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Several pest management programs have been developed to control rising agricultural pest populations. However, the challenge of
rapid evolution and pest resistance towards control measures continues to cause high production losses to maize farmers in Africa.
Few models have attempted to address the issue of fall armyworm (FAW) but have barely incorporated the efect of insecticide
resistance. Models with resistance would help predict the dynamics of the FAW population, thus mitigating losses. Te main
objectives of this work were to develop, analyze, and numerically simulate a susceptible-infected deterministic mathematical
model expressing the FAW-maize interaction and population dynamics under insecticidal sprays and resistance FAW larvae.
Tree model steady states are established. Teir local stability is conducted using either the eigenvalue or the Routh–Hurwitz
stability criteria, and their global stability is analyzed using either the Castillo–Chavez, Perron eigenvector, or the Lyapunov
methods. An expression for the basic reproduction number R0, together with the sensitivity analysis of its parameter values, is
provided. Numerical analysis is conducted on various model parameter values. Te results established all the model steady states
to be locally and globally asymptotically stable at R0 ≤ 1. Also, resistance ω increased the infection rates by increasing the FAW
larvae survival rate λ and reducing the insecticidal efcacy δR and δN. Tis work informs the agriculturists and policymakers on
pest control with the best ways to use insecticides to minimize pest resistance and enhance efcacy in production. Pest control
measures should be modifed to lower the FAW survival rate and all model parameters contributing to resistance formation by
FAW larvae to minimize FAW-host interaction, thus reducing crop damage.

1. Introduction

Fall armyworm (FAW), scientifcally known as Spodoptera
frugiperda, is an agricultural pest species of the order
Lepidoptera, a larval stage for the fall armywormmoth [1]. It
is a polyphagous, sporadic pest that has continuously caused
crop destruction and yield losses to both organic and in-
organic farmers globally [2]. Maize (corn) is considered
a staple food and a source of food security in most African
countries; however, farmers continue to face the threat of
signifcant production losses due to climate change, pests,
and diseases [3]. Recent research studies show that maize is
themost preferred host plant of FAW [4]. Various integrated

control mechanisms for both organic and inorganic maize
farming have been put in place to control the pest-host
(FAW-maize) interactions, but natural selection and mu-
tation have caused FAW resistance towards set control
mechanisms [5].

Recent studies show that improperly managed FAW
invasion in a maize plantation can cause a signifcant re-
duction in the quality and quantity of the harvest [6]. In
Africa, the conducive weather conditions and the availability
of FAW-preferred host favor rapid FAW reproduction. Tis
makes FAW the most dominant and endemic pest in Africa
and thus a great threat to production and food security [7].
Synthetic insecticides are the main control methods adopted
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globally against FAW pest invasions, especially in Africa
where governments are spending huge funds buying and
distributing insecticides to their farmers [8]. However,
continuous use of the insecticides increases the chances of
pest resistance against the control method and thus high
production cost [9, 10].

With maize being a staple food in Kenya and also FAW’s
most preferred host plant [6], the negative impacts of FAW
on maize production signifcantly afect Kenya’s Big Four
Agenda of achieving 100% national nutrition and food se-
curity and the entire African economic developments [11].
Te poor-quality maize yields negatively afect the country’s
GDP due to poor market access [12]. Managing FAW
populations is also expensive for most undeveloped African
countries. Generally, FAW’s invasion of the agricultural
sector in Africa poses a great threat to the achievement of the
CAADPMalabo Declaration of halving poverty by 2025 and
the achievements of the 2030 Sustainable Development
Goals (SDGs) of improving food security, eradicating
poverty, and achieving sustainable production and con-
sumption plans [7, 12].

Predicting the dynamics of a pest population and
evaluating the existing pest control measures could signif-
icantly reduce the number and the cost of pest management,
thus improving crop production, food security, and sus-
tainability [13]. Tere is an increased need to study FAW-
maize interaction and the application of insecticides with the
evolution of resistance to develop better control methods
that are more efcient, efective, and economical [12, 14].
Mathematical modeling ofers an avenue to explore such
important factors in agricultural production [15]. For in-
stance, crop growth models issue physiological approaches
for the simulations of pest destructions and crop
interactions [16].

Te disease infection rate in the maize population could
be decreased through control intervention measures such as
chemical insecticides aimed at reducing susceptible-infected
maize contact rates [17]. In the present work, we will
consider chemical insecticides as the major control method
against FAW. However, resistance alleles and migration
rates signifcantly infuence FAW population dynamics [18].
Ordinary diferential equations (ODEs) have been used in
developing and analyzing stage-structured FAW-maize in-
teraction models [13, 17–19]. However, limited attention has
been paid to host-pest interaction models, particularly in
insect pest management measures [20]. Tus, we apply
ODEs and the concept of host-pest interaction models to
study FAW larvae population dynamics in maize
populations.

From the literature, various deterministic mathematical
models describing the dynamics of agricultural pest pop-
ulations under various pest control measures have been
developed [17–19, 21–24]. Moreover, mathematical models
evaluating the efects of pests and insecticides on crop
production have been developed [13, 25]. However, despite
many pest control models in agricultural production,
comprehensive parametric research is limited. Also, limited
host-pest interaction models address various pest manage-
ment measures. From the previous studies of models on

agricultural pests, we did not fnd a mathematical model
on the host-pest (FAW-maize) interaction assessing the
interaction and population dynamics under an in-
secticidal control strategy. Trough natural selection and
mutation, a proportion of FAW pests are considered to
express resistance traits against insecticides, thus in-
creasing the host-pest interactions and reducing the in-
secticide’s efcacy [5].

To address this gap, this study develops a susceptible-
infected (SI) compartmental model for two interacting
populations, FAW-maize population, assessing the efects
of insecticide sprays and resistance factors on the in-
teraction patterns and population dynamics. SI models are
used to model the rate and transmission dynamics of
infectious human or plant diseases [26, 27]. Tis study
assumes that the FAW larvae depend largely on the maize
population for food and survival and considers in-
secticides which are the most commonly used control
methods against FAW. Tis research study will increase
the understanding of the fall armyworm-maize in-
teraction patterns and the best control measures to em-
ploy when the FAW species is in its larval stage while
minimizing larvae resistance formation. Tis will signif-
icantly improve on crop production enhancing food se-
curity and economic development [28].

A study by Daudi 2021 proposed a stage-structured
model for the control of FAW impacts on maize pro-
duction. Two interacting maize-FAW submodels were de-
veloped with the maize population divided into two stages:
vegetative X1(t) and reproductive X2(t) stages, while the
FAW population was divided into three stages, that is, the
egg E(t), caterpillar C(t), and adult A(t) stages. In this
study, we introduce the knowledge of epidemiological dis-
ease models to model the population dynamics of maize-
FAW interaction. We develop a susceptible-infected (SI)
compartmental model for two interacting populations: the
maize population and the FAW population as shown in
(Figure 1). In SI models, infection occurs when a susceptible
individual comes into contact with an infected individual,
thus contracting the disease [29]. Te FAW larvae infect the
susceptible maize population after making contact. We
introduce two factors: FAW control through insecticides
and resistance, as important factors afecting the interaction
patterns, the spread of the disease, and the model population
dynamics. Te model is analyzed, and numerical simulation
is conducted using the MATLAB ODE solver with the data
obtained from previously published articles cited accord-
ingly in this work.

2. Model Description and Formulation

In formulating the maize-FAW SI model shown in Figure 1,
we consider two maize sections: organic (O) and insecticidal
(I). Te organic section (O) is without any FAW control
methods, while the insecticidal section (I) is under in-
secticidal spraying. Te FAW larvae NL(t) infect the maize
population NM(t) through contact. Te FAW larvae pop-
ulation has been divided into two compartmental classes,
that is, the normal larval LN(t ) and the resistant larval LR(t)
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populations. A proportion of normal larvae progress into
resistance larvae at a constant rate ω after contact with
insecticides. Te two maize sections interact naturally with
both the normal larvae LN(t) and the resistant larvae LR(t).
Te maize population transits from the susceptible into the
infected compartmental class after making contact with
either the resistant or the normal larvae that transmit the
disease. Te maize population in the two sections then
progresses from susceptible SM(t) into the infected IM(t)

compartments through two forces of infection βO and βI.
Susceptible and infected maize populations at any time t in
the organic section (O) are denoted as SM

O (t) and IM
O (t),

respectively, while the susceptible and infected maize
populations at any time t in the insecticidal section (I) are
denoted as SM

I (t) and IM
I (t), respectively.

Te natural recruitment rates of the maize population
occur at a constant rate ρ. Te natural recruitment rate
contributing to the FAW larvae population is a constant rate
eN through a survival rate λ. Te FAW population NL(t)

slowly kills the host maize population NM(t) by residing in
it, infecting and feeding on the maize biomass [13]. Tis
contributes to an increased recruitment rate of FAW at a rate
(π1, π2) and a reduction in the maize population over time.
Te natural harvesting rate of the maize population is
a constant rate denoted by π. Te FAW larvae population
declines at a constant rate μL � μ1 + μ2 which is either by the
natural death rate μ1 or progression into the pupal FAW life
cycle at a constant rate μ2. Te exposure to insecticides
causes death of the FAW larvae at constants rates δ, with δN

denoting the normal larvae insecticidal-induced death rate
and δR denoting the resistance larvae insecticidal-induced
death rate, with δN < δR.

Te total population in the model at time t will
beN(t) � NL(t) + NM(t), where NL(t) � LN(t) + LR(t).

NM(t) � SM
O (t) + IM

O (t) + SM
I (t) + IM

I (t).

Te infection force at any time t in the organic section
(O) is denoted as βO and that in the insecticidal section (I) is
denoted as βI:

βO � ηO

LN + εLR

NM

􏼠 􏼡,

βI � ηI

LN + εLR

NM

􏼠 􏼡,

(1)

where βO > βI and 0< βO, βI < 1, 0< ε< 1, and infection rates
η0 > η1.

In this study, the following assumptions were made
during model formulation:

(1) To reduce model complexity, the model only con-
siders one larvae stage of the FAW life cycle. Te
other FAW stages are represented by the FAW re-
cruitment rate eN and progression rate μ2.

(2) FAW larvae NL(t) are the only pest interacting with
the maize population at time t.

(3) Insecticidal sprays are the only control methods
adopted against the FAW population.

(4) Te term normal larvae denote the larvae not
expressing the resistance traits.

(5) Te immigration and emigration rates of the adult
FAW larvae population are considered to be negligible.

(6) Temodel assumes homogenous mixing of the FAW
and maize population at any time t.

Te following state variables in Table 1 and model pa-
rameters in Table 2 are discussed as used inmodel formulation.

Considering the state variables, parameters, and as-
sumptions discussed above, we developed the model
fowchart diagram given in Figure 1.

μL + δR

μL + δN

LR (t)

LN (t)

(eN–1) + π1IM
0 + π2IM

I

(eN + π1IM
0 + π2IM

I ) λ

λ

ρ ρ

SM
0 (t) IM

0 (t) IM
I (t) SM

I (t)ω
β0

βI

θ1π
θ2π –

(1 – θ2) π
(1 – θ1) π

Figure 1: A fow diagram for the FAW larvae-maize interaction model.
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Te system of ordinary diferential equations governing
the interaction of Fall Armyworm larvae with maize is given
by the following equations:

dSM
O

dt
� ρ − βOS

M
O − 1 − θ1( 􏼁πS

M
O , (2)

dIMO
dt

� βOS
M
O − θ1πI

M
O , (3)

dSM
I

dt
� ρ − 1 − θ2( 􏼁πS

M
I − βIS

M
I , (4)

dIMI
dt

� βIS
M
I − θ2πI

M
I , (5)

dLN

dt
� λ eN + π1I

M
O + π2I

M
I􏼐 􏼑 − ω + μL + δN( 􏼁LN, (6)

dLR

dt
� 1 − eN( 􏼁 + π1I

M
O + π2I

M
I􏼐 􏼑λ + ωLN − μL + δR( 􏼁LR.

(7)

3. Model Analysis

3.1. Positivity of Solutions. Positivity ensures that the model
is well-posed and the equations lie on the feasible region of
the system and thus realistic in representing pest-host in-
teraction with positive values [30]. Since the model system
describes a living population of the FAW larvae-maize in-
teraction, then the state variables and the model parameters
are positive at any time t> 0. We prove the positivity of
solutions of our model system shown in Figure 1 by stating
and proving Teorem 1 below [31].

Theorem 1. Let the initial dataset be SM
O (0), IM

O (0),􏼈

SM
I (0), IM

I (0), LN(0), and LR(0)≥ 0}ϵΩ ϵR6
+. Ten, the so-

lution set SM
O (t), IM

O (t), SM
I (t), IM

I (t), LN(t), and LR(t) is
positive for all t≥ 0.

Proof. Let the variables SM
O (t), IM

O (t), SM
I (t), IM

I (t), LN(t),

and LR(t) be solutions to the system of nonnegative initial
conditions:

S
M
O (t)≥ 0, I

M
O (t)≥ 0, S

M
I (t)≥ 0, I

M
I (t)≥ 0, LN(t)≥ 0 and LR(t)≥ 0. (8)

Table 2: A description of model parameters.

Model parameter Description
β Te force of infection from susceptible to infected maize population
θ1 Te harvesting rate of organic maize population NM

O (t)
θ2 Te harvesting rate of insecticidal sprayed maize population NM

I (t)

η0 Te infection rate in β0
η1 Te infection rate in β1
eN

Te natural recruitment rate of NL(t) from the naturally occurring FAW
population

π Te lost maize biomass in NM(t) at any time t due to caterpillar attack
ω Te rate at which normal larvae progress into the resistance larvae population
ρ Te natural recruitment rate of maize biomass into the maize population
μL Te total population decrease rate of NL(t) at time t
μ2 Te progression rate to the pupal FAW life cycle
μ1 Te natural death rate of the FAW larvae at any time t
δ Te insecticidal-induced death rate in the NL(t) population

λ Te survival rate of LN(t) and LR(t) from the egg stage of the FAW population at
any time t

π1, π2
Te maize biomass from the IM

O (t) and IM
I (t) classes, respectively, contributing

directly to the NF(t) classes increased the natural recruitment rate

Table 1: A description of the model state variables.

State variable Description
SM

O (t) Susceptible maize population in the organic section at any time t
IM

O (t) Infected maize population in the organic section at any time t
SM

I (t) Susceptible maize population in the insecticidal section at any time t
IM

I (t) Infected maize population in the insecticidal section at any time t
LN(t) Normal larvae population at any time t
LR(t) Resistant larvae population at any time t
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Starting with equation (1),

dSM
O

dt
� ρ − βOS

M
O − 1 − θ1( 􏼁πS

M
O . (9)

Clearly, by the inspection method, ρ≥ 0 on the as-
sumption of nonnegative model variables and parameters.

We need to show that

dSM
O

dt
≥ − βOS

M
O − 1 − θ1( 􏼁πS

M
O ,

dSM
O

dt
≥ − βO + 1 − θ1( 􏼁π( 􏼁S

M
O .

(10)

By separation of variables, we obtain

dSM
O

S
M
O

≥ − βO + 1 − θ1( 􏼁π( 􏼁dt. (11)

Upon integration with respect to time (t), SM
O (t)≥C1

e− (βO+(1− θ1)π)t where C1 is a constant of integration at t � 0.
Tat is, C1 � SM

O (0).
Tus,

S
M
O (t)≥ S

M
O (0)e

− βO+ 1− θ1( )π( )t ≥ 0. (12)

Hence, the frst equation is positive.
By applying the same procedure, we obtain

I
M
O (t)≥ I

M
O (0)e

− θ1πt ≥ 0,

S
M
I (t)≥ S

M
I (0)e

− 1− θ2( )π+βI( )t ≥ 0,

I
M
I (t)≥ I

M
I (0)e

− θ2πt ≥ 0,

LN(t)≥ LN(0)e
− ω+μL+δN( )t ≥ 0,

LR(t)≥ LR(0)e
− μL+δR( )t ≥ 0.

(13)

Hence, the solution set SM
O (t), IM

O (t), SM
I (t), IM

I (t),􏼈

LN(t), andLR(t)} for the model system is proved to be
positive at all t≥ 0. Hence, the model equations lie in the
feasible region. □

3.2. Boundedness/Invariant Region. To prove for bounded-
ness of the solution of our model system, we state and prove
the following theorem as applied by [32].

Theorem 2. Te solution to the study model equations in
Section 2 is uniformly bounded in a proper subset
Ω � ΩMχΩf such that Ω� ΩM.Ωf � SM

O , IM
O , SM

I , IM
I ,􏼈

LN, LR ∈ R6
+| NM ≤ 􏽥ρ/􏽥π, NL ≤ 􏽥λ/􏽥δ}.

