �

β11 0 0

β21 β22 β23
β31 β32 β33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (39)

where β11 � ζ1 − ζ2μ− 1Xr
′ − ζ3Xq

′ + ζ4Xq
′Xr
′, β12 � 0, β13 � 0,

β21 � (84Xr
′ − 83)Xq

′, β22 � 82ρ1Xq
′Xr
′(ρ + ρ1Xq

′)− 2 − 81ξ
− 1
2

Xq
′, β23 � − 82(ρ + ρ1Xq

′)− 1Xq
′, β31 � ϕ3μ− 1Xr

′, β32 � ρϕ4
(ρ + ρ1Xq

′)− 2Xr
′, and β33 � − ϕ2Xr

′.
Terefore, the characteristic equation of JΓ5 is

λ3 +Π1λ
2

+ Π2λ + Π3 � 0, (40)

where Π1 � − (β11 + β22 + β33), Π2 � β11β33 + β11β22 +

β22β33 − β23β32, and Π3 � β11β23β32 − β11β22β33.

Terefore, using Routh–Hurwitz criterion [1, 2], we say
that the solutions of the characteristic (40) has real com-
ponent with less than zero if

Π1 > 0,Π3 > 0 as well asΠ1Π2 − Π3 > 0. (41)
□

Theorem 13. If the provision (41) is fulflled, then
Γ5(0, Xq

′, Xr
′) is stable in nature.

Over again, at the point Γ6(Xp
″, 0, Xr
″), JΓ6 obtains the

form

JΓ6 �

η11 η12 η13
0 η22 0

η31 η32 η33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (42)

where η11 � ζ2μ1Xp
″Xr
″(μ + μ1Xp

″)− 2 − ζ1ξ
− 1
1 Xp
″ , η12 � (ζ4

Xr
″ − ζ3)Xp

″ , η13 � − 82(μ + μ1Xp
″)− 1Xp
″ , η21 � 0, η22 �

81 − 82ρ− 1Xr
″ − 83Xp

″ , η23 � 0, η31 � ϕ3μ(μ + μ1Xp
″)− 2Xr
″,

η32 � ϕ4ρ− 1Xr
″, and η33 � − ϕ2Xr

″.
Terefore, the characteristic equation of JΓ6 is

λ3 + G1λ
2

+ G2λ + G3 � 0, (43)

where G1 � − (η11 + η22 + η33), G2 � η11η22 + η11η33 +

η22η33 − η13η31, and G3 � η13η31η22 − η11η22η33.
Using Routh–Hurwitz condition [1, 2], we obtain the

solutions of the characteristic (43) has nonpositive real
component if

G1 > 0, G3 > 0 as well asG1G2 − G3 > 0. (44)

Theorem 14. If the stipulation (44) is fulflled, then
Γ6(Xp
″, 0, Xr
″) is stable in nature.

Finally, at Γ7(X∗p, X∗q , X∗r ), JΓ7 takes the form

JΓ7 �

δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (45)

where δ11 � X∗p(ζ2μ1(μ + μ1X∗p)− 2X∗r − ζ1ξ
− 1
1 ), δ12 � X∗p(ζ4

X∗r − ζ3), δ13 � X∗p(ζ4X∗q − (μ + μ1X∗p)− 1ζ2), δ21 � X∗q (ζ4
X∗r − 83), δ22 � X∗q (82ρ1(ρ + ρ1X∗q )− 2X∗r − 81ξ

− 1
2 ), δ23 � X∗q

(84X
∗
p − 82(ρ + ρ1X∗q )− 1), δ31 � ϕ3μ(μ + μ1X∗p)− 2X∗r , δ32 �

84ρ(ρ + ρ1X∗q )− 2X∗r , and δ33 � − ϕ2X∗r .
Terefore, the characteristic equation of JΓ7 is

λ3 + U1λ
2

+ U2λ + U3 � 0, (46)

where U1 � − (δ11 + δ22 + δ33), U2 � δ11δ22 + δ11δ33 +

δ22δ33 − δ12δ21 − δ13δ31 − δ23δ32 and U3 � 􏼈(δ11δ23δ32 + δ12
δ21δ33 + δ13δ22δ31) − (δ11δ22δ33 + δ12δ23δ31 + δ13δ22δ31)􏼉.

Again using Routh–Hurwitz condition [1, 2], we obtain
the solutions of the characteristic (46) has nonpositive real
component if
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U1 > 0, U3 > 0 andU1U2 − U3 > 0. (47)

Theorem 15. If the conditions (47) are contented, then inner
equilibrium point Γ7(X∗p, X∗q , X∗r ) is stable in nature.

5.2. Stability in Global Perspective. Te current section
provides stability performance of the model structure (17) at
Γ7(X∗p, X∗q , X∗r ) in a global point of view.

Theorem 16. Te conditions (A.1) and (A.2) imply the global
stability behavior of the equilibrium point Γ7(X∗p, X∗q , X∗r ).

Proof. See Appendix. □

6. Model Analysis due to Time Lag

Due to time lag (≠0), stability nature of our wished-for
replica structure (1) at Γ7(X∗p, X∗q , X∗r ) is ofered in the
contemporary part. At Γ7(X∗p, X∗q , X∗r ), the system (1) has
the characteristic equation as given in the following
equation:

λ3 +Ω1λ
2

+Ω2λ +Ω3 + λΩ4 +Ω5( 􏼁e
− λl

� 0, (48)

where Ω1 � Δ − Σ − Θ, Ω2 � Θ(Σ − Δ) − ΣΔ − ΦΨ,
Ω3 � (ΣΘ − ΦΨ)Δ, Ω4 � (ΓΠ +ΩΞ), Ω5 � − (ΣΓΠ +ΦΓ
Ξ +ΩΨΠ +ΩΘΞ), Σ � ζ2μ1X∗pX∗r (μ + μ1X∗p)− 2 − ζ1X∗pξ

− 1
1 ,

Φ � (ζ3X∗p − ζ4X∗pX∗r ), Ω � (ζ2X∗p(μ + μ1X∗p)− 1− ζ4X∗pX∗q ),
Ψ � (83X

∗
q − 84X

∗
q X∗r ), Θ � 82ρ1X∗q X∗r (ρ + ρ1X∗q )− 2− 81X

∗
q

ξ− 1
2 , Γ � (82X

∗
q (ρ + ρ1X∗q )− 1 − 84X

∗
pX∗q ), Δ � ϕ2X∗r , Ξ � ϕ3

μX∗r (μ + μ1X∗p)− 2, and Π � ϕ4ρX∗r (ρ + ρ1X∗r )− 2.
Let λ � ik, (k> 0) be a solution of (48). Terefore, it is

evident that

− ik3 − Ω1k
2

+ iΩ2k +Ω3 + ikΩ4 +Ω5( 􏼁e
− ikl

� 0. (49)

Separating real and imaginary parts of (49), we attain

− Ω1k
2

+Ω3 � − Ω5 cos kl − Ω4k sin kl and − k
3

+Ω2k

� − Ω4k cos k l +Ω5 sin kl.

(50)

Adding both squared equations of (50), the subsequent
equation is obtained

k
6

+ Q1k
4

+ Q2k
2

+ Q3 � 0, (51)

where Q1 � Ω21 − 2Ω2, Q2 � Ω22 − Ω24 − 2Ω1Ω3, and
Q3 � Ω23 − Ω25. Terefore, the sole positive root k2

+ of (51) is
obtained under the conditions Q1 > 0, Q2 > 0, and Q3 < 0. So,
we dig up a pair of imaginary solutions ±ik+ of (48). Te
value of l is gettable by substituting the value of k2

+ in (50).
Te idiom of l is specifed by

l
+
j �

1
k+

arccos Ω4k
4
+ + Ω1Ω5 − Ω2Ω4( 􏼁k

2
+ − Ω3Ω5􏽮 􏽯 Ω25 +Ω24k

2
+􏽮 􏽯

− 1
􏼔 􏼕 +

2jπ
k+

, j � 0, 1, 2, . . . . (52)

Next, Lemma is followed by the over argument.

Lemma 17. Te couple of imaginary solutions of (48) is
attained for l � l+0 .

Theorem 18. Assume l+i is defned by (52), also
Γ7(X∗p, X∗q , X∗r ) subsists. Q1 > 0, Q2 > 0, and Q3 < 0 as well as
the conditions (47) are satisfed. If l increases through zero,
then there exists a value of l say l+0 for which Γ7(X∗p, X∗q , X∗r ) is
asymptotically stable for 0< l< l+0 , and it becomes unstable
when l> l+0 . In addition to that, for l � l+0 (where l+0 � l+j for
j � 0) at the point Γ7(X∗p, X∗q , X∗r ), the structure (1) expe-
riences a Hopf bifurcation.

Proof. For l � 0, by the stipulation (47), the inner equilib-
rium point Γ7(X∗p, X∗q , X∗r ) is stable in nature. Terefore,
using Butler’s lemma [30], we obtain that the inner equi-
librium point Γ7(X∗p, X∗q , X∗r ) remains stable under the
condition l< l+0 . Our main intention is to show that the value
of d(Reλ)/dl|l�l+0 ,k�k+

is always greater than zero, which
implies that when l> l+0 , our proposed structure has the
slightest one positive eigenvalue with positive real compo-
nent. Depending on the above discussion, we conclude that
the conditions of Hopf bifurcation are fulflled along with
expected periodic solution. Diferentiating both sides of (48)
with regard to l, we achieve

3λ2 + 2Ω1λ +Ω2 +Ω4e
− λl

− l Ω4λ +Ω5􏼈 􏼉e
− λl

􏽨 􏽩
dλ
dl

� λ Ω4λ +Ω5( 􏼁e
− λl

. (53)
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From (53), we get

dλ
dl

􏼠 􏼡

− 1

�
2λ3 +Ω1λ

2
− Ω3

− λ2 λ3 +Ω1λ
2

+Ω2λ +Ω3􏼐 􏼑
−
Ω5

λ2 Ω4λ +Ω5( 􏼁
−

l

λ
, (54)

dλ
dl

􏼠 􏼡

− 1

λ�ik+

�
− 2ik

3
+ − Ω1k

2
+ − Ω3

k
2
+ − ik

3
+ − Ω1k

2
+ + iΩ2k+ +Ω3􏼐 􏼑

+
Ω5

k
2
+ iΩ4k+ +Ω5( 􏼁

+ i
l

k+

�
Ω1k

2
+ +Ω3 + 2ik

3
+􏼐 􏼑 Ω1k

2
+ − Ω3􏼐 􏼑 − i k

3
+ − Ω2k+􏼐 􏼑􏽮 􏽯

k
2
+ Ω1k

2
+ − Ω3􏼐 􏼑

2
+ k

3
+ − Ω2k+􏼐 􏼑

2
􏼚 􏼛

+
Ω5

k
2
+ Ω

2
5 +Ω24k

2
+􏼐 􏼑

+ i
l

k+

.

(55)

Tus, sign d(Reλ)/dl{ }λ�ik+
� sign Re (dλ/dl)− 1|λ�ik+

􏽮 􏽯􏽮 􏽯.
After some algebraic manipulations from (55), we get

sign
d(Reλ)

dl
􏼨 􏼩

λ�ik+

�
1
k
2
+

Ω21 − 2Ω2􏼐 􏼑k
2
+ + 2k

6
+

Ω25 +Ω24k
2
+

+
Ω25 − Ω23
Ω25 +Ω24k

2
+

⎡⎣ ⎤⎦

�
1
k
2
+

Q1k
2
+ + 2k

6
+

Ω25 +Ω24k
2
+

−
Q3

Ω25 +Ω24k
2
+

􏼢 􏼣.

