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In this paper, we explore the concept of topologically dense injectivity of monoid acts. It is shown that topologically dense injective
acts constitute a class strictly larger than the class of ordinary injective ones. We determine a number of acts satisfying topologically
dense injectivity. Specifcally, any strongly divisible as well as strongly torsion free S-act over a monoid S is topologically dense
injective if and only if S is a left reversible monoid. Furthermore, we establish a counterpart of the Skornjakov criterion and also
identify a class of acts satisfying the Baer criterion for topologically dense injectivity. Lastly, some homological classifcations for
monoids by means of this type of injectivity of monoid acts are also provided.

1. Introduction and Preliminaries

Mathematical models of important notions in theoretical
computer science and physics, such as automata and dy-
namical systems, can be represented by acts over semigroups
or monoids. In the literature, various categorical properties
of acts have been studied, including injectivity. Te study of
injective acts began with Berthiaume [1], who established
that every act possesses an injective envelope. Since then,
many authors have continued the work on such classes of
acts, similar to the injectivity of modules over rings. Several
generalizations of injective acts with respect to subclasses of
monomorphisms other than weak injectivity can be found in
many papers. For example, quasi-injective acts were con-
sidered in [2, 3]. Giuli [4] studied injectivity with respect to
sequentially dense monomorphisms of acts over the monoid
(N∞, min), and these notions were later generalized to acts
over any arbitrary semigroup in [5]. Zhang et al. [6, 7]
classifedmonoids by C-injectivity and CC-injectivity, which
are injectivities relative to all inclusions whose domains, and
both domains and codomains, respectively, are cyclic.
Shahbaz [8] studied M-injectivity in the category of acts,

where M is an arbitrary subclass of monomorphisms. Re-
cently, Sedaghatjoo and Naghipoor [9] investigated classes
of acts that are injective with respect to all embeddings with
indecomposable domains or codomains. Vital injectivity for
modules frst appeared in [10, 11], and McMorris [12] in-
vestigated vital injectivity of acts over a monoid S with zero.
Tis is injectivity with respect to all embeddings of vital right
ideals into S, where right ideals I of S have the property that,
for each non-zero s ∈ S, there exists a cancellable element
c ∈ S for which sc ∈ I.

In this paper, we extend the notion of vital right ideal to
a new concept called topologically dense right ideal and
more generally, topologically dense subact, and explore
injectivity of acts with respect to all embeddings of topo-
logically dense right ideals and topologically dense subacts
(relative to the set of all subacts of an act which forms
a topology on that act).

We prove that the category of acts over a left reversible
monoid or a monoid containing a left zero element has
enough topologically dense injectives. We show that the
class of topologically dense injective acts is strictly larger
than that of usual injective ones and identify a condition
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under which they coincide. Using some algebraic concepts,
we fnd a number of acts satisfying topological dense
injectivity. Particularly, any strongly divisible as well as
strongly torsion free S-act is topologically dense injective if
and only if S is a left reversible monoid.

Skornjakov [13] presented a criterion for injectivity of
acts with a fxed element, which states that it is enough to
consider injectivity with respect to all inclusions into cyclic
acts. We provide a counterpart of the Skornjakov criterion
for topological dense injectivity of all acts (with or without
a fxed element).

Te Baer criterion states that weak injectivity is equiv-
alent to injectivity. In [14, 15], some classes of acts satisfying
this criterion were found.Motivated by these studies, we fnd
a class of acts for which the Baer criterion holds; that is,
topologically dense injectivity and weak topologically dense
injectivity are the same.

We also investigate the behavior of (weak) topologically
dense injectivity of acts with respect to products, coproducts,
and direct sums. Finally, we explore some kinds of weak
topologically dense injectivity and topologically self-dense
injectivity and present some homological classifcations for
monoids.

First we give some preliminaries needed in the sequel.
Let S be a monoid. By a (right) S-act or act over S, we mean
a set A together with a map A × S⟶ A, (a, s)⟼ as, such
that for all a ∈ A, s, t ∈ S, (as)t � a(st) and a1 � a. A subset
B of A is called a subact of A if bs ∈ B for all b ∈ B and s ∈ S.
An element θ ∈ A for which θs � θ for all s ∈ S is said to be
a fxed element of A. Clearly, S is an S-act with the operation
as the action. Let A and B be two S-acts. A mapping
f: A⟶ B is called a homomorphism if f(as) � f(a)s for
all a ∈ A, s ∈ S. Te category of all S-acts as well as all ho-
momorphisms between them is denoted by Act-S. In this
category, monomorphisms are exactly one-to-one homo-
morphisms. A subset I of a monoid S is called a right ideal of
S if xs ∈ I for any x ∈ I and s ∈ S. A congruence on an S-act A

is an equivalence relation ρ on A for which aρa′ implies that
(as)ρ(a′s) for a, a′ ∈ A and s ∈ S. An S-act A is called de-
composable if there exist proper subacts B and C of A such
that A � B∪C and B∩C � ∅. Otherwise, A is called in-
decomposable. An element s ∈ S is called left zero, if st � s for
all t ∈ S. Te notion of a right zero element is defned
similarly. Also s ∈ S is called zero if it is left zero as well as
right zero. Note that the zero element, if exists, is unique.
Troughout, S stands for a monoid unless otherwise stated.
For undefned terms and notations about S-acts, we refer
to [16].

2. Topologically Dense Injectivity in Act-S

In this section, the notion of topologically dense injective act
is introduced. We characterize some classes of acts satisfying
such kind of injectivity. Moreover, Skornjakov and Baer
criteria are studied for topologically dense injectivity of acts
as well.

For proceeding, frst note that the set of all subacts of an
S-act A including∅ and A forms a topology on A, which has
been studied in [17]. Regarding this topology, the closure of
an open set (subact) B, denoted as B, is the set of all elements
a ∈ A for which the intersection of B and every open set
containing a is non-empty, that is, B � a ∈ A ∣ aS∩B≠∅{ }.
So B is topologically dense, or briefy dense, in A if B � A, i.e.,
if for every a ∈ A, there exists s ∈ S such that as ∈ B. In this
case, A is said to be a dense extension of B. Also B is closed in
A if B � B. So considering S as an S-act, a dense right ideal is
a right ideal I of S which is a dense subact of S, that is, for
every s ∈ S, there exists x ∈ S such that sx ∈ I. For any S-acts
A and B, a homomorphism f: A⟶ B is said to be a dense
homomorphism if Im (f) is a dense subact of B. A dense
homomorphism f: A⟶ B which is a monomorphism is
called a dense monomorphism. In this case, we say that A is
densely embedded into B.

It is easily checked that B is a dense subact of an S-act A if
and only if B∩C≠∅ for each non-empty subact C of A. In
particular, the intersection of a right ideal and a dense right
ideal of a monoid S is non-empty. Furthermore, if S is
a commutative monoid or contains zero, then every right
ideal of S is dense.

Recall from [12] that a right ideal I of a monoid S (with
zero) is “vital” if for every (non-zero) s ∈ S, there exists
a cancellable element c ∈ S such that sc ∈ I, and an S-act A is
“vital injective” if it is injective relative to all vital right ideals
into S. Tis and a view of dense subacts motivate us to
generalize these notions in the category Act-S, as follows.

Defnition 1. Let A be an S-act. Ten A is said to be to-
pologically dense injective, or simply densely injective, if it is
injective with respect to all dense monomorphisms, that is,
for any dense monomorphism f: B⟶ C and a homo-
morphism g: B⟶ A there exists a homomorphism
h: C⟶ A such that hf � g. Also A is called weakly densely
injective if it is injective relative to all dense right ideals
into S.

Clearly, an S-act A is densely injective if and only if any
homomorphism g: B⟶ A from a dense subact B of an
S-act C can be extended to C. So we may consider dense
injectivity with respect to dense embeddings (inclusions)
instead of dense monomorphisms.

Remark 2. Let A be a dense subact of an S-act B. It is clear
that any fxed element of B (if exists) is also a fxed element of
A. So if an S-act A is dense in an injective extension, then A

contains a fxed element since each injective act has a fxed
element.

Clearly, any injective act is densely injective. Te fol-
lowing example shows that these two notions are actually
diferent. It also demonstrates that, in contrast to the case of
injectivity of acts, a densely injective act does not necessarily
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contain a fxed element. Furthermore, not all S-acts are
(weakly) densely injective.

Example 1

(i) Let S be a group. Ten any S-act A contains no
proper dense subact since if B is a dense subact of A,
for every a ∈ A, there exists s ∈ S such that as ∈ B

and so a � ass−1 ∈ B, which means that A � B. Tis
implies that each S-act A is densely injective. In-
deed, if B is a dense subact of C and f: B⟶ A is
a homomorphism, then B � C and hence
g � f: C⟶ A extends f. So if A is an S-act with
no fxed element, in particular let A be a non-trivial
group S as an act over itself, then it is densely in-
jective but not injective.

(ii) Let S � (Z, ·). Ten S is not a densely injective S-act.
To see this, consider the S-act Q with usual mul-
tiplication as the action. Clearly, Z is a dense subact
of Q. Now it is easy to see that the identity mapping
idZ: Z⟶ Z is not extended to Q.

(iii) If S as an S1-act is weakly densely injective, then S

contains a left identity. Indeed, considering the
dense embedding S⟶ S1, there is a retraction
f: S1⟶ S which implies f(1) is a left identity of S.

(iv) Consider the monoid (N∞, min). Using (ii), N is
not a weakly densely injective N∞-act.

It is well known that the category Act-S has enough
injectives (with respect to all monomorphisms). In fact, for
any S-act A, the cofree S-act AS � f: S⟶ A ∣ f is amap􏼈 􏼉

with the action (f · s)(t) � f(st) for all f ∈ AS and s, t ∈ S,
is injective and A is embedded into AS (see [16], Teorem
3.1.5 and Corollary 3.1.6).

In what follows, our aim is to investigate whether Act-S
has enough densely injectives where S is a commutative
monoid. In fact, we construct a densely injective dense

extension for any S-act. To this aim, let us give some
preliminaries.

Let S be a commutative monoid and A be an S-act. Set

A ≔ f ∈ A
S ∣ ∃ s ∈ S, ∀t ∈ S, f(st) � f(s)t􏽮 􏽯. (1)

We show that A is a subact of the cofree act AS. Let
f ∈ A and s ∈ S. Ten there exists s′ ∈ S such that f(s′t) �

f(s′)t for all t ∈ S. Using the commutativity, for all t ∈ S we
get

(f · s) s′t( 􏼁 � f ss′t( 􏼁 � f s′st( 􏼁 � f s′( 􏼁(st) �

f s′( 􏼁s( 􏼁t � f s′s( 􏼁t � f ss′( 􏼁t � (f · s) s′( 􏼁t,
(2)

which means that f · s ∈ A. Now we have the following.

Theorem 3. For a commutative monoid S, the S-act A is
densely injective.

Proof. Let B be an S-act, C be a dense subact of B, and
φ: C⟶ A be a homomorphism. Fix an element a0 ∈ A.
For any b ∈ B defne a mapping φ: B⟶ A by

φ(b)(t) �
φ(bt)(1), bt ∈ C,

a0, otherwise,
􏼨 (3)

for any b ∈ B, t ∈ S in the following diagram:

We show that φ(b) ∈ A. Since C is dense in B, bs ∈ C for
some s ∈ S. Tis implies that φ(bs) ∈ A and so there exists
s′ ∈ S for which φ(bs)(s′t) � φ(bs)(s′)t for any t ∈ S. Take
s″: � ss′. Ten for any t ∈ S, noting bs″, bs″t ∈ C and being
φ a homomorphism, we have

φ(b) s″t( 􏼁 � φ bs″t( 􏼁(1) � φ bss′t( 􏼁(1) � φ(bs) · s′t( 􏼁( 􏼁(1) � φ(bs) s′t( 􏼁 �

φ(bs) s′( 􏼁t � φ(bs) · s′( 􏼁(1)t � φ bss′( 􏼁(1)t � φ bs″( 􏼁(1)t � φ(b) s″( 􏼁t.
(4)

Now it is easily seen that φ is a homomorphism which
extends φ, as required. □

Corollary 4. Let S be a commutative monoid and A an S-act.
Ten the S-act A is a densely injective dense extension of A.

Proof. Let A be an S-act. Using Teorem 3, the S-act A is
densely injective. It sufces to prove that A is densely
embedded into A. Defne λ: A⟶ A by λ(a): � λa:

S⟶ A, λa(s) � as, for any a ∈ A, s ∈ S. Note that λ(a) ∈ A
for any a ∈ A. Clearly, λ is a monomorphism. It remains to

show that Im(λ) is a dense subact of A. Let f ∈ A. Ten
there exists s ∈ S such that f(st) � f(s)t for any t ∈ S. Tis
implies that (f · s)(t) � f(st) � f(s)t � λf(s)(t) and so f ·

s � λf(s) ∈ Im(λ) which completes the proof.
Here we recall the notion of pushout in a category. Let

f: A⟶ B and g: A⟶ C be twomorphisms of a category
C. Te pair ((h, k), Q) with h: C⟶ Q, k: B⟶ Q is called
a pushout of the pair (f, g) if

(i) kf � hg

(ii) For any pair ((l, m), Q′) with l: B⟶ Q′, m:

C⟶ Q′ and lf � mg, there exists a unique
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morphism q: Q⟶ Q′ such that qk � l and qh � m,
i.e., the following diagram is commutative:

□

Proposition 5. In Act-S, pushouts transfer dense mono-
morphisms, that is, for a pushout diagram

if g is a dense monomorphism, then so is k.

Proof. Recall from [16] that Q � (B⊔C)/θ, θ is the con-
gruence relation on B⊔C generated by all pairs H �

(uBf(a), uCg(a)): a ∈ A􏼈 􏼉, h � cuC: C⟶ Q, k � cuB:

B⟶ Q, c: B⊔C⟶ Q is the natural epimorphism, and
uB: B⟶ B⊔C, uC: C⟶ B⊔C are coproduct injections.
We show that k is a dense monomorphism. By [17], k is
a monomorphism. So it sufces to show that k is dense. Let
[x]θ ∈ Q. Ten x � uB(b) for some b ∈ B, or x � uC(c) for
some c ∈ C. In the former case, we have [x]θ �

k(b) ∈ Im(k). In the latter case, using that g is dense, there
exist s ∈ S and a ∈ A with cs � g(a) and hence [x]θs �

[uC(c)]θs � h(c)s � h(cs) � hg(a) � kf(a) ∈ Im(k).
By a dense retract of an S-act A, we mean a dense subact B

ofA together with a homomorphism fromA to B whichmaps
B identically. Also A is called densely absolute retract if A is
a dense retract of each of its dense extensions. Clearly, a dense
retract of any densely injective S-act is densely injective.

In light of Proposition 5 and [18], Lemma 3.5(i), the
following result is obtained. □

Theorem 6. Let A be an S-act. Ten the following assertions
are equivalent:

(i) A is densely injective.
(ii) A is densely absolute retract.

Recall that an extension B of an S-act A is essential if any
homomorphism f: B⟶ C is a monomorphism whenever
so is f|A. Every minimal injective extension of an S-act A is
said to be an injective envelope of A which is isomorphic to
any injective essential extension of A. Moreover, for every
S-act A there exists an injective envelope which is unique up
to isomorphism and we denote it by E(A). Te reader is

refereed to [1] for more details on these basic concepts. By
a densely injective envelope of an S-act A, we mean a densely
injective essential dense extension.Te category Act-S is said
to have enough densely injective envelopes if each S-act
admits a densely injective envelope.

A monoid S is called left reversible if any two right ideals
of S have a non-empty intersection. In particular, every
commutative monoid is left reversible.

As we know, any injective S-act has at least one fxed
element. One the other hand, for an S-act A, E(A)\A does
not have two fxed elements by [19], Proposition 1. So if A

has no fxed element, then E(A) has only one fxed element.
In the following, this unique element is denoted as 0.

Theorem 7. Let A be an S-act. Ten the following assertions
hold:

(i) If A has a fxed element, then E(A) is a densely
injective envelope of A.

(ii) Let S be a left reversible monoid. If A has no fxed
element, then E1 � E(A)\ 0{ } is a subact of E(A)

which is a densely injective envelope of A.

Proof

(i) It is clear that E(A) is densely injective. So it sufces
to show that A is dense in E(A). Using [19], Cor-
ollary 2, E(A)\A has no fxed element and then A is
dense in E(A) by [19], Proposition 1.

(ii) Let b ∈ E1. Using [19], Proposition 1, Ib �

s ∈ S ∣ bs ∈ A{ } is a non-empty right ideal of S. If the
right ideal Jb � s ∈ S ∣ bs � 0{ } is non-empty, then
Ib ∩ Jb ≠∅ by left reversibility, which contradicts the
assumption. So Jb � ∅, which means that E1 is
a subact of E(A). Moreover, it follows from [16],
Lemma III.1.16, and [19], Proposition 1, that E1 is an
essential dense extension of A. Using Teorem 6, it
sufces to show that E1 is densely absolute retract. To
this end, let D be a dense extension of E1. Consider
the following diagram:

in which i is the inclusion map. Since E(A) is in-
jective, there exists a homomorphismf: D⟶ E(A)

that commutes the diagram. For any d ∈ D, if
f(d) � 0, then dS∩E1 � ∅ which contradicts the
fact that D is a dense extension of E1. Tus f(D)⊆E1
and so E1 is densely absolute retract. Hence, E(A) is
a densely injective envelope of A. □

Corollary 8. If S has a left zero element or S is a left reversible
monoid, then the category Act-S has enough densely injective
envelopes.
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Remark 9. Te class of all dense extensions of S-acts are
clearly composition closed, that is, if A is a dense subact of B

and B is a dense subact of C, then A is dense in C. Ten, in
view of [18], Teorem 3.8 (v), any densely injective envelope
of an S-act is a minimal densely injective dense extension.

In view of Remark 9 and Teorem 7 (i), we get the
following.

Corollary 10. Let A be an S-act with a fxed element. Ten A

is injective if and only if it is densely injective.

A well-known criterion for injectivity of acts with a fxed
element is the Skornjakov criterion stating that it sufces to
verify the injectivity relative to all inclusions into cyclic acts,
in which the fxed element plays an important role (see [13]).
As for dense injectivity, we present an analogous criterion
which needs no fxed element.

Theorem 11 (Skornjakov criterion for dense injectivity). An
S-act is densely injective if and only if it is injective relative to
all dense embeddings into cyclic S-acts.

Proof. We prove the non-trivial assertion. Let A be an S-act
satisfying the assumption. Consider an S-act C, a dense
subact B of C, and a homomorphism f: B⟶ A. We have
to show that there exists a homomorphism f: C⟶ A

which extends f. Let

Σ: � (X, g) ∣ B be a dense subact of X⊆C, g: X⟶
A, and g|B � f}.

Σ is non-empty since (B, f) ∈ Σ. Consider a partial order
relation on Σ as follows: (X1, g1)≤ (X2, g2)⇔X1 ⊆X2 and
g2|X1

� g1.
For any chain (Xi, gi)i􏼈 􏼉i∈I in Σ, the pair (∪

i∈I
Xi, g) where

g(xi) � gi(xi) for xi ∈ Xi is an upper bound. By Zorn’s
lemma there exists a maximal element (D, 􏽢g) in Σ. We shall
show that D � C. Ten, of course, f � 􏽢g extends f.

Suppose that D≠C. Ten there exists c ∈ C\D. Since B is
dense in C, there exists s ∈ S such that cs ∈ B⊆D and so
D∩ cS≠∅. Set H: � D∩ cS and h: � 􏽢g|H. We claim that H

is a dense subact of cS. Take any cs ∈ cS⊆C. Using the fact
that B is dense in C, we get (cs)t ∈ B for some t ∈ S and
hence (cs)t � c(st) ∈ D∩ cS � H. It follows from hypothesis
that there exists a homomorphism k: cS⟶ A such that
k|H � h. Set E: � D∪ cS. Defne l: E⟶ A by

l(x) �
􏽢g(x), x ∈ D,

k(x), x ∈ cS,

⎧⎨

⎩ (5)

for every x ∈ E. Since 􏽢g|H � h � k|H, l is well-defned and
clearly a homomorphism. Also l|B � 􏽢g|B � f. Moreover,
since B is dense in C and D, it is dense in E and D ⊂ E⊆C

which contradicts the maximality of (D, 􏽢g). □
Recall from [9] that an S-act A is said to be in-

decomposable codomain injective or InC-injective for short, if
it is injective with respect to all embeddings into in-
decomposable acts. By [9], Corollary 2.8, an S-act is

InC-injective if and only if it is injective relative to all
embeddings into cyclic acts. Ten, usingTeorem 11, we get
the following.

Corollary 12. Any InC-injective S-act is densely injective.

Te following result follows from Corollary 12 and [9],
Proposition 2.13.

Proposition 13. If any densely injective S-act is injective,
then S is not a left reversible monoid or S contains a left zero.

Lemma 14. Te following assertions are equivalent for
a monoid S:

(i) S is left reversible.
(ii) Any right ideal of S is indecomposable.
(iii) Any right ideal of S is dense.
(iv) All subacts of indecomposable S-acts are

indecomposable.
(v) Any two right ideals of S whose union is dense have

a non-empty intersection.
(vi) Any dense right ideal of S is indecomposable.

Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (i), (iv) ⇒ (ii) and (i) ⇒ (v)
⇔ (vi) are obvious.

(i) ⇔ (iv) Follows from [9], Proposition 2.2.
(vi) ⇒ (i) Suppose that there exist right ideals I0 and J of

S such that I0 ∩ J � ∅. Set ΣJ � I ∣ I is a right ideal of􏼈

S, I∩ J � ∅} which is non-empty. Consider a partial order
relation on ΣJ as follows:

I1 ≤ I2⇔ I1 ⊆ I2. (6)

Let Ii􏼈 􏼉i∈I be a chain in ΣJ. Clearly, ∪ i∈IIi is an upper
bound. By Zorn’s lemma there exists a maximal element I1
in Σ. We claim that I1 ∪ J is a dense right ideal of S; oth-
erwise, there exists s ∈ S such that sS∩ (I1 ∪ J) � ∅. It is
clear that (sS∪ I1)∩ J � ∅, so I1 ⊂ sS∪ I1 ∈ Σ, which is
a contradiction. Tus I1 ∪ J is dense in S and I1 ∩ J � ∅,
which contradicts the assumption. □

Theorem 15. Let S be a left reversible monoid. Ten

(i) Any dense injective S-act is InC-injective.
(ii) Any dense injective S-act is injective if and only if S

has a left zero element.

Proof

(i) Consider the following diagram:
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in which E is a dense injective S-act and A is a non-
empty subact of a cyclic S-act bS. Consider the non-
empty right ideal Ib � s ∈ S ∣ bs ∈ A{ } of S. By
Lemma 14, Ib is dense in S and so A is dense in bS.
Indeed, for any bt ∈ bS, since Ib is dense in S, there
exists s ∈ S such that ts ∈ Ib and thus bts ∈ A. Now
since E is dense injective, there exists a homomor-
phism g: bS⟶ E such that g|A � f.

(ii) If S has a left zero element, then by Corollary 10, any
dense injective S-act is injective. For the converse,
since S is left reversible, S has a left zero element by
Proposition 13.

Let A be an S-act. Te S-act A∪ 0{ } with a fxed element
0 adjoined to A is denoted by A0. □

Proposition 16. Let S be a left reversible monoid and A be
a densely injective S-act. Ten A≤E(A)≤A0.

Proof. If A has a fxed element, then by Corollary 10,
A � E(A). Now let A have no fxed element. By Teorem 7
(ii), E(A)\ 0{ } is a dense injective envelope of A which
implies E(A)\ 0{ } � A.

In what follows, a class of densely injective acts is ob-
tained. To this end, let us list some preliminaries.

Te notions of torsion free and divisible S-acts are
known and defned by using the right and left cancellable
elements of S, respectively (see [16]). In [2], torsion freeness
and divisibility are considered in a much stronger sense
(without imposing the cancellability properties on elements
of S ) which we call here strong torsion freeness (see also
[20]) and strong divisibility defned as follows.

Let A be an S-act. Ten A is called strongly torsion free if
for any a, b ∈ A and for any s ∈ S, the equality as � bs

implies a � b. Also we say that A is strongly divisible if As �

A for each s ∈ S, that is, for any a ∈ A, there exists b ∈ A such
that a � bs. □

Lemma 17. Let S be a left reversible monoid and A be an
S-act. Ten E(A) is strongly torsion free if and only if so is A.

Proof. Suppose that A is torsion free. If E(A) is not torsion
free, then there exist b1, b2 ∈ E(A), s ∈ S such that b1s � b2s

but b1 ≠ b2. Defne a relation ρ on E(A) by

xρy⇔xs � ys for some s ∈ S. (7)

We show that ρ is a congruence on E(A). Te refexivity
and symmetry are clear. For transitivity, let xρy, yρz for
x, y, z ∈ E(A). Ten there exist s, s′ ∈ S such that xs � ys

and ys′ � zs′. Since S is left reversible, there exist t, t′ ∈ S

such that st � s′t′ and so xst � yst � ys′t′ � zs′t′ � zst,
which means that xρz. Let xρy and t ∈ S; then there exists
s ∈ S such that xs � ys. Left reversibility of S gives that there
exist s′, t′ ∈ S with tt′ � ss′ so that xtt′ � xss′ � yss′ � ytt′.
Tus xtρyt, as desired. Now, since b1s � b2s and b1 ≠ b2,
ρ≠ΔE(A). Using [16], Lemma 3.1.15, ρ|A ≠ΔA where
ρ|A � ρ∩ (A × A). Tis implies the existence of a1, a2 ∈ A

with a1 ≠ a2 and s ∈ S such that a1s � a2s, which contradicts
being strong torsion free of A. Te converse is clear. □

Lemma 18. Let A be a strongly divisible as well as strongly
torsion free S-act. Ten A is closed in each of its strongly
torsion free extension.

Proof. Let C be a strongly torsion free extension of A and
c ∈A. Ten there exists s ∈ S such that cs ∈ A � As which
implies cs � as for some a ∈ A. Since C is strongly torsion
free, c � a ∈ A and hence A � A. □

Theorem 19. Let S be a left reversible monoid. Ten any
strongly divisible as well as strongly torsion free S-act A is
densely injective.

Proof. By Lemma 17, E(A) is a strongly torsion free S-act and
by Corollary 8, A has a densely injective envelope Ed(A). Since
Ed(A) is an essential extension ofA, there is a monomorphism
h: Ed(A)⟶ E(A) which implies that Ed(A) is a strongly
torsion free S-act. Now we are done using Lemma 18. □

A densely injective act over a left reversible monoid is
not necessarily strongly divisible nor strongly torsion free.
For this, consider the monoid S � (N, max) which is
a densely injective S-act (see Example 4 (i)) but not strongly
divisible nor strongly torsion free. In the next section, we
discuss the converse of Teorem 19 (see Proposition 39).

In view of Corollary 10 and Teorem 19, a class of in-
jective acts is characterized in the following.

Corollary 20. Any strongly divisible and strongly torsion free
act with a fxed element over a left reversible monoid is
injective.

Theorem 21. For an S-act A, any strongly torsion free dense
extension B of A is essential.

Proof. Suppose that f: B⟶ C is a homomorphism such
that f|A is a monomorphism. Let f(b) � f(b′) for b, b′ ∈ B.
Since A is a dense subact of B, there exist s, s′ ∈ S such
that bs, b′s′ ∈ A and so Ib � s ∈ S ∣ bs ∈ A{ } and Ib′ �

s ∈ S ∣ b′s ∈ A􏼈 􏼉 are non-empty. Since A is a dense subact of
B, Ib and Ib′ are dense right ideals of S and so Ib ∩ Ib′ ≠∅. So
there exists t ∈ Ib ∩ Ib′ which means that bt, b′t ∈ A. Ten
f(bt) � f(b)t � f(b′)t � f(b′t) and so bt � b′t. Now since
B is strongly torsion free, b � b′ and hence f is
a monomorphism. □

Te next result presents a criterion for an injective ex-
tension of an S-act to be an injective envelope.

Corollary 22. If B is an injective strongly torsion free dense
extension of an S-act A, then B is an injective envelope of A.

Example 2

(i) Consider Z and Q as (N, ·)-acts with usual multi-
plication as the actions. TenQ is a dense extension
of Z. Moreover, Q is strongly torsion free and
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strongly divisible. Ten, using Corollary 20, Q is
injective. Now it follows from Corollary 22 thatQ is
an injective envelope of Z.

(ii) Consider N and Z as (N0, +)-acts with usual ad-
dition as the actions. Ten Z is a dense extension of
N. Moreover, Z is strongly torsion free and strongly
divisible. TenTeorem 19 implies thatZ is densely
injective but not injective because it has no fxed
element.

(iii) By Teorem 21, Z is an essential extension of N.
Now using part (ii) and Proposition 16, since
(N0, +) is left reversible, we conclude thatZ∪ ∞{ } is
an injective envelope of S-acts N and Z.

Te condition that weak injectivity coincides to injectivity
is known as the Baer criterion for injectivity. However, al-
though this condition holds for injectivity of modules over
a ring with unit, it fails for injectivity of acts over an arbitrary
monoid (see [16]). Te next result gives a class of acts sat-
isfying this criterion. As we shall see in the last section, Baer
criterion also fails for dense injectivity of acts (see Example 3).

Theorem 23. Let A be a strongly torsion free S-act. Ten A is
densely injective if and only if it is weakly densely injective.

Proof. It is clear that each densely injective S-act is weakly
densely injective. For the converse, let A be weakly densely
injective. Assume that B is a dense subact of a cyclic S-act cS

and f: B⟶ A is a homomorphism. We show that there
exists a homomorphism f: cS⟶ A which extends f. Let
s ∈ S. Ten there exists t ∈ S such that (cs)t ∈ B and hence
st ∈ Ic � s ∈ S ∣ cs ∈ A{ } which means that Ic is dense in S.
Consider a homomorphism g: Ic⟶ A given by
g(s) � f(cs). So there is a homomorphism h: S⟶ A

which extends g. Defne f: cS⟶ A by f(cs) � h(s) for
any s ∈ S. Let cs1 � cs2; then there exists t ∈ S such that
cs1t � cs2t ∈ B. So

h s1( 􏼁t � h s1t( 􏼁 � g s1t( 􏼁 � f cs1t( 􏼁 � f cs2t( 􏼁

� g s2t( 􏼁 � h s2t( 􏼁 � h s2( 􏼁t,
(8)

and hence f(cs1) � h(s1) � h(s2) � f(cs2), which means
thatf is well-defned. Now it is not difcult to check that f is
a homomorphism which extends f. □

In view of Lemma 14 and Teorem 23, we have the
following.

Corollary 24. Let S be a left reversible monoid and A be
a strongly torsion free S-act. Ten A is densely injective if and
only if it is weakly injective.

Theorem 25. Let S be a left reversible monoid. Ten an S-act
is injective if and only if it is densely injective as well as
injective relative to all closed subacts.

Proof. Let B be a subact of an S-act C and f: B⟶ A be
a homomorphism. Set D: � x ∈ C ∣ xs ∈ B for some s ∈ S{ }.

It is clear that B is a dense subact of D and D is a closed
subact of C. Now since A is dense injective, there exists
a homomorphism g: D⟶ A such that g|B � f. Moreover,
since A is closed injective, there exists a homomorphism
h: C⟶ A such that h|D � g. Hence, h|B � (h|D)|B �

g|B � f, which means that A is injective. Te converse holds
trivially. □

3. Products, Coproducts, and Direct Sums of
(Weakly) Densely Injective S-Acts

Tis section is devoted to study the behavior of (weak)
dense injectivity of acts with respect to products, co-
products, and direct sums.Te product of a family of S-acts
is their Cartesian product with the componentwise action,
and the coproduct is their disjoint union with natural
action. As usual, we use the symbols 􏽑 and∐ for product
and coproduct, respectively. For a family Ai ∣ i ∈ I􏼈 􏼉 of
S-acts with a unique fxed element 0, the direct sum ⊕ i∈IAi

is defned to be the subact of the product 􏽑i∈IAi consisting
of all (ai)i∈I such that ai � 0 for all i ∈ I except a fnite
number.

Te following result shows that (weak) dense injectivity
well-behaves under products as usual.

Proposition 26. Let Ai ∣ i ∈ I􏼈 􏼉 be a family of S-acts. Ten
the product 􏽑i∈IAi is (weakly) densely injective if each Ai is
(weakly) densely injective. Te converse also holds if each Ai

has a fxed element.

Proof See [8], Teorem 3.24. □

It is known that the usual injectivity is not transferred
from a coproduct of acts to all of its components in general.
For instance, taking a non-trivial group S, the S-act S⊔ S0

where S0 � S∪ 0{ } is injective, whereas S is not an injective
S-act. In contrast to the case of injectivity, the next result
shows that the dense injectivity is inherited from coproducts
to their components.

Proposition 27. Let Ai ∣ i ∈ I􏼈 􏼉 be a family of S-acts. If the
coproduct ∐i∈IAi is (weakly) densely injective, then so is
each Ai.

Proof. Assume that∐i∈IAi is densely injective. Let i ∈ I. We

show that Ai is densely injective. Let B be a dense subact of C

and consider the diagram
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where f is a homomorphism and ιi is the canonical in-
jection. Since ∐i∈IAi is densely injective, there exists a ho-
momorphism f: C⟶∐i∈IAi such that f|B � ιif � f. We
claim that Imf⊆Ai. Let there exist x ∈ C and j ∈ I, j≠ i,
such that f(x) ∈ Aj. Since B is dense in C, xs ∈ B for some
s ∈ S and so f(xs) � ιif(xs) � f(xs) ∈ Ai. On the other
hand, f(xs) � f(x)s ∈ Aj. Ten f(xs) ∈ Ai ∩Aj which is
a contradiction. Now considering f∗: � f: C⟶ Ai, we
get f∗|B � f. Te proof for weak dense injectivity is
the same. □

Recall that all coproducts of injective S-acts are injective
if and only if S is left reversible (see [16], Propositions 3.1.13
and 3.5.4). In the following, a counterpart of these results for
(weak) dense injectivity of acts is presented.

Theorem 28. Te following statements are equivalent for any
monoid S:

(i) All coproducts of (weakly) densely injective S-acts are
(weakly) densely injective.

(ii) Θ⊔Θ is (weakly) densely injective.
(iii) For some S-act A, A⊔A is (weakly) densely injective.
(iv) S is left reversible.

Proof. We just need to prove the assertion for dense
injectivity.

Te implication (i) ⇒ (ii) ⇒ (iii) is trivial.
(iii) ⇒ (iv) Using a same method to the proof of

Proposition 2.12 (iii) ⇒ (iv) in [9] for the densely injective
case, the result is obtained.

(iv) ⇒ (i) Let Ai be a densely injective S-act for each
i ∈ I. We apply Teorem 11 to prove that ∐i∈IAi is densely
injective. Suppose that A is a dense subact of a cyclic S-act
B � bS and f: A⟶∐i∈IAi is a homomorphism. More-
over, consider the epimorphism π: � λb: S⟶ B, the right
ideal K: � π−1(A) of S, and τ: � π|K: K⟶ A in the
following diagram:

Note that K is dense in S. Indeed, for any s ∈ S, π(s) �

bs ∈ B and since A is dense in B, there exists t ∈ S such that
π(st) � π(s)t � bst ