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In this paper, the time-fractional advection-difusion equation (TFADE) is solved by the barycentric Lagrange interpolation
collocation method (BLICM). In order to approximate the fractional derivative under the defnition of Caputo, BLICM is used to
approximate the unknown function. We obtain the discrete scheme of the equation by combining BLICM with the Gauss-
Legendre quadrature rule.Te convergence rate for the TFADE equation of the BLICM is derived, and the accuracy of the discrete
scheme can be improved by modifying the number of Gaussian nodes. To illustrate the efciency and accuracy of the present
method, a few numerical examples are presented and compared with the other existing methods.

1. Introduction

Te fractional partial diferential equation (FPDE) has be-
comemore widely used in recent decades and has become an
important tool in many areas [1–7]. Tere are numerous
numerical schemes for FPDE, for instance, the fnite dif-
ference method [8–11], fnite element method [12, 13], and
the spectral method [14, 15], among others. Compared with
other numerical methods, BLICM is a high-precision, high-
efciencymethod of numerical computation, which does not
require a dense computational mesh, and its computational
program is very easy to write. In recent years, BLICM has
been applied in many felds. Some researches on the bar-
ycentric interpolation method can be found in [16–21],
among others.

Te standard advection-difusion equation describes
the changes in a concentration profle as a result of si-
multaneous difusion and advection. If we replace the frst-
order time derivative by the fractional one, then we can
obtain the time-fractional advection-difusion equation.
Te fractional advection-difusion equation (FADE) is

presented as a useful approach for the description of
transport dynamics in complex systems that are governed
by anomalous difusion and nonexponential relaxation
patterns [22]. In recent years, several methods have been
proposed for solving FADE. Liu et al. [23] considered the
space-time fractional advection-difusion equation by the
diference method. Jiang et al. [24] obtained the analytical
solutions for the multiterm time-space Caputo–Riesz
fractional advection-difusion equations on a fnite do-
main. Wei et al. [25] studied the time-fractional advection-
difusion equation by the local discontinuous Galerkin
method. Tayebi et al. [26] presented a meshless method for
solving a two-dimensional variable-order time-fractional
advection-difusion equation. Aghdam et al. [27] developed
a numerical method for solving the space-time fractional
advection-difusion equation.

To our knowledge, there are no relevant results using
BLICM for solving the TFADE. Based on the aforemen-
tioned reasons, the main motivation of this paper is to
introduce the BLICM for TFADE. In this paper, we in-
vestigate the following TFADE:
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(1)

where 0< β< 1, P and Q are the difusion coefcient and
advection coefcient, respectively, f(x, t) is a known
function, u is the unknown function, and ψ(x), μ(t), and
](t) are given continuous functions. For 0< β< 1, the
Caputo fractional derivative is defned as follows:

C
0 D

β
t u(x, t) �

1
Γ(1 − β)


t

0
(t − τ)

− β zu(x, τ)

zτ
dτ, (2)

which is one of the common fractional derivatives and has
been applied in many areas. Properties and more details
about Caputo’s fractional derivative can be sought out in
[28–30].

Te remainder of the paper is organised as follows. In
Section 2, the basic form of the BLICM is elaborated, and
based on this form, an integer-order diferential form of
BLICM is proposed. Ten, a numerical algorithm for the
Caputo fractional derivative is proposed in conjunction with
the Gauss-Legendre quadrature rule. Finally, the discrete
scheme for the TFADE is obtained at the end of this section.
Te error of the numerical algorithm is theoretically ana-
lyzed in Section 3. We provide some numerical examples in
Section 4 to demonstrate the efectiveness of this scheme.
Lastly, we give the summary in Section 5.

2. A High-Precision Numerical
Algorithm for TFADE

2.1. BLICM with the Second Class of Chebyshev Nodes.
Barycentric Lagrange interpolation (BLI) is an improvement
of Lagrange interpolation. In 2004, Berrut and Trefethen
proposed BLI [31].