(56)

Hence, (d(Reλ)/ dl)|l�l+0 ,k�k+
> 0 if Q1 is greater than zero

and Q3 is less than zero. Hence, the transversality stipulation
is fulflled and Hopf bifurcation arose at k � k+ and l � l+0 .
Tus, the proof of the theorem is completed. □

6.1. Assessment of the Time Lag Length to Safeguard Stability.
To estimate the time lag length to protect the stability of the
model structure (1), we initialized the system concerning its
inner equilibrium point Γ7(X∗p, X∗q , X∗r ). Te initial model
structure is prearranged underneath

dz1

dt
� ξ11z1 + ξ12z2 + ξ13z3,

dz2

dt
� ξ21z1 + ξ22z2 + ξ23z3,

dz3

dt
� ξ33z3 + η31z1(t − l) + η32z2(t − l),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(57)

where z1(t) � Xp(t) + X∗p, z2(t) � Xq(t) + X∗q , and
z3(t) � Xr(t) + X∗r .

If we apply Laplace transform on both sides of (57), we
eventually gain

r − ξ11( 􏼁z1(r) � ξ12z2(r) + ξ13z3(r) + z1(0),

r − ξ22( 􏼁z2(r) � ξ21z1(r) + ξ23z3(r) + z2(0),

r − ξ33( 􏼁z3(r) � η31e
− rt

z1(r) + η31e
− rtσ1(r) + η32e

− rt
z2(r) + η32e

− rtσ2(r) + z3(0).

(58)
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Here, σ1(r) � 􏽒
0
− l

e− rtz1(t)dt and σ2(r) � 􏽒
0
− l

e− rtz2(t)dt.
Te Laplace transform of z1(t), z2(t), and z3(t) is expressed
by z1(r), z2(r), and z3(r) correspondingly.

Using Nyquist theorem [26] and from [18], the local
asymptotic stability stipulations of the inner equilibrium
point Γ7(X∗p, X∗q , X∗r ) can be articulated in the subsequent
form.

ImR iw0( 􏼁> 0, (59)

ReR iw0( 􏼁 � 0. (60)

Here, (r) � r3 +Ω1r2 +Ω2r +Ω3 + (rΩ4 +Ω5)e− rl. Te
smallest positive solution of the (60) is w0.

In the previous section, we detect that in nonappearance
of time lag, inner equilibrium point Γ7(X∗p, X∗q , X∗r ) is stable.
Ten, by Bulter’s lemma [18], we have adequately tiny >0,
and all eigenvalues will be negative real components. Also,
when l augments through zero, one can assure that there are
no eigenvalues with positive real component that bifurcates
from infnity.

In this current circumstance, stipulations (59) and (52)
bestow

Ω2w0 − w
3
0 >Ω5 sinw0l − Ω4w0 cosw0l, (61)

Ω3 − Ω1w
2
0 � − Ω5 cosw0l − Ω4w0 sinw0l. (62)

If the conditions (61) and (62) are fulflled concurrently,
then these stipulations furnish the sufcient stipulations for
assurance stability. We shall utilize them to get an estimate
on the length of delay. To estimate the length of time lag, we
shall use these stipulations. Our objective is to specify the
upper bound w+ of w0 which is independent of l in such
a way that (61) holds for all values of w where w ∈ [0, w+].
Terefore, for a particular value of w say w0, we can redraft
(62) as follows:

Ω1w
2
0 � Ω3 +Ω5 cosw0l +Ω4w0 sinw0l. (63)

Maximizing Ω3 +Ω5 cosw0l +Ω4w0 sinw0l subject to
|sinw0l|≤ 1 and |cosw0l|≤ 1, we obtain

Ω1w
2
0 ≤Ω3 + Ω5

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Ω4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌w0. (64)

Hence, if

w+ �
1

2Ω1
Ω4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

�����������������

Ω24 + 4Ω1 Ω3 + Ω5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑

􏽱

􏼔 􏼕, (65)

it is clear from (65) that w0 ≤w+.
Again (55) provides

w
2
0 <Ω2 +Ω4 cosw0l −

Ω5
w0

sinw0l. (66)

Also, for l � 0, the inner equilibrium point
Γ7(X∗p, X∗q , X∗r ) is stable as well as (66) holds due to ade-
quately tiny l> 0. Replacing (63) into (66) gives

Ω1Ω4 − Ω5( 􏼁 1 − cosw0l( 􏼁 + Ω4w0 +
Ω1Ω5

w0
􏼠 􏼡 sinw0l<Ω1Ω2 +Ω1Ω4 − Ω3 − Ω5. (67)

Te bounds of w0 provides

Ω1Ω4 − Ω5( 􏼁 1 − cosw0l( 􏼁 � Ω1Ω4 − Ω5( 􏼁2 sin2
w0l

2
􏼠 􏼡≤

1
2
Ω1Ω4 − Ω5

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌w

2
+l

2
(68)

and

Ω4w0 +
Ω1Ω5

w0
􏼠 􏼡 sinw0l≤ Ω4w

2
+ +Ω1Ω5􏼐 􏼑l. (69)

Now, from (67)–(69), we get

l1l
2

+ l2l< l3, (70)

where l1 � 1/2|Ω1Ω4 − Ω5|w2
+, l2 � (Ω4w2

+ +Ω1Ω5), and
l3 � Ω1Ω2 +Ω1Ω4 − Ω3 − Ω5.

Hence, if

l+ �
1
2l1

− l2 +

�������

l
2
2 + 4l1l3

􏽱

􏼔 􏼕, (71)

then stability is preserved for 0≤ l< l+.

From the above discussed outcomes, the next theorem is
followed.

Theorem 19. If the time lag l satisfes the inequality 0< l< l+,
then the model structure (1) is locally asymptotically stable
where l+ is provided in (71).

7. Numerical Verifications

Numerical verifcation of analytical fndings is very much
important from a practical view point.Tis verifcation is not
possible without the help of a computer software like
MATLAB andMathematica. In this current section, we have
mainly verifed the analytical fnding by graphical pre-
sentation. Authentication of analytical fnding of the model
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structure (1) is very much signifcant from a realistic
standpoint also.

For the model structure (17), the values of the biological
parameters and initial populations are taken in the sub-
sequent way ζ1 � 1.6, ζ2 � 0.1, ζ3 � 0.02, ζ4 � 0.842,
81 � 2.2, 82 � 0.1, 83 � 0.004, 84 � 0.842, ϕ1 � 0.002,
ϕ2 � 0.0005, ϕ3 � 0.0001, ϕ4 � 0.0002, ξ1 � 1.2, ξ2 � 1.8,
μ � 0.07, ρ � 0.04, μ1 � 0.01, ρ1 � 0.01, and (Xp(0),

Xq(0), Xr(0)) � (0.001, 0.05, 0.008).

For our setting parameter values, the inner equilibrium
point Γ7(X∗p, X∗q , X∗r ) is equal to (0.499629,

0.394704, 0.924954). Also, for this set of parameter values, all
the species persist and we get a nontrivial equilibrium point
Γ7(X∗p, X∗q , X∗r ) � (0.499629, 0.394704, 0.924954). At Γ7
(0.499629, 0.394704, 0.924954), conditions of Teorem 15
are fulflled as U1 � 0.877854> 0, U3 � 0.0019832> 0, and
U1U2 − U3 � 0.0499693> 0. Hence, (0.499629, 0.394704,

0.924954) is locally asymptotically stable.
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Figure 1: Time series plot of Xp, Xq, Xr with Xp(0) � 0.001, Xq(0) � 0.05, Xr(0) � 0.008.
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Figure 2: XpXq plane projection of the solution with Xp(0) � 0.001, Xq(0) � 0.05, Xr(0) � 0.008.
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Figure 1 depicts that starting with an initial condition
(0.001, 0.05, 0.008), the populations reach their respective
stable situation X∗p, X∗q , and X∗r in a limited period of time.

As per our expectation, we monitor from Figure 1 that as
the predator species steadily enlarges and both the prey
species steadily diminishes and fnally after a limited period of
time, the population system comes to a steady-state situation.

Figures 2, 3, and 4 present theXpXq plane,XpXr plane, and
XqXr plane protrusions of the system (17) correspondingly.

Figure 2 illustrates that in the XpXq projection, the
trajectory starting with the initial condition (0.001, 0.05,

0.008) converges to the inner equilibrium point Γ7. Similarly,
Figures 3 and 4 portray the XpXr plane and XqXr plane
projection, respectively. In Figures 3 and 4, the trajectory

starting with the initial condition (0.001, 0.05, 0.008) con-
verges to the inner equilibrium point Γ7.

Next, we investigate for the delay model (1). It is a well-
known fact that if a model structure is stable in non-
attendance of time lag (l � 0), it is not assured that the
system remains stable in the occurrence of time lag (l≠ 0).
Let us choose the parametric values of the same system as
stated above. Now, for these choices of parameters, Teorem
18 and Lemma 17 assured that (51) has a sole positive so-
lution k+ � 0.0417958 and (52) gives the critical value
l+0 � 23.7602. Using Teorem 18 and Figures 5(a), 5(b) and
6(a), 6(b), it is monitored that when l< 23.7602, then the
inner equilibrium point Γ7(0.499629, 0.394704, 0.924954)

exhibits asymptotically stable behavior.
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Figure 3: XpXr plane projection of the solution with Xp(0) � 0.001, Xq(0) � 0.05, Xr(0) � 0.008.
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Figure 4: XqXr plane projection of the solution with Xp(0) � 0.001, Xq(0) � 0.05, Xr(0) � 0.008.
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Figure 5 depicts that as l< 23.7602, all the species of the
population system converges to their respective stable state
levels also as l> 23.7602 � l+0 and if all the other parameter
values are kept the same as stated above, then a delayed
model structure becomes unstable. Again from Figure 6, the
phase space diagram is portrayed.Terefore, when we
augment the values of l above the critical value l+0 , the
population system exhibits growing oscillatory behavior.
From Figures 5 and 6, the change in the stability behavior of
this system is clearly visible. When the value of l is slightly
higher than its critical value l+0 , the stable equilibrium point
becomes unstable.

Terefore, we may conclude that keeping other parameters
fxed, if we take l> l+0 , then Γ7(0.499629, 0.394704, 0.924954)

becomes unstable and exhibits Hopf bifurcation, and

a bifurcating periodic solution is noticed around Γ7(0.499629,

0.394704, 0.924954).

8. Results and Discussions

Te current paper studied a three-dimensional prey-
predator co-operative structure along with gestational
time lag of the predator species. In the ecosystem, there exist
many species who lived in a crowd and cooperate themselves
by distributing similar territory. As the species sharing the
same territory, depending on proper circumstances, the
grouped populations may co-operate sometimes, and they
may also sometimes compete with themselves. Sea anemone
and the clown fsh are the good examples of the grouping
population. A proper predator-prey structure can be formed
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Figure 5: Time series of the model (1) with Xp(0) � 0.51, Xq(0) � 0.42, Xr(0) � 0.3. (a) Stable behavior of Xp, Xq, Xr for
l � 21< l+0 � 23.7602, (b) stable behavior of Xp, Xq, Xr for l � 23< l+0 � 23.7602, (c) unstable behavior of Xp, Xq, Xr for
l � 24> l+0 � 23.7602, and (d) unstable behavior of Xp, Xq, Xr for l � 28> l+0 � 23.7602.
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with the help of these categories of grouping species. For the
existence of a particular species, the most essential elements
are food and space. Terefore, the prey species are com-
peting with each other for such kind of general assets. On the
other hand, predator species cropped the prey population at
a fxed rate due to their survival. Also, the alteration of prey
biomass to predator biomass is not instantaneous; it needs
some time lag for alteration. Motivated by these facts, in this
current paper, we create and investigate dissimilar behaviors
of a prey-predator time lag model structure consisting of two
groups of contending as well as supportive preys and one
group of predators.

Te existences of diferent equilibrium points of the model
structure (1) and their stabilities are pointed out carefully.
Global stability behavior of the inner equilibrium point is
addressed properly. We fnally observe that when the delay
parameter l< l+0 (critical vale of l ), the stability nature of the
inner equilibrium point becomes unstable and exhibits Hopf
bifurcations. Our analytical fndings are properly illustrated

graphically through Figures 1 to 6 correspondingly. Time-series
plot of Xp, Xq, Xr, XpXq plane projection, XpXr plane
projection, and XqXr plane projection is described, and the
stable and unstable phase space diagrams are illustrated in the
above fgures. Also, it is demonstrated that the phase portrait of
the model is stable for l< 23.7602 and unstable for l> 23.7602.

