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A topological index (TT) is a numeric digit that signalizes the whole chemical structure of a molecular network. TIs are helpful in
predicting the bioactivity of molecular substances in investigations of quantitative structure-activity relationship (QSAR) and
quantitative structure-property relationship (QSPR). T1s correlate various chemical and physical attributes of chemical substances
such as melting and freezing point, strain energy, stability, temperature, volume, density, and pressure. There are several distance-
based descriptors available in the literature, but connection-based TIs are considered more effective than degree-based TIs in
measuring the chemical characteristics of molecular compounds. The present study focuses on computing the connection-based
TIs for the most significant type of chemical structures, namely, rhombus silicate and rhombus oxide networks. At the end, we
compare these structures on the basis of their computed result.

1. Introduction

Graph theory (GT) is an important branch of mathematics
that studies the objects and relationships between them. The
concept of GT was first introduced by a Swiss mathematician
Leonhard Euler in 1735 when he solved the famous
Koénigsberg Bridge problem. GT has a wide range of ap-
plications in different areas such as software engineering,
computer science, data structures, graph coloring, website
design, operating systems, networking, and many others. A
graph consists of points called vertices and lines connecting
those points called edges. Chemical GT is a branch of
mathematical chemistry that models molecular chemical
structures using graphs. In chemical GT, molecular com-
pounds are represented by molecular graphs. A molecular
graph, in terms of GT, is a depiction of a molecular structural
formula where atoms are represented by vertices and bonds
by edges. Computation of topological indices (TIs) is
a subtopic of chemical GT that connects various physico-
chemical features of the underlying chemical substance. In
simple words, TIs convert the molecular structural in-
formation into a numeric value. TIs are widely used in

toxicology for relational analysis, as well as in environmental
and theoretical chemistry. They have a vast range of ap-
plications in various other fields of science, such as pre-
dicting the chemical properties of molecular structures and
bioactivity of molecular compounds, which is critical in
medication design and development. By analyzing the TIs of
diverse substances, researchers can find molecules with
desired biological characteristics, resulting in the creation of
novel medications. They can also be used to predict various
material characteristics and can assist in forecasting
chemical parameters such as melting point, freezing point,
strain energy, stability, temperature, volume, density, and
pressure. This knowledge is useful for creating materials with
certain properties for a variety of uses, such as the
manufacturing industry. They are extensively utilized in the
study of quantitative structure-activity and property
relationships [1].

TIs are categorized into three main classes, namely,
distance-based T1I, degree-based TI, and spectrum-based T1I.
Wiener [2] initiated the novel conception of distance-based
TI. The innovative conception of the first degree-based
Zagreb index (ZI) was initiated by Gutman and Trinajstic
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[3]. This development gave a way to researchers to in-
vestigate more such TIs. After this discovery, a number of
TIs were explored by distinct scientists and they utilized
these new TIs in exploring the physical and chemical
properties of molecular compounds [4, 5]. In 1998, the
atom-bond connectivity (ABC) index which is a significant
type of TI was given by Estrada et al. [6]. Furthermore, its
fourth version (ABC,I) was introduced by Ghorbani et al.
[7]. Vukicevic and Furtula [8] investigated another im-
portant type of index named as geometric-arithmetic (GA)
index in 2009. Furthermore, Garaovoc et al. [9] checked the
chemical properties of dendrimers by utilizing a new index
named as the fifth version of the GA index. Vukicevic [10]
investigated the novel idea of the symmetric division degree
(SDD) index in 2010. Das et al. [11] found the bounds of the
SDD index of graphs. Later on, Furtula et al. [12] introduced
the augmented Zagreb index (AZI). The novel conception of
the harmonic index (HI) was given by Fajtlowicz [13]. The
idea of the inverse sum (IS) index was initiated by Vukicevic
and Gasperov [14]. Matejic et al. [15] found the upper
bounds of the IS index of graphs. Furthermore, Shirdel et al.
[16] introduced an innovative idea of hyper-ZI (HZI).
Furtula et al. [17] computed the atom-bond connectivity
index of trees. Gao and Farahani [18] calculated the HZI of
some dendrimer nanostars.

All these introduced ZIs are degree-based ZIs which
depend upon the degree of the vertices of molecular graphs.
Recently, connection number (CN-) based ZIs are in-
vestigated by Ali and Trinajstic [19] which depend upon the
CN of the vertices. A CN is a count of those vertices which
are at distance two from a certain vertex. CN-based ZI (ZCI),
instead of degree-based ZIs has a wide range of applicability
in finding the physical and chemical attributes of chemical
substances. According to scientists, Zagreb connection in-
dices (ZCIs) provide a better platform than the other
classical ZIs to measure the physical and chemical attributes
of molecular chemical structures. They examined the ap-
plicability of ZCIs on octane isomers. Sattar et al. [20, 21]
calculated the novel ZCIs for some zinc oxide and silicate
networks. For details about Zagreb connection indices, the
readers are referred to [22, 23]. Fatima et al. [24] computed
ZCIs of some chemical structures. Furthermore, Kamran
et al. computed the M polynomial and TIs of phenol
formaldehyde [25]. Besides these, many chemical structures
have been characterized by different researchers as one can
see [26-28].

The methodology involved in this study encompasses the
computation of connection-based topological indices (TIs),
namely, ABBI, GAIL, AZI, SDI, HI, ISI, and HZI for
prominent chemical structures, specifically rhombus silicate
and rhombus oxide networks. The study utilizes distance-
based descriptors, focusing on the effectiveness of
connection-based TIs compared to degree-based TIs in
measuring the chemical characteristics of molecular com-
pounds. The computed results are then employed to conduct
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a comparative analysis of these chemical structures. This
research article is organized as follows: Section 2 involves
some basic definitions and formulas which are used for the
computation of main results. Section 3 covers the main
results for the rhombus silicate network. In Section 4, we
compute the ZIs for the rhombus oxide network. In Section
5, a comparative analysis among computed TIs of RHSL and
RHOX networks and between these networks is presented.
Section 6 covers the conclusions.

2. Basic Definitions

Suppose that G = (2 (G), @(G)) is a network, where
P(G) Q(G) are a set of nodes (vertices) and edges. The
count of those nodes which are at distance one from vertex ¢
is said to be the degree of that node t, and the count of those
nodes which are at distance two is referred to as the con-
nection number (CN) of node t. We consider e = (t, k),
where t,k € (G) is an edge, then the degree of the e is
deg(e) = deg(t) + deg(k) — 2. Degree-based indices along
with their formulas are given in Table 1. CN-based indices
along with their formulas defined by Sattar and Javaid [29]
are in Table 2.

3. Construction of RHSL and RHOX Networks

In this section, we will look at how to build RHSL and RHOX
networks. By far, silicate is the most intriguing class of
minerals. These networks are produced when metal car-
bonates and metal oxides are fused with sand. As a basic
unit, SiO, tetrahedron is found in all silicates. In chemistry,
the vertices at the corners of SiO, tetrahedron depict oxygen
ions, while the vertices at the center depict silicon ions. In
GT, the corner vertices are referred to as oxygen nodes, while
the center vertices are referred to as silicon nodes. Different
silicate structures can be obtained by arranging the tetra-
hedron silicate in different ways. Similarly, distinct silicate
structures build different silicate networks. Figure 1 depicts
the RHSL network of dimension 3, i.e., RHSL(3). By deleting
silicon ions from the RHSL network, we obtained the RHOX
network as depicted in Figure 2. In the present study, we
denote the RHSL and RHOX networks of dimension m by
RHSL(m) and RHOX (m). In general, the total count of
vertices and edges in RHSL(m) are 5m* + 2m and 12m?,
respectively. Furthermore, the total count of vertices and
edges in the RHOX (m) network are 3m? + 2m and 6m?,
respectively.

4. CN-Based ZIs of the RHSL Network

In this section, we calculate the CN-based ZIs of RHSL. Let
Y = RHSL (m) be a molecular graph RHSL network, where
m>2 is the dimension of the network. In Figures 3-5, we
represent the molecular graph of Y = (&, Q) of RHSL (m)
for m = 2, 3,4 by labeling the vertices with their CNs.
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TaBLE 1: Topological indices on the basis of degrees of nodes.
Formulas Name of indices Acronyms
deg () +deg (k)2 Atom-bond connectivity index [6
Zf,ke@(ﬁ) deg (t)xdeg (k) tY [ ] ABCI
y 2+/deg(t)deg (k) Geometric-arithmetic index [8] GAI
t,ke@(G) ™ deg (t)+deg (k)
deg(t)xdeg(k) ]° Augmented Zagreb index [12] AZI
Zt,ke@(@) deg (t)+deg (k)-2
5 min (deg(t),deg(k)) , max(deg(t),deg(k)) Symmetry division degree index [8] SDDI
t,ke@(G) max (deg(t),deg(k)) = min(deg(t),deg(k))
;) .
Z”&E (©) W T5 ) Harmonic index [13] HI
5 deg (t)xdeg (k) Inverse sum index [14] ISI
t,keQ(G) (deg(t)+deg (k)) .
Yikea(o) [deg(t) + deg (k)]* Hyper-Zagreb index [16] HZI
TasLE 2: Topological indices on the basis of CN of nodes.
Formulas Name of indices Acronyms
5 [a(®+a()—2 Atom-bond connectivity connection index [29] ABCCI
tke@(G) \| " a(t)xa (k)
2y/a(Ba(k) Geometric-arithmetic connection index [29] GACI
>
tkeQ(G) a(t)+a(k)
atxa) |’ Augmented Zagreb connection index [29] AZCI
Likea(s) a(t)ra(k)-2
y min(a(D).a(k) | max(a(t).a(k) Symmetry division connection index [29] SDCI
t,k€Q(G) | max(a(f),a(k)) " min(a(t)a(k)
Yiker (G)m Harmonic connection index [29] HCI
t k i i
Y okea G)% Inverse sum connection index [29] ISCI
Zt,ke@(G) [a(t) + a(k)]? Hyper-Zagreb connection index [29] HZCI

Ficure 1: Rhombus silicate RHSL (3).

Figure 2: Rhombus oxide RHOX (3).
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FIGURE 4: RHSL(4) along with CNs 5, 9, 12, 15, and 18.
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Figure 5: RHSL(5) along with CNs 5, 9, 12, 15, and 18.