Let xi (i ∈ On, On � 0, 1, . . . , n{ }) be n + 1 diferent in-
terpolation nodes.Te value of u(x) at point xi is denoted by
ui � u(xi); the interpolation polynomial can be written as
the famous Lagrange interpolation polynomial.

uL(x) � 
n

i�0
ϑi(x)ui,

ϑi(x) � 

n

θ�0,θ≠i

x − xθ

xi − xθ
, i ∈ On,

(3)

where

ϑi xa(  � δia �
1, i � a,

0, i≠ a.
 (4)

Let l(x) � 
n
i�0(x − xi) and the barycentric weight be

defned as ωi � i≠θ1/(xi − xθ). Tis implies ωi � 1/l′(xi),
and ϑi(x) can be writen as follows:

ϑi(x) � l(x)
ωi

x − xi

. (5)

By equations (3) and (5), then we can obtain:

uL(x) � 
n

i�0
ϑi(x)ui � l(x) 

n

i�0

ωi

x − xi

ui. (6)

For a fxed point x, we can deduce that

1 � 
n

i�0
ϑi(x) � l(x) 

n

i�0

ωi

x − xi

. (7)

By equations (6) and (7), we can get the barycentric
Lagrange interpolation polynomial (BLIP) denoted by uB(x)

such that

uB(x) � 
n

i�0
ζ i(x)ui, (8)

where

ζ i(x) �
ωi/ x − xi( 


n
θ�0ωθ/ x − xθ( 

. (9)

Similarly, for m + 1 diferent interpolation nodes tj

(j ∈ Om, Om � 0, 1, . . . , m{ }), we can get the BLIP of u(t)

denoted by uB(t) such that

uB(t) � 
m

j�0
φj(t)uj, (10)

where uj � u(tj) and

φj(t) �
ωj/ t − tj 


m
ρ�0ωρ/ t − tρ 

, (11)

with ωj � j≠r1/(tj − tr) (j ∈ Om).
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BLI has good numerical stability as the nodes distri-
bution density is proportional to the function (1 − x2)− 1/2.
As mentioned in [31], the simplest node distribution that
satisfes the above condition is the Chebyshev node
family. In this paper, we choose the second class of Che-
byshev nodes

xi � cos
iπ
n

, i ∈ On, (12)

and the BLI weight of these nodes are as follows:

ωi � (−1)
iδi,

δi �

1
2
, i � 0 or n,

1, other values.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

Te value of u(x, t) at point xi is ui(t) � u(xi, t), for
variable x, similar to equation (8), we can get the following
BLIP:

uTB(x, t) � 
n

i�0
ζ i(x)ui(t), (14)

in which the value of the unknown function ui(t) on nodes
tj is denoted as ui(tj) � u(xi, tj) � uij. Ten, the BLIP of
ui(t) can be represented as follows:

ui(t) � 
m

j�0
φj(t)uij. (15)

Combining equations (14) with (15), the BLIP of u(x, t)

at nodes (xi, tj)(i ∈ On, j ∈ Om) can be obtained as follows:

uTB(x, t) � 
n

i�0


m

j�0
ζ i(x)φj(t)uij. (16)

2.2. DiferentialMatrix of BLI. By equations (8) and (10), we
get

uB
′(x) � 

n

i�0
ζ i
′(x)ui,

uB
″(x) � 

n

i�0
ζ i
″(x)ui,

uB
′(t) � 

m

j�0
φj
′(t)uj,

uB
″(t) � 

m

j�0
φj
″(t)uj.

(17)

By equation (16), we can obtain the following ones:

zuTB(x, t)

zx
� 

n

i�0


m

j�0
ζ i
′(x)φj(t)uij,

z
2
uTB(x, t)

zx
2 � 

n

i�0


m

j�0
ζ i
″(x)φj(t)uij,

(18)

zuTB(x, t)

zt
� 

n

i�0


m

j�0
ζ i(x)φj
′(t)uij,

z
2
uTB(x, t)

zt
2 � 

n

i�0


m

j�0
ζ i(x)φj
″(t)uij.

(19)

It follows by equation (9) that

ζ i(x) 
n

i�0

ωi

x − xi

�
ωi

x − xi

. (20)

For above equation, if multiply x − xa (a ∈ On) on
both sides simultaneously, then we can get that

ζ i(x) 
n

i�0

ωi x − xa( 

x − xi

�
ωi x − xa( 

x − xi

. (21)

Let

σa(x) � 
n

i�0

ωi x − xa( 

x − xi

, (22)

by equation (21), the following equations can be obtained:

ζ i(x)σa
′(x) + ζ i

′(x)σa(x) �
ωi x − xa( 

x − xi

 

′

,

ζ i(x)σa
″(x) + 2ζ i

′(x)σa
′(x) + ζ i

″(x)σa(x) �
ωi x − xa( 

x − xi

 

″

.

(23)

Fix a node xa, we observe that

σa xa(  � ωa,

σa
′ xa(  � 

i≠a

ωi

xa − xi

,

σa
″ xa(  � −2

i≠a

ωi

xa − xi( 
2.

(24)
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In order to get the diferential matrix of BLI, we present
some results below which will be applied in our arguments.
We will discuss in two cases.

Case 1. a≠ i.
Since ζ i(xa) � 0 (a≠ i), we can achieve

ζ i
′ xa(  �

ωi/ωa

xa − xi

,

ζ i
″ xa(  � −2

ωi/ωa

xa − xi


k≠a

ωk/wa

xa − xk( 
2 +

1
xa − xi

⎛⎝ ⎞⎠.

(25)

Case 2. a � i.
It is pointed out that ζ i(x) is also barycentic Lagrange

interpolation basis function satisfying the property


n
i�0ζ i(x) � 1, thus we can get that



n

i�0
ζ(μ)

i (x) � 0⇔ ζ(μ)
a xa(  � − 

i≠a
ζ(μ)

i xa( , (26)

where ζ(μ)

i (x) denotes the μ-order (μ ∈ N+) derivative of
function ζ i(x).

Tus, the BLIP for the μ-order derivative of u(x) on
nodes xa (a ∈ On) can be obtained as follows:

u
(μ)

B xa(  � 
n

i�0
ζ(μ)

i xa( ui

� 

n

i�0
D

(μ)

ai ui.

(27)

Similarly, we can obtain the BLIP for the μ-order de-
rivative of u(t) on nodes tb (b ∈ Om), that is

u
(μ)

B tb(  � 
m

j�0
φ(μ)

j tb( uj

� 
m

j�0
C

(μ)

bj uj.

(28)

Finally, the BLIP for the μ-order derivative of u(x, t) on
nodes (xa, tb)(a ∈ On, b ∈ Om) can be obtained in the fol-
lowing form:

z
(μ)

uTB xa, tb( 

zx
μ � 

n

i�0


m

j�0
ζ(μ)

i xa( φj tb( uij

� 
n

i�0


m

j�0
D

(μ)

ai φj tb( uij,

(29)

z
(μ)

uTB xa, tb( 

zt
μ � 

n

i�0


m

j�0
ζ i xa( φ(μ)

j tb( uij

� 
n

i�0


m

j�0
ζ i xa( C

(μ)

bj uij,

(30)

where the μ-order diferential matrices of BLI have the
following forms, which will be needed in Subsection 2.4.

D
(μ)

ai � μ D
(μ−1)
aa D

(1)
ai −

D
(μ−1)

ai

xa − xi

⎛⎝ ⎞⎠, a≠ i,

D
(μ)
aa � − 

n

i�0,i≠a
D

(μ)

ai ,

C
(μ)

bj � μ C
(μ−1)

bb C
(1)
bj −

C
(μ−1)

bj

tb − tj

⎛⎝ ⎞⎠, b≠ j,

C
(μ)

bb � − 
n

j�0,j≠b
C

(μ)

bj .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

2.3. Calculation Scheme of Caputo Fractional Derivative.
We ponder the numerical scheme of Caputo fractional
derivative in this subsection. By equation (2), we can infer
that

C
0 D

β
t u(x, t) �

1
Γ(2 − β)

zu(x, 0)

zτ
t
1− β

+
1
Γ(2 − β)


t

0
(t − τ)

1− βz
2
u(x, τ)

zτ2
dτ. (32)

In equation (32), if we replace zu(x, 0)/zτ, z2u(x, τ)/zτ2
by the terms of equation (30) and discretize the domain by
n + 1(0 � x0 <x1 < · · · < xn � 1) nodes in space and

m + 1(0 � t0 < t1 < · · · < tm � 1) nodes in time, then the
following holds:

C
0 D

β
t u(x, t)≐

t
1− β

Γ(2 − β)


n

i�0


m

j�0
ζ i(x)φj
′ t0( uij +

1
Γ(2 − β)


t

0
(t − τ)

1−β


n

i�0


m

j�0
ζ i(x)φj
″(τ)uijdτ. (33)
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By using Gauss-Legendre quadrature rule [32], we can
get the following formula:


t

0
(t − τ)

1− β


n

i�0


m

j�0
ζ i(x)φj
″(τ)uijdτ

� 

n

i�0


m

j�0
ζ i(x) 

t

0
(t − τ)

1− βφj
″(τ)uijdτ

� 
n

i�0


m

j�0
ζ i(x) 

p

r�1
t − τr( 

1−βφj
″ τr( uijWr

� 
n

i�0


m

j�0


p

r�1
t − τr( 

1− βζ i(x)φj
″ τr( uijWr,

(34)

where τr is integral point, Wr and p are integral weight and
the number of point for Gauss–Legendre quadrature rule,
respectively. Combining above two discrete formats, we can
obtain the discrete scheme of Caputo fractional derivative as
follows:

C
0 D

β
t u(x, t) �

1
Γ(2 − β)

t
1− β



n

i�0


m

j�0
ζ i(x)φj
′ t0( uij + 

n

i�0


m

j�0


p

r�1
t − τr( 

1−βζ i(x)φj
″ τr( uijWr

⎛⎝ ⎞⎠. (35)

2.4. Discrete Scheme of TFADE. In this subsection, the
BLICM is used to approximate equation (1). By equations
(18), (19), and (35), we present the following equation:

t
1− β

Γ(2 − β)


n

i�0


m

j�0
ζ i(x)φj
′ t0( uij +

1
Γ(2 − β)



n

i�0


m

j�0


p

r�1
t − τr( 

1−βζ i(x)φj
″ τr( uijWr

� P 
n

i�0


m

j�0
ζ i
″(x)φj(t)uij − Q 

n

i�0


m

j�0
ζ i
′(x)φj(t)uij + f(x, t).

(36)

Let equation (36) hold at nodes (xa, tb)(a ∈ On, b ∈ Om),
then

t
1−β
b

Γ(2 − β)


n

i�0


m

j�0
ζ i xa( φj

′ t0( uij +
1
Γ(2 − β)



n

i�0


m

j�0


p

r�1
tb − τr( 

1−βζ i xa( φj
″ τr( uijWr

� P 

n

i�0


m

j�0
ζ i
″ xa( φj tb( uij − Q 

n

i�0


m

j�0
ζ i
′ xa( φj tb( uij + f xa, tb( .

(37)

Let Kj(tb) � 
p
r�1(tb − τr)

1−βφj
″(τr)Wr, combining

ζ i(xa) � δia and φj(tb) � δjb, then equation (37) can be
written as follows:
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t
1−β
b

Γ(2 − β)


n

i�0


m

j�0
δiaC

(1)
0j uij +

1
Γ(2 − β)



n

i�0


m

j�0
Kj tb( δiauij

� P 
n

i�0


m

j�0
D

(2)
ai δjbuij − Q 

n

i�0


m

j�0
D

(1)
ai δjbuij + f xa, tb( .

(38)

Writing equation (38) in the matrix form, we get

t
1−β
b

Γ(2 − β)



m

j�0
δ0aC

(1)
0j u0j

⋮



m

j�0
δnaC

(1)
0j unj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
1
Γ(2 − β)



m

j�0
δ0aKj tb( u0j

⋮



m

j�0
δnaKj tb( unj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� P



m

j�0
δjbD

(2)
a0 u0j

⋮



m

j�0
δjbD

(2)
an unj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− Q



m

j�0
δjbD

(1)
a0 u0j

⋮



m

j�0
δjbD

(1)
an unj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

f x0, tb( 

⋮

f xn, tb( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(39)

Taking all values of a ∈ On and b ∈ Om, by equation (39),
we can be obtained the following matrix form:

1
Γ(2 − β)

C(1) ⊗ IN 

u0

⋮

um

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

1
Γ(2 − β)

K⊗ IN( 

u0

⋮

um

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� P IM ⊗D
(2)

 

u0

⋮

um

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− Q IM ⊗D

(1)
 

u0

⋮

um

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

f0

⋮

fm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(40)

where

C(1)
�

t
1−β
0 C

(1)
00 · · · t

1−β
0 C

(1)
0m

⋮ ⋱ ⋮

t
1−β
m C

(1)
00 · · · t

1−β
m C

(1)
0m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

K �

t0K0 t0(  · · · t0Km t0( 

⋮ ⋱ ⋮

tmK0 tm(  · · · tmKm tm( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

D(2)
�

D
(2)
00 · · · D

(2)
0n

⋮ ⋱ ⋮

D
(2)
n0 · · · D

(2)
nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D(1)
�

D
(1)
00 · · · D

(1)
0n

⋮ ⋱ ⋮

D
(1)
n0 · · · D

(1)
nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

uc �

u0c

⋮

unc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

fc �

f x0, tc( 

⋮

f xn, tc( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(41)

IM and IN are identity matrices of order m + 1 and n + 1,
respectively, and c ∈ Om.