With ΩM � SM
O , IM

O , SM
I , IM

I ϵR
4
+|NM ≤ 􏽥ρ/􏽥π􏼈 􏼉 and

Ωf � LN, LR ∈ R2
+|NL ≤ 􏽥λ/􏽥δ􏽮 􏽯, then all the solutions to the

model system move into and remain in Ω.

Proof. To get the boundedness of the solution for the maize
population at any time t, we take the time derivative of our
total maize population along its solution to get

NM(t) � S
M
O (t) + I

M
O (t) + S

M
I (t) + I

M
I (t),

dNm

dt
� ρ − 1 − θ1( 􏼁πS

M
O − θ1πI

M
O + ρ − 1 − θ2( 􏼁πS

M
O − θ2πI

M
I ,

dNm

dt
� (ρ + ρ) − π S

M
O + S

M
I􏼐 􏼑 − π θ1S

M
O + θ2S

M
I􏼐 􏼑 − π θ1I

M
O + θ2I

M
I􏼐 􏼑≤ 􏽥ρ − 􏽥πNM

⟹
dNM

dt
≤ 􏽥ρ − 􏽥πNM,

(14)

where 􏽥ρ � (ρ + ρ) and 􏽥πNM � π(SM
O + SM

I ) + π (θ1SM
O +

θ2SM
I ) + π(θ1IM

O + θ2IM
I ).

Next, we need to show that every solution originating
from Ω stays in Ω and is bounded by ΩM ×Ωf. Consider
Lemma 3 [33] stated below. □

Lemma  . Te linear diferential equation (dNM/ dt)≤
􏽥ρ − 􏽥πNM, where a � 􏽥π ≠ 0 and b � 􏽥ρ are constants, has in-
fnitely many solutions labeled by cϵR as

NM(t)≤
􏽥ρ
􏽥π

+ NM(0)e
− 􏽥πt

. (15)

Proof. NM
′(t) − 􏽥πNM(t)≤ 􏽥ρ is also denoted as

NM
′ − 􏽥πNM ≤ 􏽥ρ .

Introducing an integrating factor μ, we get
μNM
′ − μ􏽥πNM ≤ μ􏽥ρ.

Let − μ􏽥π � μ′, and thus, μNM
′ + μ′NM ≤ μ􏽥ρ.
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Te left-hand side can be expressed as a total derivative
of a product of two functions:

μNM( 􏼁′ ≤ μ􏽥ρ. (16)

Replacing the value μ � e􏽥πt in the equation above, we
obtain

e
􏽥πt

NM􏼒 􏼓
′ ≤ e

􏽥πt
􏽥ρ, e

􏽥πt
NM􏼒 􏼓
′ ≤

1
􏽥π

e
􏽥πt

􏽥ρ􏼒 􏼓
′
,

NM −
􏽥ρ
􏽥π

􏼒 􏼓e
􏽥πt

􏼒 􏼓
′ ≤ 0.

(17)

Upon integration,

NM −
􏽥ρ
􏽥π

􏼒 􏼓e
􏽥πt

􏼒 􏼓≤NM(0),

NM(t)≤
􏽥ρ
􏽥π

+ NM(0)e
− 􏽥πt

,

(18)

limt⟶∞Nm(t)≤ 􏽥ρ/􏽥π, and thus, as t⟶∞, we have
NM(t)≤ 􏽥ρ/􏽥π.

Similarly, for the FAW larvae population,

dNL

dt
� λ + λπ1I

M
O + λπ2I

M
I + λπ1I

M
O + λπ2I

M
I − μLLN − μLLR − δNLN − δRLR ,

dNL

dt
≤ 􏽥λ − 􏽥δNL,

(19)

where 􏽥λ � λ + λπ1IM
O + λπ2IM

I + λπ1IM
O + λπ2IM

I and
􏽥δNL � μLLN + μLLR + δNLN + δRLR .

Upon integration,

lim
t⟶∞

NL(t)≤
􏽥λ
􏽥δ
thus as t⟶∞we haveNL(t)≤

􏽥λ
􏽥δ
. (20)

It then follows that the solution to the model equations
exists in the region defned by

Ω � ΩMχΩf � S
M
O , I

M
O , S

M
I , I

M
I , LR,LN􏼐 􏼑εR+

6􏽮 􏽯. (21)

Such that SM
O ≥ 0, IM

O ≥ 0, SM
I ≥ 0, IM

I ≥ 0, LR ≥ 0, LN ≥ 0.

WithΩM � S
M
O + I

M
O + S

M
I + I

M
I􏼐 􏼑≤

􏽥ρ
􏽥π

,

Ωf � LR + LN( 􏼁≤
􏽥λ
􏽥δ
.

(22)

Tis proves the boundedness of the solution inside Ω
which means that all the solutions to the model equations
(2)–(7) starts and stays in Ω for all time t≥ 0. Generally, the
solution to the initial value problems defned inΩ exists and is
unique in the given interval. Tey remain bounded in the
positively invariant and bounded regionΩ; hence, the system
is biologically and ecoepidemiologically well-posed, and the
dynamics of the model can be sufciently studied in Ω. □

3.3. Equilibrium Point Analysis. All systems of nonlinear
diferential equations may have none, one, many, or
even infnite steady states [34]. In this study, we discuss
the disease/larvae-free equilibrium points (E0),

insecticidal/control-free equilibrium points (EC), and dis-
ease endemic equilibrium points (E∗).

3.3.1. Disease/Larvae-Free Equilibrium Points (E0). Te
value of E0 is obtained by setting all the infectious classes to
zero, LN, LR, IM

O , IM
I � 0􏼈 􏼉, with β0, β1 � 0 and (SM′

O , IM′
O ,

SM′
I , IM′

I , LR
′, LN
′ � 0) to get

S
M0
O �

ρ
1 − θ1( 􏼁π

,

I
M0
I � 0,

S
M0
I �

ρ
1 − θ2( 􏼁π

,

I
M0
I � 0,

L
0
N � 0,

L
0
R � 0.

(23)

3.3.2. Insecticidal/Control-Free Equilibrium Point (EC).
Let EC � (SMc

O , IMc
O , SMc

I , IMc
I , L c

N, andLc
R) denote the

control-free equilibrium points. We solve the control
equilibrium points by expressing it in terms of the force of
infection βc

0 evaluated at the control-free equilibrium point.
We set (SM

I , IM
I � 0), LN, LR, SM

O , IM
O ≠ 0􏼈 􏼉, (SM′

O , IM′
O , SM′

I ,

IM′
I , LR
′, LN
′ � 0), δN� 0 , and δR � 0 to get
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S
Mc
O �

ρ
βc
0 + 1 − θ1( 􏼁π( 􏼁

,

I
Mc
O �

βc
0

θ1π
ρ

βc
0 + 1 − θ1( 􏼁π( 􏼁

􏼠 􏼡,

S
Mc
I � 0,

I
Mc
I � 0,

L
c
N �

ρ βc
0λπ1 + eNπλθ1( 􏼁

πψ βc
0 + π 1 − θ1( 􏼁( 􏼁θ1

,

L
c
R �

1 − eN􏼁λ(

μL

+
βc
0λρπ1

πμL βc
0 + π(1 − θ1( 􏼁􏼁θ1

+
ρω βc

0λπ1 + eNπλθ1( 􏼁

πμLψ βc
0 + π 1 − θ1( 􏼁( 􏼁θ1

.

(24)

We evaluated for the value of βc
0, as βc

0 � 1/2(b1+�������

4b0 + b21

􏽱

). We let ϖ � (ω + μL + δN), σ � (μL + δR), and
ψ � (ω + μL). Where b1 � ηOλ(ρ(μL + ε(ψ + ω)π1) + π2 θ1
εψ + eNεψ − ρμNψπθ1)/(ρμNψ), and b0 � ηOλ(πθ1εψ +

eNπεψ + eNρ(μL + εω + (− 1 + eN)b))/(ρμNψ).

3.3.3. Disease Endemic Equilibrium Point (E∗). An endemic
equilibrium point is a state in the model system where the
disease in the population approaches a constant [22]. Let
E∗ � SM∗

O , IM∗
O , SM∗

I , IM∗
I , L∗N, L∗R denote the disease endemic

equilibrium point.
Solving for the system of equations (2)–(7) in terms of

the force of infections β∗0 and β∗I ,

S
M∗
O �

ρ
β∗O + 1 − θ1( 􏼁π( 􏼁

,

I
M∗
O �

β∗O
θ1π

ρ
β∗O + 1 − θ1( 􏼁π( 􏼁

􏼠 􏼡,

S
M∗
I �

ρ
β∗I + 1 − θ2( 􏼁π( 􏼁

,

I
M∗
I �

β∗I
θ2π

ρ
β∗I + 1 − θ2( 􏼁π

􏼠 􏼡,

L
∗
N �

λ
ϖ

eN +
β∗oρπ1

π β∗o + π 1 − θ1( 􏼁( 􏼁θ1
+

β∗I ρπ2

π β∗I + π 1 − θ2( 􏼁( 􏼁θ2
􏼠 􏼡,

L
∗
R �

λ
σ

1 − eN + eN

λω
ϖ

+
ρ(ϖ + λω)π1β

∗
o

πϖθ1 π + β∗o − πθ1( 􏼁
+

ρ(ϖ + λω)π2β
∗
I

πϖθ2 π + β∗I − πθ2( 􏼁
􏼠 􏼡.

(25)

Now, substituting the values of SM∗
O , IM∗

O , SM∗
I ,

IM∗
I , L∗N, L∗R in β∗0 and β

∗
I and introducing the relation η1β

∗
0 �

η0β
∗
1 which implies β∗1 � η1/η0β

∗
0 , β
∗
0 � η0/η1β

∗
1 and then

replacing into the values of the endemic equilibrium points
to obtain the value of β∗1 .

For the model system to lie in the positively invariant
region, we let the value of

β∗1 � −
n2

3
+

21/3 − 3n1 + n
2
2􏼐 􏼑

3 − 27n0 + 9n1n2 − 2n
3
2 +

������������������������������

4 3n1 − n2
2( 􏼁

3
+ 27n0 − 9n1n2 + 2n32( 􏼁

2
􏽱

􏼒 􏼓
1/3

+
− 27n0 + 9n1n2 − 2n

3
2 +

������������������������������

4 3n1 − n2
2( 􏼁

3
+ 27n0 − 9n1n2 + 2n32( 􏼁

2
􏽱

􏼒 􏼓
1/3

321/3.
.

(26)
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β∗1 > 0 if and only if n0, n1, n2 > 0.

3.4. Basic Reproduction Number (R0). R0 is used to estimate
the number of secondary infections that could arise if one
infectious individual is introduced into a completely

susceptible population [35]. We determine the value of R0
using the next-generation matrix as discussed in [17]. We
evaluate the Jacobian matrix of the model system of equa-
tions at DFEP and determine the spectral radius using
Wolfram Mathematica software:

DFEP, E0 � S
M0
O , I

M0
O , S

M0
I , I

M0
I , L

0
N, L

0
R􏼐 􏼑 �

ρ
1 − θ1( 􏼁π

, 0,
ρ

1 − θ2( 􏼁π
, 0, 0, 0􏼠 􏼡􏼨 􏼩. (27)

Te vector for the infected and infectious classes is
denoted as X � [IM

O IM
I LN LR], and the vector for the un-

infected classes is denoted as Y � [SM
O SM

I ].

Using the notation f to denote the matrix for new in-
fection and v to denote the matrix of the transfer of in-
fections in the system,

f �

βOS
M
O

βIS
M
I

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

v �

θIπI
M
O

θ2πI
M
I

− λ eN + π1I
M
O + π2I

M
I􏼐 􏼑 +(ϖ)LN,

− 1 − eN( 􏼁 + π1I
M
O + π2I

M
I􏼐 􏼑λ − ωLN + μL + δR( 􏼁LR.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(28)

Evaluating the Jacobian matrices of f and v at DFEP to
get F � [zf/zX]E0

, V � [zv/zX]E0
, and E0 as the disease-free

equilibrium point,

J(f)E0
� F �

z βOSM
O( 􏼁

zIM
O

z βOSM
O( 􏼁

zIM
I

z βOSM
O( 􏼁

zLN

z βOSM
O( 􏼁

zLR

z βOSM
O( 􏼁

zIM
O

z βOSM
O( 􏼁

zIM
I

z βIS
M
I( 􏼁

zLN

z βIS
M
I( 􏼁

zLR

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

EO

, (29)

with βO � ηO(LN + εLR/NM) and βI � ηI(LN + εLR/NM).
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F �

0 0
ηO

S
M0
O + S

M0
I

􏼠 􏼡S
M0
O

εηO

S
M0
O + S

M0
I

􏼠 􏼡S
M0
I

0 0
ηI

S
M0
O + S

M0
I

􏼠 􏼡S
M0
I

εηI

S
M0
O + S

M0
I

􏼠 􏼡S
M0
I

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

0 0 􏽥ηO ε􏽥ηO

0 0 􏽥ηI ε􏽥ηI

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

Given that SM0
O , SM0

I and SM
O , SM

I were previously de-
scribed as disease-free equilibrium points and their ex-
pression given in equation (23).

We let 􏽥ηo � (η0(− 1 + θ2))/(− 2 + θ1 + θ2), 􏽥η1 � (η1(− 1+

θ1))/(− 2 + θ1 + θ2),ϖ � (ω + μL + δN), and σ � (μL + δR).

J(v)E0
� V �

θIπ 0 0 0

0 θ2π 0 0

− λπI − λπ2 (ϖ) 0

− λπI − λπ2 − ω (σ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

V
− 1

�

1
θIπ

0 0 0

0
1
θ2π

0 0

λπI

ϖπθI

λπ2
ϖπθ2

1
ϖ

0

λωπI + λπIϖ
ϖπσθI

ωλπ2 + λπ2ϖ
πϖσθ2

ω
ϖσ

1
σ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (32)

Te dominant eigenvalue in G � FV− 1 is the value of
R0 � ρ(FV− 1) � ρG. It is the spectral radius of matrix G:

FV− 1
�

λϖπI + λπIω( 􏼁ε􏽥ηO

πσϖθI

+
λπI􏽥ηO

πϖθI

λϖπ2 + λπ2ω( 􏼁ε􏽥ηO

πσϖθ2
+
λπ2􏽥ηO

πϖθ2
ωε􏽥ηO

σϖ
+

􏽥ηO

ω
ε􏽥ηO

σ

λϖπI + λπIω( 􏼁ε􏽥η1
πσϖθI

+
λπI􏽥ηI

πϖθI

λϖπ2 + λπ2ω( 􏼁ε􏽥ηI

πσϖθ2
+
λπ2􏽥ηI

πϖθ2
ωε􏽥η1
σϖ

+
􏽥η1
ω

ε􏽥ηI

σ

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (33)

Te eigenvalues of the next-generation matrix G are
determined using Wolfram Mathematica as

0, 0, 0,
λ ϖπ2ε􏽥ηIθI + ωπ2ε􏽥ηIθI + σπ2􏽥ηIθI + ϖπIε􏽥ηOθ2 + ωπIε􏽥ηOθ2 + σπI􏽥ηOθ2( 􏼁

ϖπθIθ2
􏼨 􏼩. (34)
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Hence, the value of R0 is

R0 �
λπ2􏽥ηI

πϖθ2
+
ελπ2􏽥ηI

πσθ2
+
ελωπ2􏽥ηI

πϖσθ2
+
λπ1􏽥η0
πϖθ1

+
ελπ1􏽥η0
πσθ1

+
ελωπ1􏽥η0
πϖσθ1

􏼨 􏼩. (35)

3.4.1. Biological Interpretation of R0. As shown in studies
[17, 36], R0 is defned as the expected number of secondary
infections generated from a single primary infection in
a completely susceptible population. In our model, the in-
teractions present are organic maize-normal larvae in-
teraction, organic maize-resistant larvae interaction,
insecticidal sprayed maize-normal larvae interaction, and
insecticidal sprayed maize-resistant larvae interaction. Te
basic reproduction number is consequently calculated as the
sum of these interactions as follows:

R0 � R
1
0 + R

2
0 + R

3
0 + R

4
0 + R

5
0 + R

6
0, (36)

where RIn
0 � R1

0 + R2
0 + R3

0 and ROr
0 � R

4
0 + R5

0 + R6
0 .

With R1
0 � (λπ2􏽥ηI/πϖθ2), R2

0 � (ελπ2􏽥ηI/πσθ2), and
R3
0 � (ελωπ2􏽥ηI/πϖσθ2),

R
4
0 �

λπ1􏽥η0
πϖθ1

,

R
5
0 �

ελπ1􏽥η0
πσθ1

,

R
6
0 �

ελωπ1􏽥η0
πϖσθ1

.

(37)

RIn
0 represents the number of new infections on the

insecticidal maize population NM
O (t) arising from both the

normal larvae LN and the resistant larvae LR:

R
In
0 �

λπ2􏽥ηI

πϖθ2
+
ελπ2􏽥ηI

πσθ2
+
ελωπ2􏽥ηI

πϖσθ2
. (38)

ROr
0 represents the number of new infections on the

organic maize population NM
0 (t) arising from both the

normal larvae LN and the resistant larvae LR:

R
Or
0 �

λπ1􏽥η0
πϖθ1

+
ελπ1􏽥η0
πσθ1

+
ελωπ1􏽥η0
πϖσθ1

. (39)

3.5. Stability of Equilibrium Points. In this study, we de-
termined the global asymptotic stability of the three model
steady states using Castillo–Chavez, the Perron eigenvector,
and the Lyapunov methods. Te steady states are locally
asymptotically stable if all the eigenvalues of the Jacobian
matrix (J) evaluated at each (E) have negative real parts. Te
equilibrium point is asymptotically unstable if at least one of
the eigenvalues has a positive real part. Tis is the linearity
stability analysis theorem.

Let the model system of equations be denoted in vector
form as

df
dt

� f(y). (40)

y � (SM
O (t), IM

O (t), SM
I (t), IM

I (t), LN(t), LR(t)).

We then write f(y) in matrix form as

f(y) �

ρ − βOS
M
O − 1 − θ1( 􏼁πS

M
O

βOS
M
O − θ1πI

M
O

ρ − 1 − θ2( 􏼁πS
M
I − βIS

M
I

βIS
M
I − θ2πI

M
I

λ eN + π1I
M
O + π2I

M
I􏼐 􏼑 − ω + μL + δN( 􏼁LN

1 − eN( 􏼁 + π1I
M
O + π2I

M
I􏼐 􏼑λ + ωLN − μL + δR( 􏼁LR

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

Te matrix f(y) is used to evaluate the Jacobian matrix
for the model system and thus the stability analysis for the
various model stationary points.
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3.5.1. Local Stability Analysis of the Disease-Free Equilibrium
Point (E0)

Theorem 4. Te disease-free equilibrium points for the FAW
larvae-maize interaction model described by equations
(1)–(6) are locally asymptotically stable if the below conditions
are satisfed:

(1) a1, a2, a3, a4, a5 > 0
(2) a1a2 − a3 > 0

(3) a3(a1a2 − a3) − a1(a1a4 − a5)> 0
(4) a2

3a4 − a2
1a

2
4 − a1a5a

2
2 > 0

Otherwise, E0 is unstable.

Proof. Evaluating the Jacobian matrix at DFEP (shown in
equation (23)), we get

Jf􏼐 􏼑
EO

�

− 1 − θ1( 􏼁π 0 0 0 − 􏽥ηO − ε􏽥ηO

0 − θ1π 0 0 􏽥ηO ε􏽥ηO

0 0 − 1 − θ2( 􏼁π 0 − 􏽥ηI − ε􏽥ηI

0 0 0 − θ2π 􏽥ηI ε􏽥ηI

0 λπ1 0 λπ2 − ϖ 0

0 λπ1 0 λπ2 ω − σ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (42)

Te frst eigenvalue of the above Jacobian matrix is λ1 �

− (1 − θ1)π which is less than zero and hence stable. Ap-
plying the Routh–Hurwitz stability criterion as shown by

[37], the roots to characteristic equation (43) below have
negative real parts if the coefcients ai are nonnegative and
matrices J> 0 for i � 1, 2, 3, 4, 5:

JfE0∗
�

− θ1π − λ 0 0 􏽥ηO ε􏽥ηO

0 − 1 − θ2( 􏼁π − λ 0 − 􏽥ηI − ε􏽥ηI

0 0 − θ2π − λ 􏽥ηI ε􏽥ηI

λπ1 0 λπ2 − ϖ − λ 0

λπ1 0 λπ2 ω − σ − λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (43)

Using Mathematica software, the characteristic poly-
nomial of the above matrix is evaluated as

a0λ
5

+ a1λ
4

+ a2λ
3

+ a3λ
2

+ a4λ + a5 � 0, (44)

where λi � 1(1)5 are the eigenvalues.
By the Routh–Hurwitz criterion for stability analysis, the

model system is proved to be locally asymptotically stable at
disease-free steady state if and only if a1, a2, a3, a4, a5 > 0,
a1a2 − a3 > 0, a3(a1a2 − a3) − a1(a1a4 − a5)> 0, and a2

3a4 −

a2
1a

2
4 − a1a5a

2
2 > 0 shown in Table 3. Given that all the ei-

genvalues have negative real parts, it implies that the disease-
free equilibrium point is locally asymptotically stable. □

3.5.2. Global Stability Analysis of the Disease-Free Equilib-
rium Point (E0). To prove the global stability of the DFE
points, we use a matrix-theoritic method defned by [38] to
construct a Lyapunov function L involving the Perron ei-
genvector. Let f(x) and x be defned as

f(x) � (F − V)x − F(x) + V(x),

wherex � I
M
O , I

M
I , LN, LR􏼐 􏼑.

(45)

Also, let us defne the value x′ � (F − V)x − f(x) with
the values of F andV as defned previously in Section 3.2 in
equations (30) and (31), respectively. ωT ≥ 0 is defned as the
perron eigenvector or the left eigenvector corresponding to
the eigenvalue ρ(V− 1F) � ρ(FV− 1) � R0.

Theorem 5. Consider F, V, and f(x) as defned in equations
(30), (31), and (45). If f(x)≥ 0 in Ω ∈ R6

+, the model system
F≥ 0, V(− 1) ≥ 0 and R0 ≤ 1, then the function L � WTV(− 1)x

is a Lyapunov function for the model systems (2)–(7) in Ω.

Proof. We start by getting the derivative of L along the
solutions to model equations (1)–(6):

L′ � ωT
V

− 1
x′ � ωT

V
− 1

(F − V)x − ωT
V

− 1
f(x),

sincex′ � (F − V)x − f(x) � R0− 1( 􏼁ωT
V

− 1
f(x).

(46)

As shown above, since we have that ωT ≥ 0, V− 1 ≥ 0 and
f(x)≥ 0 in ΩϵR6

+, then the last term is negative. If R0 ≤ 1,
then L′ ≤ 1 in Ω, and thus, L is taken to be the Lyapunov
function for the model system.

We determine
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ωT
� ω1 ω2 ω3 ω4􏼂 􏼃

T
� ωT

V
− 1

F � R0ω
T

� 0 0 0 1􏼂 􏼃
T
.

(47)

Terefore,

V
− 1

�

1
θIπ

0 0 0

0
1
θ2π

0 0

λπI

ϖπθI

λπ2
ϖπθ2

1
ϖ

0

λωπI + λπIϖ
ϖπσθI

ωλπ2 + λπ2ϖ
ϖσπθ2

ω
ϖσ

1
σ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (48)

as generated in Section 3.2.

ωT
V

− 1
�

λωπI + λπIϖ
ϖπσθI

ωλπ2 + λπ2ϖ
ϖσπθ2

ω
ϖσ

1
σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (49)

Tus,

L � ωT
V

− 1
x �

λωπI + λπIϖ
ϖπσθI

􏼠 􏼡I
M
0 +

ωλπ2 + λπ2ϖ
ϖσπθ2

􏼢 􏼣I
M
I

+
ω
ϖσ

􏼔 􏼕LN +
1
σ

􏼔 􏼕LR.

(50)

Equation (50) becomes the Lyapunov function for the
model system shown by equations (1)–(6).

By Perron–Frobenius, we let

V
− 1

F,

f(x)≥ 0.
(51)

With

f x0( 􏼁 � 0,

F≥ 0,

V
− 1 ≥ 0,

(52)

to be irreducible and positive in ΩϵR6
+, it follows then that

ωT > 0. Hence, by LaSalle’s invariant principle [39], L′ � 0
shows that ωTx � 0 and x � 0.

Tus, our disease-free equilibrium point (E0) is globally
asymptotically stable.

We also prove that the disease-free equilibrium point is
globally asymptotically stable using the Castillo–Chavez
method as shown below.

We apply the method established by [40]. We start
frst by rewriting the system of model equations in the
form:

dX
dt

� F(X, Z),

dZ
dt

� G(X, Z),

G(X, 0 � 0).

(53)

With X � (SM
0 , SM

I ) ∈ R2
+ representing the uninfected

classes and Z � (IM
0 , IM

I , LN, and LR) ∈ R4
+ representing the

infected and the infectious classes, E0 � (X∗, 0) denotes the
disease-free equilibrium point of the system E0 � (SM0

O ,􏼈 IM0
O ,

SM0
I , IM0

I , L0
N, L0

R) � (ρ/(1 − θ1)π, 0, ρ/(1 − θ2)π, 0, 0, 0)}.