By simple observation, one can see that there are a total
of thirteen partitions of the edges. Thus, we have

Q55 =itk € Q(Y):

Qs¢) =itk € Q(Y):
Q5,15 ={tk € G(Y):
Q(6,12) ={tk € Q(Y):

Q99 ={tk € Q(Y):
Q912 ={tk € Q(Y):
Q9,15 =1tk € Q(Y):
Q12,12 =1tk € Q(Y):
Q12,15 ={tk € Q(Y):
Q12,18 ={tk € Q(Y):
Q15,15 ={tk € Q(Y):
Q15,18 = {tk € Q(Y):
Q15,18 =itk € Q(Y):

a(t) = 5,a(k) =5},
a(t) = 5,a(k) = 6},
a(t) =5a(k) =12},
a(t) =6,a(k) =12},
a(t) =9,a(k) =9},
a(t) =9,a(k) =12},

a(t) =9,a(k) = 15}, (1)
a(t) =12,a(k) = 12},

a(t) =12,a(k) = 15},

a(t) =12,a(k) = 18},

a(t) = 15,a(k) = 15},

a(t) = 15,a(k) = 18},

a(t) =18,a(k) = 18}.

Total counts of the above-classified vertices are given in

Table 3.

5

TaBLE 3: Count of CN-based classified vertices of Y.
Q1) 1@ (¢l
Qs 2
Qs 4
Q512 4
Q612 2
@(9,9) 4m -4
Q0,12 8
@(9‘15) 16m — 24
@(12,12) 2
@(12)15) 8m —4
@ 12,18 6m?* — 20m + 16
@(15)15) 8m — 14
@(15’18) 8m — 16
Qs1s) 6m? — 24m + 24

Theorem 1. Let Y = RHSL (m) be a molecular graph. Then,

the ABCCI Y) is given as

ABCCI(Y) = 4.1036m” + 1.7761m + 0.6205. 2)

Proof. By using Table 2 and definition of ABCCI, we have
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o (t) +a(k) -2
ABCCI(Y) = a(t) +a(k) -2
) t,ke%(y) a(t) x a(k)

_I@ | a(t)+a(k)—2+|@ | oc(t)+(x(k)—2+|@ | a(t) +a(k) -2
TIEEIIN T (1) x a(k) GO\ 5 () x a (k) G4 (1) x a(k)

o a(t) +a(k) -2 o a(t) +a(k) -2 o a(t) +a(k) -2
e\ @mxam 19N wirxam®m TN o a®
a(t) +a(k) -2 a(t) +a(k) -2 a(t) +a(k) -2
oo myam el amsa 10 amat
a(t) +a(k) -2 a(t) +a(k) -2 a(t) +a(k)-2
+|@(1z,1s>| W+|@(15,15)| m+|@(15,13)| W

5+5-2 5+6-2 5+12-2 6+12-2 (3)

=|@6&|'j;;§_+|@6@|‘_§;g_+|@@nﬂ 5% 12 @] 6x12

9+9-2 9+12-2 9+15-2 2+12-2
+|@””|<75§§_+|@&Hﬂ _§§j§_+|@&wﬂ —§;j§—+|@uzuﬂ Tx1a

12+15-2 12+18-2 15+15-2
+]@ 12,15 _TE;T§_+| (1218 —ngjg_+|@0iwﬂ T 15x15
15+18-2 18+ 18 -2
R e R e

=10.402 + (1.7776 m — 1.7776) + (6.4590 m — 9.6885) + (2.9808 m — 1.4904)
+(2.1602m2 —7.200m + 5.7600) +(2.8216m — 4.9378) + (2.7107m — 5.4208)
+(1.9434m2 —7.7736m + 7.7736)

= 4.1036m* + 1.7761m + 0.6205.

Theorem 2. Let Y = RHSL(m) be a molecular graph. Then, ~ Proof. By using the definition of GACI, we have
GACI is given as

GACI (Y) = 37.8782m> — 16.5584m — 25.3876. (4)

2o (t)a (k)
GACI(Y) = Zvattlaty)
1 tke%m a(t) + a(k)
e 2+ (t)a (k) @ 2+ (t)a (k) @ 24/ (t)a (k)
=| (S’S)Ia(t)+(x(k)+| (5’6)|(x(t)+(x(k)+| (5’12)|(x(t)+(x(k)
2~/ (t)a (k) 2/ a(t)a (k) 2~/ a(t)a (k)

ool v am 109 wm et o0l o e
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2+ (t)a (k) 2+ (t)a (k) 24/ (t)a (k)
e s = Q| o s @ e
a(t) + a(k) a(t) + a(k) a(t) +a(k)
2o (t)a (k) 2o (t)a (k) 2+ (t)a (k)
+ |@(12,1s)| + |@(15)15)|7+ |@(15,18)|7
a(t) + a(k) a(t) + a(k) a(t) + a(k)
24/ (t)a (k)
+Casas)| =7
a(t) + a(k)
2/5%5 2vV5x%x6 25 %12 26 x 12 2V9%x9
=2 +4 +4 +2 +(4m —4)
545 5+6 5+12 6+12 9+9
24/ 12 2 1 2412 x 12 2412 x 1
IX12 | (g2 VO X0 G2VI2XT2 Ly 2VI2X DS
9+ 12 9+ 15 12+ 12 12+ 15
2vV12 x 1 241 1 21 1
+ (6m” - 20m + 16)7X8+(8m— 14)$+(8m— 16)ﬂ
12 +18 15+ 15 15+ 18
+ (6m* - 24m + 24) 2visx18
18 +18

= 37.8782m" — 16.5584m — 25.3876.