Let U � [u0, . . . , um]T and F � [f0, . . . , fm]T, then the
discrete form of equation (1) can be expressed as follows:

1
Γ(2 − β)

C(1) ⊗ IN  + K⊗ IN(   − P IM ⊗D
(2)

  + Q IM ⊗D
(1)

  U � F, (42)

and the discrete formats of the initial value conditions are as
follows:
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uTB(x, 0) � 
n

i�0


m

j�0
ζ i(x)φj(0)uij � ψ(x),

uTB(0, t) � 
n

i�0


m

j�0
ζ i(0)φj(t)uij � μ(t),

uTB(R, t) � 
n

i�0


m

j�0
ζ i(R)φj(t)uij � ](t).

(43)

3. Error Analysis

Te error estimates of BLICM based on the second class of
Chebyshev nodes are presented in this section. We frst give
the following defnitions and lemmas for future applications
in our arguments.

Defnition 3. Let J1 be the function space consisting of the
interpolated basis functions ζ i 

n
i�0 defned by equation (9),

and J2 be the function space consisting of the interpolated
basis functions φj 

m

j�0 defned by equation (11).

Defnition 4. For u(x), u(t) ∈ C[−1, 1], defne Bx,n:
C[−1, 1]⟶ J1 and Bt,m: C[−1, 1]⟶ J2, they are in-
terpolation operators for x and t, and satisfying the fol-
lowing equation:

Bx,nu(x) � 
n

i�0
ζ i(x)ui,

Bt,mu(t) � 
m

j�0
φj(t)uj.

(44)

Similarly, let J � J1 ∪J2, we can defne Bx,nBt,m:
C([−1, 1] × [−1, 1])⟶ J, it satisfes the following
equation:

Bx,nBt,mu(x, t) � 
n

i�0


m

j�0
ζ i(x)φj(t)uij. (45)

It is obvious that uTB ≔ Bx,nBt,mu. Let α1, α2 ∈ R. Since
Bx,n(α1u(x) + α2v(x)) � α1

n
i�0ζ i(x)ui + α2

n
i�0ζ i(x)vi �

α1Bx,nu(x) + α2Bx,nv(x), by the defnition of linear oper-
ator, we conclude that Bx,n is a linear operator. Similarly,
Bt,m and Bx,nBt,m are all linear operators.

Defnition 5 (see [33]) (Lebesgue constant). λn �

‖Bx,n‖∞ � max
x∈[−1,1]


n
i�0|ζ i(x)|.

Lemma 6 (see [34]). Assuming that interpolation nodes
x0, x1, . . . , xn in the interval [−1, 1], u(n+1)(x) ∈ C[−1, 1],
then, for all x ∈ [−1, 1], there exists ξ ∈ [−1, 1], ξ related to
x, such that

u − U �
u

(n+1)
(ξ)

(n + 1)!


n

i�0
x − xi( , (46)

where U is the interpolation polynomial of u.

Lemma 7 (see [35]). When the BLICM at the second class of
Chebyshev nodes, its Lebesgue constant λn satisfes the fol-
lowing equation:

λn ≤
2
π
log(n + 1) + 1. (47)

Theorem 8. Let u(n+1)
x (x, t), u

(m+1)
t (x, t) ∈ C([0, R]

× [0, T]), and let u � u(xa, tb) be the exact solution of
equation (1) and uTB � uTB(xa, tb) be the numerical solution
of equation (38) at the nodes (xa, tb) with a ∈ On and b ∈ Om,
then

u − uTB
����

����∞≤
n

2n− 1
(n + 1)!

+
2
π
log(n + 1) + 1 

m

2m− 1
(m + 1)!

  u
(∗)

�����

�����∞
, (48)

where ‖u(∗)‖∞ is the maximum one of ‖u(n+1)
x ‖∞ and

‖u
(m+1)
t ‖∞.

Proof. Using the triangle inequality, we achieve that

u − uTB
����

����∞ � u − Bx,nBt,mu
����

����∞

≤ u − Bx,nu
����

����∞ + Bx,nu − Bx,nBt,mu
����

����∞.

(49)

By Lemma 6, we obtain

u − Bx,nu
����

����∞ �
u

(n+1)
x (ξ, t)

�����

�����∞
(n + 1)!



n

i�0
x − xi( 


.


(50)

Applying |
n
i�0(x − xi)|≤ n21− n � n/2n− 1 (see [36]), the

above equation enables us to write the following equation:

u − Bx,nu
����

����∞ ≤
n

2n− 1
(n + 1)!

u
(n+1)
x (ξ, t)

�����

�����∞
. (51)

Similarly, we can get

u − Bt,mu
����

����∞ ≤
m

2m− 1
(m + 1)!

u
(m+1)
t (x, ξ)

�����

�����∞
. (52)

Since Bx,n and Bt,m are linear operators, combining
Defnition 5 and equation (52), we have

Bx,nu − Bx,nBt,mu
����

����∞≤ Bx,n u − Bt,mu 
�����

�����∞

≤ Bx,n

����
����∞ u − Bt,mu

����
����∞

≤ λn

m

2m− 1
(m + 1)!

u
(m+1)
t

�����

�����∞
.

(53)

Journal of Mathematics 7



Combining these with Lemma 7 we deduce that

Bx,nu − Bx,nBt,mu
����

����∞≤
2
π
log(n + 1) + 1 

m

2m− 1
(m + 1)!

u
(m+1)
t

�����

�����∞
. (54)

Let ‖u(∗)‖∞ � max ‖u(n+1)
x ‖∞, ‖u

(m+1)
t ‖∞ , by equations

(51) and (54) we conclude that

u − uTB
����

����∞≤
n

2n− 1
(n + 1)!

u
(n+1)
x

�����

�����∞
+

2
π
log(n + 1) + 1 

m

2m− 1
(m + 1)!

u
(m+1)
t

�����

�����∞

≤
n

2n− 1
(n + 1)!

+
2
π
log(n + 1) + 1 

m

2m− 1
(m + 1)!

  u
(∗)

�����

�����∞
.

(55)

Tis completes the proof.
Analysis similar to that in the proof ofTeorem 8 in [36],

we can get the following error estimate of Caputo fractional
derivative. □

Theorem  . Let (x, t) ∈ [−1, 1] × [−1, 1], then the following
error estimate for the BLICM of Caputo fractional derivative
holds:

C
0 D

β
t u(x, t) −

C
0 D

β
t uTB(x, t)

�����

�����∞
≤ u

(∗)
�����

�����∞
C1

ehx

2n
 

n

+ C2
eht

2(m − β)
 

m− β⎧⎨

⎩

⎫⎬

⎭, (56)

where ‖u(∗)‖∞ is the maximum one of ‖u(n+1)
x ‖∞ and

‖u
(m+1)
t ‖∞, C1 and C2 are constants independent of n and m,

and hx, ht are represented as the lengths of the interval in two
dimensions.

4. Numerical Examples

Tis section demonstrates the superiority of BLICM in
solving TFADE through some examples. All numerical
results are implemented on the AMD Ryzen 5 5600H
Windows 10 system by using MATLAB R2022b. Te space-
time discrete scheme equation (42) is a system of linear
algebraic equations AU � F, which can be solved asU � A\F

(“ \ ” is the built-in function in MATLAB). By the way, the
space-time discrete linear system equation (42) is very re-
lated to the so-called all-at-once linear system, which can be
solved by the parallel iterative method [37] in order to
improve the computational efectiveness. But that is outside
the scope of this paper and we shall not pursue that here.

Te absolute error and the relative error in all examples
are defned as follows:

Ea � u xi, tj  − uTB xi, tj 


,

Er �
max u xi, tj  − uTB xi, tj 



 

max u xi, tj 


 

,

(57)

where u(xi, tj) and uTB(xi, tj) denote the exact value and
numerical value on (xi, tj), respectively. Te convergence
order is defned as log(Er1/Er2)/log(2), where Er2 is the
current error and Er1 is the previous error.

Example 1. Let R � T � 1, P � 1, Q � 0, μ(t) � 0, ](t) � 0,
ψ(x) � sin(πx) and the forcing function is f(x, t) � 2 sin
(πx)t2− β/Γ(3 − β) + π2(t2 + 1)sin(πx) in equation (1). Te
exact solution is u(x, t) � (t2 + 1)sin(πx).

Taking 900 Gaussian nodes and using equation (42) to
solve the Example 1. Table 1 shows the relative error and
convergence order of Example 1 for β � 0.3,0.5 and 0.7,
respectively. Moreover, the maximum relative error with
11 × 11 nodes by our method is about 10− 10. As m � n � 11
and β � 0.3, Figures 1 and 2 show the absolute error under
the diferent types of nodes. From Figures 1 and 2, we can
fnd that the second class of Chebyshev nodes are generally
more accurate than equidistant nodes, which shows that
Chebyshev nodes are more suitable for BLICM.

Example 2. Let R � T � 1, P � 1, Q � 0, μ(t) � 0, ](t) � 0,
ψ(x) � 0, and the forcing function is f(x, t) � 2/Γ(3 − β)

t2− β sin(2πx) + 4π2t2 sin(2πx) in equation (1). Te exact
solution is u(x, t) � t2 sin(2πx).

By equation (42), the results of Example 2 are obtained in
Table 2 and Figure 3. Table 2 shows the relative error and
convergence order of Example 2 for β � 0.3, 0.5 and 0.7 with
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Table 1: Te results of Example 1 with 900 Gaussian nodes.

n × m Er order CPU times (s)

β � 0.3

5 × 5 7.3273× 10− 3 — 0.0678
7 × 7 2.5836× 10− 5 8.1478 0.0748
9 × 9 2.1571× 10− 7 6.9041 0.1093
11 × 11 6.7406× 10− 10 8.3220 0.1442

β � 0.5

5 × 5 7.5890× 10− 3 — 0.0587
7 × 7 2.6879× 10− 5 8.1413 0.0684
9 × 9 2.3353× 10− 7 6.8467 0.0951
11 × 11 4.8861× 10− 10 8.9007 0.1268

β � 0.7

5 × 5 7.9797× 10− 3 — 0.0511
7 × 7 2.8917× 10− 5 8.1083 0.0907
9 × 9 2.7703× 10− 7 6.7057 0.1012
11 × 11 4.9982× 10− 10 9.1144 0.1708
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Figure 1: Absolute error of Example 1 for equidistant nodes. (a) Absolute errors with β � 0.3. (b) Contour plot of absolute errors with
β � 0.3.

1

0.5

0t 0
0.2

0.4
0.6

0.8
1

x

×10-10

15

10

5

0

(a)

0 0.2 0.4 0.6 0.8 1
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2

4

6

8

10

12
×10-10

t

(b)

Figure 2: Absolute error of Example 1 for second class of Chebyshev nodes (a) Absolute errors with β � 0.3. (b) Contour plot of absolute
errors with β � 0.3.
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Table 2: Te results of Example 2 with 1000 Gaussian nodes.

n × m Er order CPU times (s)

β � 0.3

8 × 8 4.4550× 10− 4 — 0.1285
10 × 10 8.0476× 10− 6 5.7907 0.1242
12 × 12 8.9659× 10− 8 6.4880 0.1861
14 × 14 9.6759× 10− 10 6.5339 0.2002

β � 0.5

8 × 8 4.4480× 10− 4 — 0.0897
10 × 10 8.0344× 10− 6 5.7908 0.1118
12 × 12 8.9647× 10− 8 6.4858 0.1429
14 × 14 9.5702× 10− 10 6.5946 0.2076

β � 0.7

8 × 8 4.4409× 10− 4 — 0.0978
10 × 10 8.0209× 10− 6 5.7909 0.1396
12 × 12 8.9565× 10− 8 6.4847 0.1561
14 × 14 8.7046× 10− 10 6.6850 0.1932
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Figure 3: Absolute errors of Example 2 with m � n � 14 and p � 1000 for diferent β. (a) Absolute errors with β � 0.3. (b) Contour plot of
absolute errors with β � 0.3. (c) Absolute errors with β � 0.7. (d) Contour plot of absolute errors with β � 0.7.
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p � 1000. As m � n � 14, β � 0.3, 0.7, and p � 1000, the
absolute errors of Example 2 are shown in Figure 3. By
Figure 3 we can fnd that the fuctuation of error size and
distribution is small when β is taken at diferent values,
which shows the excellent stability of BLICM.

Example 3. Let R � T � 1, P � 1, Q � 1, μ(t) � t3,
](t) � et3, ψ(x) � 0 and the forcing function is f(x, t) �

Γ(4)/Γ(4 − β)t3− βex in equation (1). Te exact solution is
u(x, t) � t3ex.

Tis example can be found in [38]. Te results of Ex-
ample 3 are as follows. Table 3 shows the relative errors for
diferent β with p � 6000. Table 4 reports the relative errors
for β � 0.01 and compare the present results with the results
obtained by the method in [38] (see Example 2 in [38]). We
perceive from this table that the results obtained by the

Table 3: Te results of Example 3 with 6000 Gaussian nodes.

n × m Er order CPU times (s)

β � 0.3

3 × 3 0.0449 — 0.8851
5 × 5 9.1899× 10− 6 12.2535 1.0206
7 × 7 1.0160× 10− 8 9.8210 1.2445
9 × 9 6.8431× 10− 12 10.5359 1.5697

β � 0.5

3 × 3 0.0484 — 0.8719
5 × 5 9.1913× 10− 6 12.3630 1.0231
7 × 7 1.0155× 10− 8 9.8220 1.1891
9 × 9 8.5369× 10− 12 10.2161 1.4915

β � 0.7

3 × 3 0.0551 — 0.8813
5 × 5 9.1904× 10− 6 12.5491 1.0134
7 × 7 1.0152× 10− 8 9.8222 1.3287
9 × 9 9.2665× 10− 12 10.0974 1.4871
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Figure 4: Relative errors of Example 3 with m � n � 9 for diferent β and p. (a) β � 0.1, 0.3, 0.5 and 0.7. (b) β � 0.2, 0.4, 0.6 and 0.8.

Table 4: Comparison of L∞-errors for Example 3 with p � 600 and β � 0.01.

Present method Method in [38]
n × m L∞-Err n × m L∞-Err
4 × 4 2.4967× 10− 5 4 × 50 8.1931× 10− 5

6 × 6 2.7631× 10− 8 8 × 100 3.9105× 10− 6

8 × 8 1.8857× 10− 11 16 × 200 1.4467× 10− 7

10 × 10 2.4464× 10− 12 32 × 400 5.1049× 10− 9
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proposed method are more accurate than the results in [38].
For diferent β, Figure 4 shows the variability of relative error
for Example 3 with diferent number of Gaussian nodes, it
implies that the stability of the relative errors becomes better
with the increasing of the number of nodes. For β � 0.1 and
β � 0.9, the absolute errors for Example 3 are shown in
Figure 5 with m � n � 9 and p � 6000.Te numerical results
of the third example also confrm the theoretical prediction
and verify the efectiveness of the proposed method.

Example 4. Let R � T � 1, P � 256/Γ(2 − β), Q � 128/
Γ(2 − β), μ(t) � 0, ](t) � 0, ψ(x) � 0, and the forcing
function is f(x, t) � Γ(1 + β)sin(πx) + 256π2/Γ(2 − β)

tβ sin(πx) + 128π/Γ(2 − β)tβ cos(πx) in equation (1). Te
exact solution is u(x, t) � tβ sin(πx).

In this example, we want to test the problem of which the
exact solution is not smooth enough. Te results of Example
4 are shown in Table 5 for diferent β. Te main purpose of
this example is to verify the efectiveness of the proposed
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Figure 5: Absolute errors of Example 3 with m � n � 9 and p � 6000 for diferent β. (a) Absolute errors with β � 0.1. (b) Contour plot of
absolute errors with β � 0.1. (c) Absolute errors with β � 0.9. (d) Contour plot of absolute errors with β � 0.9.

Table 5: Te results of Example 4 with 1000 Gaussian nodes.

n × m Er order CPU times (s)

β � 0.1

4 × 4 8.4551× 10− 2 — 0.0502
5 × 5 5.0093× 10− 3 4.0771 0.0629
6 × 6 6.0879× 10− 4 3.0406 0.0694
7 × 7 3.0452× 10− 5 4.3213 0.0853

β � 0.9

4 × 4 8.4482× 10− 2 — 0.0498
5 × 5 5.0906× 10− 3 4.0527 0.0675
6 × 6 6.3304× 10− 4 3.0075 0.0860
7 × 7 8.7959× 10− 5 2.8474 0.0946
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method. We can fnd that the performance of the proposed
method will get worse for given problem, but it is still
efective.

5. Conclusion

In this paper, we investigate the numerical algorithm for
solving TFADE by using BLICM. Discrete scheme of
TFADE is given by combining BLICM with Gauss-Legendre
quadrature rule. Teoretical analysis and numerical results
show that the discrete scheme constructed in our paper has
high numerical convergence speed and accuracy. A com-
parison of the obtained results with exact solutions and other
existing methods reveals that our method is more accurate
and efcient for TFADE. Te proposed method can be
extended to solve problems of integer and noninteger orders
in high dimensions. In our future work, we will include the
problems of high dimensions and nonlinear fractional
partial diferential equations.
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