According to the Castillo–Chavez stability theorem if the
following conditions are satisfed in the points given above,
then the global asymptotic stability of E0 is guaranteed. Te
conditions include

1.
dX
dt

� F(X, 0). (54)

X∗ is globally asymptotically stable

2.
dZ
dt

� DZG(X, 0)Z − 􏽥G(X, Z), 􏽥G(X, Z)

≥ 0, ∀(X, Z) ∈ Ω ∈ R
6
+.

(55)

□

Theorem 6. Te disease-free equilibrium point (E0) is
globally asymptotically stable.

Table 3: Routh–Hurwitz criterion.

λ5 a0 a2 a4
λ4 a1 a3 a5
λ3 (a4a3 − a5a2)/a4 (a4a1 − a5a0)/a4 0
λ2 (a1a2a3 − a2

3 − a2
1a4 − a1a5)/a1a2 − a3 (a5a1a2 − a5a3)/(a2a1 − a3) 0

λ1 (a1a2(a3a4 − a2a5) + a2
5 + a2a3a5 − (a2

1a4 − a2
3)a4)/(a1a2 − a3) 0 0

λ0 0 0 0
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Proof. We start by dividing the model into subsystems:

X � S
M
0 , S

M
I􏼐 􏼑,

Z � I
M
0 , I

M
I , LN, LR􏼐 􏼑.

(56)

We then generate two vector-valued functions:

F(X, Z) �
ρ − βOS

M
O − 1 − θ1( 􏼁πS

M
O

ρ − 1 − θ2( 􏼁πS
M
I − βIS

M
I

⎛⎝ ⎞⎠,

G(X, Z) �

βOS
M
O − θ1πI

M
O

βIS
M
I − θ2πI

M
I

λ π1I
M
O + π2I

M
I􏼐 􏼑 − ω + μL + δN( 􏼁LN

π1I
M
O + π2I

M
I􏼐 􏼑λ + ωLN − μL + δR( 􏼁LR

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(57)

Evaluating for the reduced system from condition (1),
(dX/ dt) � F(X, 0) to get,

dSM
O

dt
� ρ − 1 − θ1( 􏼁πS

M
O ,

dSM
I

dt
� ρ − 1 − θ2( 􏼁πS

M
I .

(58)

We note that the system has dynamics of an asymp-
tomatic system independent of initial conditions in Ω.

We then compute G(X, Z) � DZG(X∗, 0)Z − 􏽥G(X, Z)

and prove that 􏽥G(X, Z)≥ 0.
Let A � DZG(X∗, 0) be a Jacobian matrix of 􏽥G(X, Z)

taken in Z � (IM
0 , IM

I , LN, LR) and evaluated at (X∗, 0). It is
also defned as an M matrix since all the nondiagonal ele-
ments are nonnegative:

A �

θ1π 0 0 0

0 θ2π 0 0

λπ1 λπ2 − ϖ 0

λπ1 λπ2 ω − σ.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (59)

Evaluating the value of AZ,

AZ �

θ1πI
M
0

θ2πI
M
I

λπ1I
M
0 + λπ2I

M
I − ϖLN

λπ1I
M
0 + λπ2I

M
I + ωLN − σLR

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (60)

With the equation 􏽥G(X, Z) � AZ − G(X, Z)≥ 0, then
the value of

􏽥G(X, Z) �

β0S
M
0

βIS
M
I

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (61)

Since 􏽥G(X, Z)≥ 0 ∀(X, Z) ∈ Ω ∈ R6
+, then DFE is

proved to be globally asymptotically stable. □

3.5.3. Local Stability Analysis of the Control-Free Equilibrium
Point

Theorem 7. Te control-free equilibrium EC point is locally
asymptotically stable.

Proof. Te local stability analysis of the control-free steady
state is achieved by frst generating the Jacobian matrix
Jf(EC)� evaluated at the control-free steady state evaluated in
Section 3.3.2:

Jf EC( )�

− 1 − θ1( 􏼁π − a0 a1 a1 a1 a2 a3

a0 − a1 − θ1π − a1 a1 a2 a3

0 0 − 1 − θ2( 􏼁π − a4 0 0 0

0 0 a5 − θ2π 0 0

0 λπ1 0 λπ2 − ϖ 0

0 λπ1 0 λπ2 ω − σ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (62)
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where a0 � ((Lc
N + ∈ Lc

R)η0)/(SMc
O + IMc

O ) − (SMc
O (Lc

N + ∈
Lc

R)η0/(SMc
O + IMc

O )2), a1 � (SMc
O (Lc

N + ∈ Lc
R)η0/(SMc

O + IMc
O )2),

a2 � (η0S
Mc
O )/(SMc

O + IMc
O ), a3 � (ϵη0SMc

O )/(SMc
O + IMc

O ), a4 �

((Lc
N + ∈ Lc

R)η0)/(SMc
O + IMc

O ), and a5 � ((Lc
N + ∈ Lc

R)η1)/
(SMc

O + IMc
O ),with LC

N, LC
R, SMC

O , IMC
O as shown in Section 3.3.2.

Using Wolfram Mathematica, the eigenvalues are found
to be

c1 � c2 � c3 � c4� πϖσa1( 􏼁
4

+ π + ϖ + σ + a0 + a1( 􏼁 − πλσa2π1 − 2λσa0a2π1 − πλϖa3π1 − πλωa3π1 − 2λϖa0a3π1(

− 2λωa0a3π1 + π2ϖσθ1 + πϖσa0θ1 − πϖσa1θ1 + πλσa2π1θ1 + πλϖa3π1θ1 + πλωa3π1θ1 − π2ϖσθ21􏼑
3

+ πϖ + πσ + ϖσ + ϖa0 + σa0 + πa1 + ϖa1 + σa1 − λa2π1 − λa3π1 + π2θ1 + πa0θ1 − πa1θ1 − π2θ21􏼐 􏼑
2

+ πϖσ + ϖσa0 + πϖa1 + πσa1 + ϖσa1 − πλa2π1 − λσa2π1 − 2λa0a2π1 − πλa3π1 − λϖa3π1 − λωa3π1 − 2λa0a3π1(

+ π2ϖθ1 + π2σθ1 + πϖa0θ1 + πσa0θ1 − πϖa1θ1 − πσa1θ1 + πλa2π1θ1 + πλa3π1θ1 − π2ϖθ21 − π2σθ21􏼑,

c5 � − πθ2,

c6 � − π − a4 + πθ2.
(63)

Trough back substitution, all the Eigen values are
negative, and thus, the control-free equilibrium point is
evaluated to be stable. □

3.5.4. Global Stability Analysis of the Control-Free Equilib-
rium Point (EC). If a Lyapunov function to a linearized
nonlinear system is obtained and exists, then it shows that
the model system is asymptotically stable [41].

Theorem 8. Te control-free equilibrium point is globally
asymptotically stable (i) if the insecticidal-free equilibrium is
feasible and (ii) if the equilibrium point is a locally asymp-
totically stable solution.

Proof. We consider a Lyapunov method for stability anal-
ysis, an approach adopted by [42]. We start by constructing
a Lyapunov function:

L � 􏽘 bi qi − q
C
i ln qi􏼐 􏼑. (64)

bi represents a constant selected such that bi > 0, qi

represents the ith compartments classes, and qc
i represents

the control-free equilibrium point of the ith compartmental
classes.

Expanding the Lyapunov function and substituting the
compartments,

L � b1 S
M
0 − S

Mc
0 ln S

M
O􏼐 􏼑 + b2 I

M
0 − I

Mc
0 ln I

M
O􏼐 􏼑 + b3 S

M
I − S

Mc
I ln S

M
I􏼐 􏼑 + b4 I

M
I − I

Mc
I ln I

M
I􏼐 􏼑

+ b5 LN − L
c
N ln LN( 􏼁 + b6 LR − L

c
R ln LR( 􏼁.

(65)

We evaluate the derivative of equation (69) with respect
to time to get

dL
dt

� b1 1 −
S
Mc
0

S
M
O

􏼠 􏼡
dSM

O

dt
+ b2 1 −

I
Mc
0

I
M
0

􏼠 􏼡
dIM0
dt

+ b3 1 −
S
Mc
I

S
M
I

􏼠 􏼡
dSM

I

dt
+ b4 1 −

I
Mc
I

I
M
I

􏼠 􏼡
dIMI
dt

+ b5 1 −
L

c
N

LN

􏼠 􏼡
dLN

dt
+ b6 1 −

L
c
R

LR

􏼠 􏼡
dLR

dt
,

(66)

where SM
0 (t) � SMc

0 (t), IM
0 (t) � IMc

0 (t), SM
I (t) � SMc

I (t), IM
I

(t) � IMc
I (t), LN(t) � Lc

N(t), LR(t) � Lc
R(t).
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Substituting the values of (dSM
O / dt), (dIM0 / dt),

(dSM
I / dt), (dIMI / dt), (dLN/ dt), (dLR/ dt) with the model

values, we get

dL
dt

� b1 1 −
S
Mc
0

S
M
O

􏼠 􏼡 ρ − βOS
M
O − 1 − θ1( 􏼁πS

M
O􏽨 􏽩 + b2 1 −

I
Mc
0

I
M
0

􏼠 􏼡 βOS
M
O − θ1πI

M
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+ b3 1 −
S
Mc
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S
M
I

􏼠 􏼡 ρ − 1 − θ2( 􏼁πS
M
I − βIS

M
I􏽨 􏽩 + b4 1 −

I
Mc
I

I
M
I

􏼠 􏼡 βIS
M
I − θ2πI

M
I􏽨 􏽩

+ b5 1 −
L

c
N

LN

􏼠 􏼡 λ eN + π1I
M
O + π2I

M
I􏼐 􏼑 − ω + μL + δN( 􏼁LN􏽨 􏽩

+ b6 1 −
L

c
R

LR

􏼠 􏼡 1 − eN( 􏼁 + π1I
M
O + π2I

M
I􏼐 􏼑λ + ωLN − μL + δR( 􏼁LR􏽨 􏽩.

(67)

As shown in Section 3.1, the model equations are pos-
itively invariant, and hence,

dL
dt
≤ 0 ∀ S

M
0 (t), I

M
0 (t), S

M
I (t), I

M
I (t), LN(t), LR(t)> 0,

(68)

and also,

dL
dt

� 0 if S
M
0 (t) � S

Mc
0 (t), I

M
0 (t) � I

Mc
0 (t), S

M
I (t) � S

Mc
I (t), I

M
I (t) � I

Mc
I (t), LN(t) � L

c
N(t), LR(t) � L

c
R(t). (69)

It can be seen that the only invariant set in Ω where
dL/dt � 0 is the set SMc

0 (t), IMc
0 (t), SMc

I (t), IMc
I (t), SMc

I (t),􏼈

Lc
N(t), Lc

R(t) ∈ Ω ∈ R6
+}. Since f(x)� 0 by LaSalle’s in-

variance principle [39], (EC ) is globally asymptotically
stable on Ω if R0 ≥ 0. Otherwise, it is unstable. □

3.5.5. Global Stability Analysis of the Endemic Equilibrium
Point E∗

Theorem 9. For the endemic equilibrium point to be globally
stable, (i) the endemic equilibrium point must be feasible and
(ii) the endemic equilibrium point must be locally stable.

Proof. We assume that the endemic equilibrium point is
locally asymptotically stable since the linearization method
evaluated at the equilibrium point proves to be mathe-
matically complicated.

Applying the Lyapunov method as used by [42] and
constructing the appropriate Lyapunov function, we get

L � 􏽘 ai xi − x
∗
i lnxi( 􏼁, (70)

where ai represents a constant selected such that bi > 0, xi

represents the ith compartments classes, andx∗i represents
the disease endemic equilibrium point (E∗) of the ith

compartment classes.
Expanding the Lyapunov function and substituting the

compartments,

L � a1 S
M
0 − S

M∗
0 ln S

M
O􏼐 􏼑 + a2 I

M
0 − I

M∗
0 ln I

M
O􏼐 􏼑 + a3 S

M
I − S

M∗
I ln S

M
I􏼐 􏼑

+ a4 I
M
I − I

M∗
I ln I

M
I􏼐 􏼑 + a5 LN − L

∗
N ln LN( 􏼁 + a6 LR − L

∗
R lnLR( 􏼁.

(71)

Diferentiating equation (75) with respect to time, we get
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(72)

It is equivalent to
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M
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M
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+ a6 1 −
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M
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M
I􏼐 􏼑λ + ωLN − μL + δR( 􏼁LR􏽨 􏽩,

(73)

where SM
0 (t) � SM∗

0 (t), IM
0 (t) � IM∗

0 (t), SM
I (t) � SM∗

I (t),

IM
I (t) � IM∗

I (t), LN(t) � L∗N(t), LR(t) � L∗R(t).
As in Section 3.1, the model equations are positively

invariant, and hence,

dL
dt
≤ 0 ∀ S

M
0 (t), I

M
0 (t), S

M
I (t), I

M
I (t), LN(t), LR(t)> 0,

dL
dt

� 0 if S
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0 (t), I

M
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M
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M∗
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M
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M∗
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(74)

It can be seen that the largest invariant set in Ω where
dL/dt � 0 is the set S

(M∗)
0 (t), I

(M∗)
0 (t), S

(M∗)
I (t), I

(M∗)
I (t),􏽮

S
(M∗)
I (t), L

∗
N(t), L∗R(t) ∈ Ω ∈ R6

+}. Since f(x)� 0 by
LaSalle’s invariance principle [39], E∗ is globally asymp-
totically stable on Ω if R0 ≥ 0. Otherwise it is unstable. □

3.6. Sensitivity Analysis ofR0. Sensitivity analysis of R0 helps
identify the key parameters that signifcantly afect the FAW
larvae-maize interaction model. Tis helps determine the
key parameters to consider in the control strategies against
FAW larvae infestation in the maize population by man-
aging the value of the basic reproduction number and the
infection. We follow a sensitivity method as conducted by
[17, 18].

Defnition 10. Te normalized forward sensitivity index of
a variable R0, depending diferentially on parameter P

‘

, is
defned by an equation:

αR0
P′ �

zR0

zP′
.
P′
R0

, (75)

where R0 represents the basic reproduction number and P′
represents all the main parameters.

In our study, we have the value of R0 given as

R0 �
λ(εϖ + σ + εω) π2θ1􏽥ηI + π1θ2􏽥η0( 􏼁

πϖσθ1θ2
. (76)

Te sensitivity index of R0 to λ is

αR0
λ �

zR0

zλ
.
λ

R0

�
(εϖ + σ + εω) π2θ1􏽥ηI + π1θ2􏽥η0( 􏼁

πϖσθ1θ2
.

λ
λ(εϖ + σ + εω) π2θ1􏽥ηI + π1θ2􏽥η0( 􏼁/πϖσθ1θ2( 􏼁

� 1.

(77)
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A similar procedure is used to calculate the sensitivity
indices for the other parameters around the basic re-
production number; the results are shown in the Table 4.

3.6.1. Interpreting the Sensitivity Indices. Sensitivity indices
for the basic reproduction number R0 presented in the
table above show positive and negative values for the
parameter values. A positive sensitivity index denotes
a direct linkage between the parameter and the basic
reproduction number, while a negative sensitivity index
denotes an inverse linkage between the parameter and
the basic reproduction number. From the table,
(λ, ε,ω, π1, and π2) have positive sensitivity indices. Tis
means that the parameter values have a great impact on
spreading the disease among the maize population upon
an increase in their parameter values. Tis is because the
value of R0 will tend to increase by increasing the pa-
rameter values, further increasing the number of sec-
ondary infections in the susceptible maize population.

Te parameters (σ,ϖ, θ1, θ2) have negative sensitivity
indices.Tis means that the value of R0 decreases when their

values are increased. Tis results in a decrease in the rate of
infection, lowering the secondary infections in the suscep-
tible maize population.Te value of λ being equal to 1 means
a unit increase in λ results in a unit increase in the value of R0
and vice versa.

4. Numerical Simulation

4.1. Parameter Estimation. Numerical analysis of the model
is conducted using a MATLAB inbuilt solver based on the
Runge–Kutta order of 5 with parameter values cited in
Table 5 as obtained from published studies together with
a few estimated values. Te initial value states are used as
SM

O (0) � 1000, IM
O (0) � 0, SM

I (0) � 1000, IM
I (0) � 0, LN

(0) � 100, LR(0) � 10 as shown by similar studies on the
fall armyworm-maize interaction [17, 19, 43]. Te simu-
lations are conducted at a time range of between 0 and
60 days which is the vegetative stage of the maize pop-
ulation and the most interactive phase with the FAW
population. Te resulting simulation graphs are presented
in Figures 2–11.

Table 4: Sensitivity indices.

Parameter Sensitivity index
λ 1
σ − 0.5
ϖ − 0.5
ε 0.5
ω 0.2
π − 0.5
π1 0.5
π2 0.4
θ1 − 0.5
θ2 − 0.4

Table 5: Parameter values, ranges, and references.

Parameter Description Parameter value Source/reference
θ1 Te harvesting rate of organic maize population NM

O (t) 0.015 [17]
K Maximum plant carrying capacity of the two maize sections 1000 plants [17]
θ2 Te harvesting rate of insecticidal sprayed maize population NM

I (t) 0.005 Estimated
eN Tenatural recruitment rate of larvae from the naturally occurring FAWpopulation 0.98 [12]
ω Te rate at which normal larvae progress into resistant larvae population 0.45 [19]
ρ Te natural recruitment rate of the maize biomass into the maize population 50 kg per plant [19]
μL Total population decrease rate of the larvae 0.077 Calculated
μ2 Progression rate into the pupal FAW life cycle 0.071 [12]
μ1 Te natural death rate of the FAW larvae 0.0071 [12]
δR Te insecticidal-induced death rates on the resistant larvae 0.35 [43]
δN Te insecticidal-induced death rates in the normal larvae 0.52 [43]
η0 Infection factor 0.3922 Estimated
η1 Infection factor 0.1087 Estimated
β0 Te rate of infection in the organic maize population 0.0202 Calculated
β1 Te rate of infection in the insecticidal maize population 0.0056 Calculated
λ Te survival rate of the larvae from the egg stage of the FAW population 0.75 [19]
π Te lost maize biomass in the NM(t) class was due to a caterpillar attack 0.9 [43]

π1
Temaize biomass from the IM

O (t) class contributing directly to the larvae increased
the natural recruitment rate 0.2 [43]

π2
Temaize biomass from the IM

I (t) class contributing directly to the larvae increased
the natural recruitment rate 0.18 Estimated
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Figure 2: Population dynamics of organic maize interacting with the normal and resistant larvae.
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Figure 3: Population dynamics of insecticidal maize interacting with the normal and resistant larvae.
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Figure 4: Population dynamics of infected organic maize at distinct values of β0.
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Figure 5: Population dynamics of infected insecticidal maize at distinct values of β1.
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Figure 6: Population dynamics of normal larvae at distinct values of λ.
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Figure 7: Population dynamics of resistant larvae at distinct values of λ.
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Figure 8: Population dynamics of resistant larvae at distinct values of δR.

δN=0.26
δN=0.52

δN=0.78
δN=1.04

0

2000

4000

6000

8000

10000

12000

N
or

m
al

 L
ar

va
e P

op
ul

at
io

n

10 20 30 40 50 600
Time t (in days)

Figure 9: Population dynamics of normal larvae at distinct values of δN.
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Figure 10: Population dynamics of normal larvae at distinct values of ω.
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4.2. Simulation Results. In Figures 2 and 3, the susceptible
maize populations {SM

O (t), SM
I (t)} increase exponentially

with time until they reach the endemic equilibrium
point. Te curve for the organic infected maize in
Figure 2 is observed to be higher than the curve for the
infected insecticidal maize population in Figure 3. Tis is
the efect of uncontrolled FAW larvae-organic maize
interactions, which subsequently leads to a high force of
infection (β0) resulting in a higher infected organic maize
population.

In Figure 4, when β0 is decreased by 50%, the infected
organic maize population decreases exponentially with time.
Tis is due to the direct linkage between the force of in-
fection and the basic reproduction number. At a higher value
of β0, the infected organic maize population increases ex-
ponentially. Similar observations are made in Figure 5;
however, the infected insecticidal maize population occurs
in lower rates as compared to the organic section.Tis is due
to the lower values of β1 as compared to β0.

According to the model fowchart (Figure 1), λ rep-
resents the survival rate for the FAW larvae. From Fig-
ures 6 and 7, reducing the value of λ to lower values than
the baseline value λ � 0.75 subsequently reduces the
population of the normal and the resistant larvae. Tis has
a direct efect on the force of infection in the maize
population.

δR and δN denote the insecticidal-induced death rate on
the resistant and normal larvae, respectively. In Figures 8
and 9, increasing the values of δR and δN reduces the
population of the resistant and the normal larvae. Tis in
turn reduces the infection rate leading to a lower basic
reproduction number. We also observe that the resistant
larvae are large in numbers as compared to normal larvae
which pose a greater risk in the insecticide control measures.

From Figures 10 and 11, ω represents the rate at which
the normal larvae progress into resistant larvae after contact
with insecticidal sprays. At higher values of ω, more normal
larvae, which are easy to eradicate from the model

population by insecticides, progress into resistant larvae.
Tis subsequently reduces the normal larvae population and
increases the resistant larvae population.

5. Discussion and Conclusion

Tis study developed and analyzed a deterministic ecoepi-
demiological model on the maize-FAW interaction in the
presence of insecticides and resistance factors. Te model
was proved to be uniformly bounded and positively in-
variant. Tree equilibrium points, that is, the disease/larvae-
free, control-free, and endemic equilibrium points, were
established and evaluated to be locally and globally as-
ymptotically stable at R0 ≤ 1. Furthermore, an expression for
the basic reproduction number R0 and its sensitivity analysis
were conducted. Te results showed that an increase in
ω, λ, βO, βI and a decrease in δR, δN greatly increased the
FAW population dynamics, increased the maize-FAW lar-
vae interaction, and hence the spread of the disease to the
susceptible maize population. Trough numerical simula-
tion, graphical results of the FAW-maize interaction and
population dynamics are presented by applying parameter
values obtained from literature and cited studies
accordingly.

Te analysis of R0 in the host-pest (maize-FAW) in-
teraction model helps determine how efective the in-
secticide control measures against the FAW larvae are and
how to efectively use the control measures to reduce the
value of R0 to a value of less than one [13]. Increasing the
forces of infection (β0, β1) increased the number of infected
maize populations, while reducing the infection forces
resulted in a decrease in the number of infected maize
populations in both the organic and insecticidal sections.
Tis was attributed to the direct impact of the force of in-
fection on the basic reproduction number. Te insecticide
control measures used to control FAW-maize interactions in
the insecticidal maize section ensured a reduced contact rate,
and thus, the number of resulting secondary infections at
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Figure 11: Population dynamics of resistance larvae at distinct values of ω.
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any time t was lower than in the organic uncontrolled FAW-
maize interactions.

ω is a parameter value used in the model to represent
a constant rate at which the normal larvae progress into
resistant larvae after insecticide spraying. When insecticides
are used to control the FAW larvae population, a few
mutants in the population tolerate chemical insecticides
better, while the normal population succumbs to them [44].
Resistance ω increased the infection rates by increasing the
FAW larvae survival rate λ and reducing the insecticidal
efcacy by lowering the larvae insecticidal-induced death
rates δR and δN. However, while resistance afects both the
organic and the insecticidal controlled maize sections, the
FAW-maize interactions and thus the infection rates are
lower in the controlled insecticidal sections than in the
organic uncontrolled section.

Generally, the results from the model analysis showed
that the FAW survival rate λ, resistance formation ω, and
the insecticidal-induced death rates δR and δN are essential
in controlling both the normal and the resistant FAW
larvae. Control intervention aimed at reducing the in-
fection rate in organic and insecticidal maize populations
should aim at reducing these parameter factors. Tis is by
using high-efcacy insecticides, resulting in higher FAW
larvae death rates (δR, δN), thus reducing the FAW survival
rate λ. Te sensitivity analysis of R0 showed that the FAW
survival rate λ signifcantly afects the FAW-maize in-
teractions. Tis informs both the organic and the inorganic
farmers on the importance of using chemical control
methods that are highly efective in reducing the FAW
survival rate λ.

Various integrated FAW-maize management ap-
proaches should be adopted where several pest control
methods are used together since no control method has been
reported to work best in isolation. Tis will help reduce the
high rate of resistance formation observed in FAW larvae,
thus reducing their population dynamics. African countries
should conduct proper civic education on pest control
methods, FAW-maize interaction patterns, and resistance
formation in insecticides used to ensure environmental
conservation andminimize pest resistance formation.Tis is
due to FAW’s unique characteristics of high migration,
mutation, and reproduction, which makes its control a bit
expensive and difcult. However, the fndings from this
study are not exhaustive. In future studies, we will consider
developing an optimal larvae survival control theory with
resistance factors to achieve a proftable FAW larvae control
strategy.
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