Theorem 3. Let Y = RHSL(m) be a molecular graph. Then, ~ Proof. By using the definition of AZCI, we have
AZCI is given as

AZCI(Y) = 7431.64m* — 11205.83m + 3635.91. (6)

alt)yxak) 1°
AZCI(Y) = _
82 t’k;@:m [oc(t)+oc(k)—2]

e at)yxak) |’ o alt)yxak) |’ o at)xak) |’
sl rat-z) 1l ram—z] TRl amam -2

o at) xa(k) 1’ o at) xa(k) 1’ o a®)xak) 1’
Hewnl| g vam—2) ol gmem—2) 1%l i em 2

o at) xak) 1’ o at)xak) 1’ o alt)xa(k) 1’
+|@os) a(t) + a(k) -2 1) a(t) + (k) -2 +l@aaus)| a(t) + (k) -2

o alt)yxak) 1° o alt)xak) 1° o alt)xak) 1°
o]l Gy et -2) 109l o vato-z) Tl am a2

alt)yxak) 1°
+ 1@ s8] a(t) + a(k) -2

5x5 13 5x6 1° 5x12 13 6x12 1° 9%x9 713
:2[—] +4[ ] +4[ ] +2[ ] +(4m—4)[ ]
5+5-2 5+6-2 5+12-2 6+12-2 9+9-2
[ 9x12
9+12-2

9x15 713 12x 12
sr1s2)

3 12x15 173
] +(16m—24)[ = ]
9+15-2 12+12-2

]3”8’"‘4)[m

(5)
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+(6m’ - 20m + 16) [%]
15x15 13 15x18 73 5 18x18 73
+(8m - 14)[15+ 15—2] +(8m - 16)[15+ 18—2] +(6m _24m+24)[8+8—2]
= 7431.64m” — 11205.83m + 3635.91.
(7)
O
Theorem 4. Let Y = RHSL (m) be a molecular graph. Then, ~ Proof. By using the definition of SDCI, we have
SDCI is given as
SDCI(Y) = 25.0002m" — 2.0006m1 — 9. (8)
B min («(t), a(k)) max(a(t), a(k))
SDCI(Y) = t,kg@:(y)[max(tx(t),a(k)) " min(tx(t),oc(k))]
3 min («(t), a(k)) max(a(t),a(k)) o min («(t), a(k)) max(a(t),x(k))
_I (55)l max(oc(t),oc(k))+min(0c(t),0c(k)) +| (5’6)| max(oc(t),oc(k))+ min (« (t), a (k))
o min («(t), a(k)) max(a(t),a(k)) o min («(t), a(k)) max(«a(t),a(k))
60| axa, ety T minta), a®) | 1262 max (@), atk) * min(a (), a(0)
l | min («(t), a(k)) max(a(t),a(k)) | | min («(t), a(k)) max(«(t),a(k))
%09 max (a(t), «(k)) min(a(t), a(k)) ©:12) max (a (1), a (k)) " min (& (t), a (k))
o min («(t), a(k)) max(a(t),a(k)) © min (a(t), a(k)) max(«a(t),a(k))
+@0us) max(a(t), (k) " min (a(0), « (k) * 1202l max (o (1), a(K)) " min (c(£), a(K))
o [ min (a(¢), a(k)) max(a(t),a(k))] o min (a(t), a(k)) max(a(t),a(k))
+@0as)| | max (a(t), a(k))  min(a(t), a(k)) | * @0z max (a (), () " min (o (2), a (k)
G [ min (a(¢), a(k)) max(a(t),a(k))] o min (a(t), a(k)) max(a(t),a(k))
+l@asis| | max (a(t), a(k)) ~ min (a(t), a(k)) | #1005 e (o), 0 () * min (ato) a (0
o [ min («(t), a(k)) max(a(t),a(k))] ©)
+ (18’18)|_max(0c(t),oc(k)) min (a(t), a(k)) |
_ | min(5,5) max(5,5) min(5,6) max(5,6) min(5,12) max(5,12)
" “Imax(5,5) min(5,5) max(5,6) min(5,6) max(5,12) min(5,12)
2'min(6,12) max (6, 12) a4 min(9,9) max(9,9)
N | max (6, 12) " min (6, 12) +(4m - 4) max(9,9) " min (9,9)
3 [ min (9, 12) . m.'le(9, 12)] + (16m - 24) [min(9, 15) . me‘lx(9, 15)]
| max(9,12) min(9,12) max(9,15) min(9,15)
[min(12,12) max(12,12) [min(12,15) max(lZ,lS)]
+2 . (8m —4) .
| max(12,12) min(12,12) max (12,15) min(12,15)
6 — 20 16 min(12,18) max(12,18) 8 14) min(15,15) max(15,15)
+(6m” ~20m + 16) max(12,18) ' min(12,18) | 0"~ *| max(15,15) " min (15, 15)
min(15,18) max(15,18) 5 min(18,18) max(18,18)
+(8m= 16)[max(15,18) min (15, 18)] +(6m _24m+24)[max(18,18) " min(18,18)]