9. Conclusions

Finally, we conclude that the whole of our proposed
delayed model structure is supposed in a deterministic
environment. However, our model can be made more
pragmatic and attractive if it is supposed in fuzzy, interval,
or in stochastic environment for some parameter un-
certainties or some other environmental characteristics.
Tis conception is left for further research trend. As a part
of future work, to make the system more realistic, we can
include impreciseness in the parameters of the model to
enhance our model.
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Figure 6: Phase portrait of the model (1) with Xp(0) � 0.51, Xq(0) � 0.42, Xr(0) � 0.93. (a) Stable behavior of Xp, Xq, Xr for
l � 21< l+0 � 23.7602, (b) stable behavior of Xp, Xq, Xr for l � 23< l+0 � 23.7602, (c) unstable behavior of Xp, Xq, Xr for
l � 24> l+0 � 23.7602, and (d) unstable behavior of Xp, Xq, Xr for l � 28> l+0 � 23.7602.
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Appendix

Let us defne a Lyapunov function as

κ � V1 Xp − X
∗
p − X

∗
p ln

Xp

X
∗
p

⎛⎝ ⎞⎠ + V2 Xq − X
∗
q − X

∗
p ln

Xq

X
∗
q

⎛⎝ ⎞⎠ + V3 Xr − X
∗
r − X

∗
r ln

Xr

X
∗
r

􏼠 􏼡, (A.1)

for the positive values of the constants V1, V2, and V3 which
will be specifed soon after.

At this point, κ(Xp, Xq, Xr)≥ 0 since θ − 1≥ ln θ for
θ> 0 and κ(X∗p, X∗q , X∗r ) � 0. Diferentiating κwith regard to
t alongside, the solutions of model (17) provide

dκ
dt

� V1
Xp − X

∗
p

Xp

dXp

dt
+ V2

Xq − X
∗
q

Xq

dXq

dt
+ V3

Xr − X
∗
r

Xr

dXr

dt

� V1 ζ1 1 − Xpξ
− 1
1􏼐 􏼑 − ζ2Xr μ + μ1Xp􏼐 􏼑

− 1
− ζ3Xq + ζ4XqXr􏼔 􏼕

+ V2 81 1 − Xqξ
− 1
2􏼐 􏼑 − 82Xr ρ + ρ1Xq􏼐 􏼑

− 1
− 83Xp + 84XpXr􏼔 􏼕

+ V3 − ϕ1 − ϕ2Xr + ϕ3Xp μ + μ1Xp􏼐 􏼑
− 1

+ ϕ4Xq ρ + ρ1Xq􏼐 􏼑
− 1

􏼔 􏼕

� V1 − ζ1ξ
− 1
1 Xp − X

∗
p􏼐 􏼑 − ζ2 Xr μ + μ1Xp􏼐 􏼑

− 1
− X
∗
r μ + μ1X

∗
p􏼐 􏼑

− 1
􏼚 􏼛 − ζ3 Xq − X

∗
q􏼐 􏼑 + ζ4 XqXr − X

∗
q X
∗
r􏼐 􏼑􏼔 􏼕 Xp − X

∗
p􏼐 􏼑

+ V2 − 81ξ2 Xq − X
∗
q􏼐 􏼑 − 82 Xr ρ + ρ1Xq􏼐 􏼑

− 1
− X
∗
r ρ + ρ1X

∗
q􏼐 􏼑

− 1
􏼚 􏼛 − 83 Xp − X

∗
p􏼐 􏼑 + 84 XpXr − X

∗
pX
∗
r􏼐 􏼑􏼔 􏼕 Xq − X

∗
q􏼐 􏼑

+ V3 − ϕ2 Xr − X
∗
r( 􏼁 + ϕ3 Xp μ + μ1Xp􏼐 􏼑

− 1
− X
∗
p μ + μ1X

∗
p􏼐 􏼑

− 1
􏼚 􏼛 + ϕ4 Xq ρ + ρ1Xq􏼐 􏼑

− 1
− X
∗
q ρ + ρ1X

∗
q􏼐 􏼑

− 1
􏼚 􏼛􏼔 􏼕 Xr − X

∗
r( 􏼁

� − V1ζ1ξ
− 1
1 Xp − X

∗
p􏼐 􏼑

− 2
− V281ξ

− 1
2 Xq − X

∗
q􏼐 􏼑

− 2
− V3ϕ2 Xr − X

∗
r( 􏼁

− 2

− μ V1ζ2 − V3ϕ3( 􏼁 Xp − X
∗
p􏼐 􏼑 Xr − X

∗
r( 􏼁 μ + μ1Xp􏼐 􏼑

− 1
μ + μ1X

∗
p􏼐 􏼑

− 1

− ρ V282 − V3ϕ4( 􏼁 Xq − X
∗
q􏼐 􏼑 Xr − X

∗
r( 􏼁 ρ + ρ1Xq􏼐 􏼑

− 1
ρ + ρ1X

∗
q􏼐 􏼑

− 1

− μ1V1ζ2 X
∗
pXr − XpX

∗
r􏼐 􏼑 μ + μ1Xp􏼐 􏼑

− 1
μ + μ1X

∗
p􏼐 􏼑

− 1
− ρ1V282 X

∗
q Xr − XqX

∗
r􏼐 􏼑 ρ + ρ1Xq􏼐 􏼑

− 1
ρ + ρ1X

∗
q􏼐 􏼑

− 1

− V1ζ3 + V283( 􏼁 Xp − X
∗
p􏼐 􏼑 Xq − X

∗
q􏼐 􏼑 + V284 XpXr − X

∗
pX
∗
r􏼐 􏼑 Xq − X

∗
q􏼐 􏼑.

(A.2)

By putting V1 � ϕ3, V2 � ζ2ϕ48− 1
2 , and V3 � ζ2, sub-

sequently making simpler dκ/dt, we acquired that
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dκ
dt

� − ϕ3ζ1ξ
− 1
1 Xp − X

∗
p􏼐 􏼑

2
− ζ2ϕ4818

− 1
2 ξ− 1

2 Xq − X
∗
q􏼐 􏼑

2
− ζ2ϕ2 Xr − X

∗
r( 􏼁

2

− μ1ϕ3ζ2 X
∗
pXr − XpX

∗
r􏼐 􏼑 μ + μ1Xp􏼐 􏼑

− 1
μ + μ1X

∗
p􏼐 􏼑

− 1
− ρ1ζ2ϕ482 X

∗
q Xr − XqX

∗
r􏼐 􏼑 ρ + ρ1Xq􏼐 􏼑

− 1
ρ + ρ1X

∗
q􏼐 􏼑

− 1

− ϕ3ζ3 + ζ283ϕ48
− 1
2􏼐 􏼑 Xp − X

∗
p􏼐 􏼑 Xq − X

∗
q􏼐 􏼑 + ϕ3ζ4 XqXr − X

∗
q X
∗
r􏼐 􏼑 Xp − X

∗
p􏼐 􏼑

+ ζ284ϕ48
− 1
2 XpXr − X

∗
pX
∗
r􏼐 􏼑 Xq − X

∗
q􏼐 􏼑.

(A.3)

Clearly, dκ/dt � 0 at Γ7(X∗p, X∗q , X∗r ).
Now, dκ/dt< 0 if

X
∗
p <Xp <

X
∗
pXr

X
∗
r

, X
∗
q <Xq <

X
∗
q Xr

X
∗
r

andX
∗
pXq <XpX

∗
q

(A.4)

or

X
∗
pXr

X
∗
r

<Xp <X
∗
p,

X
∗
q Xr

X
∗
r

<Xq <X
∗
q andXpX

∗
q <X
∗
pXq.

(A.5)
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