= 25.0002m° — 2.0006m — 9.
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Theorem 5. Let Y = RHSL (m) be a molecular graph. Then, ~ Proof. By using the definition of HCI, we have
HCI is given as

HCI(Y) = 0.7332m* + 0.7212m + 0.50447. (10)
HCI(V)= ) N
g (@) +a(k)

=@ 2 @ 2 @ 2
=1%ol G et 1000l G ram T el G am

2 2 2
ol am 1o ey * 1onl Ga e

2 2 2
+l@o.s) @@ +ak) @azm0) @ +a(k) @2 (a(t) +a(k))

2 2 2
1@l G amy 109l G et * 12l G et

2
+ |@(13,18)| (a(t) + a(k)

_, 2 42 42 -2 (4m —4) 2
T G5 TGt T 6G+12) TG+ MY 99

+(8m —4) 2

+6m=20 15t 22 ) (12 + 15)

+8 2
9+ 12)

2 2
+(6m% = 20m +16)——— + (8m —14)—— + (8m — 16)——
(6m* —20m )(12+18) (Bm = 14) 515 * M- 101575

2
+ (6m —24m + 24)m

= 0.7332m” + 0.7212m + 0.50447.

Theorem 6. Let Y = RHSL (m) be a molecular graph. Then,  Proof. By using the definition of ISCI, we have
ISCI is given as

ISCI(Y) = 97.2m” + 2.6404m — 75.4745. (12)
a(t) x a(k)
SCI(Y) = _—
BAM= 2 o+ ak)
B a(t) x a(k) a(t) x a(k) a(t) x a(k)
=196l o ramy 20l G ramy TP Lo v amy
© a(t) x a(k) o a(t) x a(k) © a(t) x a(k)
el Goram 190l G s ety 200l GE T am)
a(t) x a(k) a(t) x a(k) a(t) x a(k)

1ol Gt 12eel a1 v oty

(11)
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+|@ l a(t) x a(k) +| | a(t) x a(k) +| | a(t) x a(k)
21 (o (£) + a(k)) U (g (t) + a(k)) WOV (e (t) + a(k))
+|@ l a(t) x a(k)
0819 G 1) + ()
B 5%x5 5x6 5x12 6x12 (4 _4)9><9
G+5) " (5+6) (+12) “G6+12) Y9y 9
9x12 (16 24) 9x15 12 x 12 (8 2) 12 x 15
©+12) M o) T ) T T Y 2 1)
o 2om e 16) 12X18 o 15x15 o 15x18
+ (6m” - 20m + )(12+18)+(m_ Y1) T 1Oy

18 x18

2
+ (67’” —24m + 24)m

= 97.2m” + 2.6404m — 75.4745.
(13)

Theorem 7. Let Y = RHSL (m) be a molecular graph. Then, ~ Proof. By using the definition of HZCI, we have
HZCI is given as

HZCI(Y) = 13176m* — 17820m + 5584. (14)

HZCI(Y)= Y [a(®)+a(k)
tke@(Y)

=|@ 5.5)| [ (D) + 2 ()] +|@ 56| [ (8) + € (k)] + | Q510 | [ (t) + (K]

+|@ 6.1 | [ (8) + @ (K)]? + Qo0 | [a () + a(K)]* + | @ (9.1 [ (£) + a (K)]?

+[ Q0,15 | [ (8) + a (k) + |@ (12,1 | [ (£) + a (k)] + 1@ (12.15)| [ (£) + a(k))?

+|@ (1218 | [a (1) + @ (k)] + | @ 15,15 | [t (£) + @ (k)] + | @ (15,15 [ (8) + a (k)]

+ |0 s 19y [ (1) + a (K)]? (15)
=205+57+4(5+6) +4(5+12)* +2(6 + 12)* + (4m — 4) (9 + 9)*

+8(9+12)% + (16m —24)(9 + 15)* + 2(12 + 12)* + (8m — 4) (12 + 15)*

+ (6m” - 20m +16) (12 + 18)* + (8m — 14) (15 + 15)° + (8m — 16) (15 + 18)°

+ (6m” - 24m + 24) (18 + 18)*

= 13176m" — 17820m + 5584

O

5. CN-Based ZIs of the RHOX Network I'= (£,Q) of RHOX(m) for m = 2,3,4 by labeling the
vertices with their CN.

In this section, we calculate the CN-based ZIs of RHOX. To find ZCIs of the RHOX network, we define the

Let I' = RHOX (m) be a molecular graph RHOX network,  partitions of the edge set of T on the basis of CNs. By simple
where m>2 is the dimension of the network. In  observation, one can see that there are a total of eight
Figures 6-8, we represent the molecular graph of  partitions of the edges. Thus, we have
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Ficure 7: RHOX (4) along with CNs 4, 8, 6, 10, and 12.

11
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TaBLE 4: Count of CN-based classified vertices of T.

Ficure 8: RHOX (5) along with CNs 4, 8, 6, 10, and 12.

@ uay =1tk € Q(D): a(t) = 4, a(k) = 4},
@ us) =itk € Q(D): a(t) = 4, (k) = 8}

@(t,k) |@(t,k)|
Qg =tk € Q(T): a(t) = 6,a(k) = 8}, @ (44 2
_ : _ - Qag) 4
Q 6.10) = itk € Q(T): a(t) = 6, (k) = 10} (16) O s 4
Q510 =1tk € Q(D): () = 8, (k) = 10}, Qo sm 12
(8,10)
@ (10,10 =1tk € Q(T): a(t) = 10, a (k) = 10}, @ 10.10) 8m — 14
~ ' ~ B € 10.12) 8m —16
Q10,12 = {thk € Q(T): a(t) = 10, (k) = 12}, o 6m? — 24m + 24
Q12,12 =1tk € Q(T): a(t) = 12, a(k) = 12}.
Total counts of the above-classified vertices are given in ABCCI(T) = 2.3451m* — 2.2504m + 6.0899. (17)

Table 4.

Theorem 8. LetI' = RHOX (m) be a molecular graph. Then, ~ Proof. By using the definition of ABCCI, we have
ABCCI is given as

a(t) +a(k) -2
A _ ot) +alic) = 2
BCCI(T) t)keém () x a (O
a(t) +a(k) -2 a(t) +a(k) -2 a(t) +a(k) -2
=@ 4] W+|@(4,8)| Wﬂ@(ﬂ” at) xa(k)
() + a(k) -2 alt) +a(k) -2 a(t) +a(k) -2
+|@610)| a“(t)T(k)Jfl@(s,loﬂ W”@(w’wﬂ Tat)xa(k)
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a(t) +a(k) -2 a(t) +a(k) -2
+ |@(1o,12)| W+ |@(12,1z)| W

4+4-2 4+8-2 6+8-2
=|Cun——7 +Cusl + 1@ 6x8
6+10-2 8+10-2 10+10-2
+@ 610\ + @0 710+| (10,10 T10x10
10+12-2 12+12-2
+|@uon| 1z HlewnN TG

= 2.3451m* — 2.2504m + 6.0899.

Theorem 9. Let I' = RHOX (m) be a molecular graph. Then,

Proof. By using the definition of GACI, we have
GACI is given as

GACI(T) = 6m” — 0.288m — 3.8459. (19)

GACI(T) = Z 27V0c(t)(x(k)

kB (D) a(t) + a(k)

|@ |2\/ () (k) +| |2\/0c(t)0c(k | | 2~/a(t)a (k)
) rak) T at) rak) T OO a(t) + alk)
2~/ (t)a (k) 2~/ (t)a (k) 2+Ja(t)a (k)
+| (610l +| 810| +|@(101o)|7
a(t) + a(k) a(t) + a(k) a(t) + a(k)
2o (t)a (k) 2Ja (t)a (k)
+|@ 1012| | 1212)|—
a(t) + a(k) a(t) + a(k)
_ 22\/4><4+42\/4>< 8+42\/6><8+(8 ~ 12)2\/6 x 10 (8)2\/8>< 10
4+4 4+8 6+38 +10 8+ 10
+(8m — 14)72 v10x 10 +(8m — 16)72 V10 x 12 +(6m* - 24m + 24)72 V12 x 12
10+ 10 10+ 12 12+ 12
= 6m” — 0.288m — 3.8459.
Theorem 10. Let I = RHOX (m) be a molecular graph.  Proof. By using the definition of AZCI, we have
Then, AZCI is given as

AZCI(T) = 1682.52m” — 3000.7m + 1353.94. (21)

) alt) xa(k) |’
AZCI(F)—H&Z@ [W]

e at)xak) |’ Ca®)xak) | o at)yxak) |’
el gt ram 2] 1l cmram 2] T1lcm a2

13

(18)

(20)
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PN alt)yxak) 1° | | alt)yxak) 1’ | | at)xak) 1’
G o (1) + a(k) - 2 GO o () + a(k) -2 0101 o (1) + a (k) -

alt)yxak) 1° alt)yxak) 1’
+|@(10,12)l m l (1212)| W

=2[ 4x4 ]3+4[ 4x8 ]3+4[ 6x8 ]3+(8m_12)[ 6x10 ]3

4+4-2 4+8-2 6+8-2 6+10-2

8x10 713 10x10 13 100x12 13
[ ] +(8m—14)[7] +(8m - 16)[7]
8+10-2 10+10-2 12-2

12x 12 ]3

+ (6m2 —24m + 24) [—
12+12-2

= 1682.52m” — 3000.7m + 1353.94.
(22)

Theorem 11. Let I' = RHOX (m) be a molecular graph.  Proof. By using the definition of SDCI, we have
Then, SDCI is given as

SDCI (T) = 12m” + 2.3988m — 2.999. (23)

min (« (1), «(k)) max(a(t), Oé(k))]

SDCHD = ) [max(cx(t) a (k) " min(a(), a (k)

t,ke@(T)

B min ( a(k)) max(a(t),a(k)) o min (a(t), a(k)) max(a(t),a(k))
=@l max(oc(t)a(k))+min(oc(t),¢x(k)) @] max (a (), a (k) min (a(£), a(k))

@ min («a(t), a(k)) max(a(t),a(k)) P min («(t), a(k)) max(«a(t),a(k))
+ @) max(a(t),a(k))  min(a(t), a(k) +|@e0) max (a(t), a(k)) | min(a(t), a (k)

© min (a(t), a(k)) max(a(t),a(k)) min («(t), a(k)) max(a(t), a(k))
#1000 | @, e ) min (@, ) * 12090 (ae), (0) * min (o) a ()

@ min («a(t), a(k)) max(a(t),a(k)) G min («(t), a(k)) max(«a(t),a(k))
Ol @@, at) " mintao, o) | 12022 maxta @, «(0) * min(a ), a (o) (24)

_ | min(4,4) max(4,4) min(4,8) max(4,8) min(6,8) max(6,8)
" “|max(4,4) min(4,4) max(4,8) min(4,38) max(6,8) min(6,8)

+(8m_12)[mm(6 10) max(6,10)] [min(S,lO) max(S,IO)]

+ +
(6,10) min(6, 10) max(8,10) min(8,10)

min (10, 10) max(lO,lO)] 8 _16)[min(10,12) max(10,12)]

+(8m — 14
(8m )[ ax(10,10) min(10,10) max (10,12) min(10,12)

min (12,12) max(12,12)
max(12,12) min(12,12)

+ (6m2 —24m + 24)[

= 12m” + 2.3988m — 2.999.
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Theorem 12. Let I' = RHOX (m) be a molecular graph.  Proof. By using the definition of HCI, we have
Then, HCI is given as

HCI(T) = 0.5m” + 0.52728m + 1.377244. (25)

2
C - R S
HOIO = ) G+ ath)

2

2 2
=|@(4,4>|m + |@<4,8)|m+ |@<6’8)|m

2 2 2
sl iy 120l G am 1200l G am)

2 2
+ |@(1o,1z)|m+ |@(12,1z>|m
_, 2 g2 42 (8m —12) 2 T
TRa e vy T 610) T (84 10)
2 2 2
+(8m—14)m+(8m—16)m+<6m —24m+24)m

= 0.5m" + 0.52728m + 1.377244.

Theorem 13. Let I = RHOX (m) be a molecular graph.  Proof. By using the definition of ISCI, we have
Then, ISCI is given as

ISCI(T) = 36m2 —30.364m + 5.663. (27)
a(t) x a(k)
SCI(T) = R
B = 2 e + k)
_l@ | a(t) x a(k) +| l a(t) x a(k) +|@ | a(t) x a(k)
SRl @ al) 7O @) +a k) T () + alh)
o a(t) x a(k) a(t) x a(k) © a(t) x a(k)
Hewol oz 120l G+ amy) HOwwl GoTam)
o a(t) x a(k) a(t) x a(k)
ol Gy ratey 100 G+ aty
_ 4x4 44><8 46><8 (8 _12)6><10 8x10
Tt T ars) ey T 6+10)  °(8+10)
+(8m—14)%+(8m—16)%+(6m2—24m+24)%

= 36m* — 30.364m + 5.663.
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TaBLE 5: Computed values of CBZIs of RHSL for m = 2,3,...,8.
CBZIs m=2 m=3 m=4 m=>5 m=6 m=7 m=38
ABCCI(Y) 20.5871 42.8812 73.3825 112.091 159.0067 214.1296 277.4597
GACI(Y) 93.0084 265.841 514.43 838.7754 1238.8772 1714.7354 2266.35
AZCI(Y) 10950.81 36903.18 77718.83 133397.76 203939.97 289345.46 389614.23
SDCI(Y) 86.9996 210 383.0008 606.002 879.0036 1202.0056 1575.008
HCI(Y) 4.87967 9.26687 15.12047 22.44047 31.22687 41.47967 53.19887
ISCI(Y) 318.6063 807.2467 1490.2871 2367.7275 3439.5679 4705.8083 6166.4487
HZCI(Y) 22648 70708 145120 245884 373000 526468 706288
TaBLE 6: Computed values CBZIs for m = 2,3,...,8.
CBZIs m=2 m=3 m=4 m=5 m=6 m=7 m=38
ABCCI (T) 15.469 27.1955 43.61130 64.71724 90.51336 120.99 156.176
GACI(T) 19.5781 49.2901 91.0021 144.7141 210.4261 288.1381 377.8501
AZCI(T) 2082.62 7494.52 16271.46 28413.44 43920.46 62792.52 85029.62
SDCI(T) 49.798 112.19 198.59 308.995 443.3938 601.792 784.191
HCI(T) 44318 7.4590 11.486 16.51364 22.54092 29.5682 37.595
ISCIT 88.935 238.57 460.20 753.84 1119.4 1557.1 2066.7
HZCI(T) 5904 18480 37928 64368 97680 137904 185040
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FIGURE 9: Comparison of TIs of the rhombus silicate network.
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FIGURE 10: Comparison of TIs of the rhombus oxide network.
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FiGure 11: Comparison of RHSL and RHOX networks.
TaBLE 7: Computed values of ZIs for RHSL for m = 2,3,...,8.
CBZIs m=2 m=3 m=4 m=>5 m=6 m=7 m=38
ABCI(RHSL) 29.612 65.0762 114.3482 177.428 254.3156 345.011 449.5142
GAI(RHSL) 46.3985 104.4538 185.8227 290.5052 418.5013 569.811 744.4343
AZI(RHSL) 1055.9472 2705.7402 5119.44 8297.0466 12238.56 16943.9802 22413.3072
TaBLE 8: Computed values of ZIs for RHOX for m =2,3,...,8.
CBZIs m=2 m=3 m=4 m=>5 m=6 m=7 m=38
ABCI(RHOX) 16.023 35.151 61.629 95.4546 136.6286 185.151 241.0218
GAI(RHOX) 23.3137 52.8562 94.3987 147.9412 213.4837 291.0262 380.5687
AZI(RHOX) 301.5994 782.7462 1491.433 2427.6598 3591.4266 4982.7334 6601.5802
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FIGURE 12: Graphical comparison of ABCI and ABCCI for the RHSL network.
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FIGURE 13: Graphical comparison of ABCI and ABCCI for the RHOX network.
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FIGURE 14: Graphical comparison of GAI and GACI for the RHSL network.
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FIGURe 15: Graphical comparison of GAI and GACI for the RHOX network.
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FIGURE 16: Graphical comparison of AZI and AZCI for the RHSL network.

Theorem 14. Let I' = RHOX (m) be a molecular graph.  Proof. By using the definition of HZCI, we have
Then, HZCI is given as

HZCI(T) = 3456m* — 4704m + 1488. (29)

HZCI(D) = Y [a(t) +a (k)]
t,ke@(T)

=@ |l () + € ()] +|C y5)| [ (t) + (k)] + |Q 6| L (£) + a(K)]?

+|@ 10| [ () + a (k)] + |@ 10| [a () + a (k)]* + | @ 10,10 | [ (£) + a ()T

| Qo | [6(8) + a(R) + | @100 | T (8) + a (R)T? (30)
=2(4+4) +4(4+8)° +4(6+8)* + (8m —12) (6 + 10)* + 8(8 + 10)*

+(8m — 14) (10 + 10)* + (8m — 16) (10 + 12) +(6m” — 24m + 24) (12 + 12)°
= 3456m° — 4704m + 1488,



20

100000
90000
80000
70000
60000
50000
40000
30000
20000
10000

Journal of Mathematics

0 M

m=2 m=3

—e— AZI (RHOX)
AZCI (RHOX)

FIGURE 17: Graphical comparison of AZI and AZCI for the RHOX network.

6. Comparative Analysis

6.1. Comparison among Connection-Based TIs for RHSL and
RHOX Networks. In this section, we individually compare
the results of all the calculated CBZI for the rhombus silicate
and rhombus oxide networks using line graphs. In Sections 3
and 4, we have computed the general results of RHSL and
RHOX networks in terms of m where m is the dimension. In
Tables 5 and 6, we have computed the values of CBZIs of
RHSL and RHOX networks for m = 2,3 - - 8, respectively. In
Figure 9, we have taken the values of m along the horizontal
axis and the computed values of the indices along the vertical
axis. From Figure 9, it is clear that the computed values of all
the indices other than AZCI and HZCI coincide. HZCI
attains the higher values for the RHSL network. Similarly, in
Figure 10, we can see that computed values of all the indices
other than AZCI and HZCI coincide and HZCI attains the
maximum value for the RHOX network.

From Figures 9 and 10, it can be seen that HZCI has the
maximum value for RHSL and RHOX networks. In Fig-
ure 11, we compare RHSL and RHOX networks.

From Figure 11, it is clear that computed values of HZCI
for the RHSL network show a clear difference with the
increasing values of m than that of the RHOX network.

6.2. Comparison among Degree-Based and Connection-Based
Indices for RHSL. In this section, we compare our computed
CBZIs with some degree-based indices which were calcu-
lated by Javaid et al. [30] in 2017. The expressions to calculate
degree-based indices of RHSL(m) are given as follows:

ABCI(RHSL) = 6.9039m° + 0.9447m + 0.1070,
GAI(RHSL) = 11.6568m* — 0.2287m + 0.2287,

AZI(RHSL) = 381.9534m" — 259.674m + 48.0816.
(31)

Expressions to calculate degree-based indices of
RHOX(m) are given as follows:

ABCI(RHOX) = 3.6742m> + 0.7578m — 0.1894,
GAI(RHOX) = 6m* — 0.4575m + 0.2287,

AZI(RHOX) = 113.7774m” - 87.7032m + 21.9258.
(32)

Numerical values of connection-based indices for RHSL
and RHOX networks are given in Tables 7 and 8.

The graphical comparison between degree-based and
connection-based indices for both RHSL and RHOX net-
works is shown in Figures 12-17.

7. Conclusion

In this paper, we studied CN-based ZIs, namely, atom-bond
connectivity connection index, geometric-arithmetic index,
symmetric degree index, harmonic index, inverse sum index,
and hyper-Zagreb index of RHSL and RHOX networks and
developed the closed formulas of these structures. These
developed TIs will help in comprehending the underlying
topologies of these networks. Furthermore, we have com-
pared computed connection-based indices with degree-
based indices of the literature. Also, we have compared
calculated TIs with each other for RHSL and RHOX net-
works and compared both networks with each other on the
basis of our computed connection-based indices. In future,
we compute Zagreb connection indices for the other types of
chemical structures.
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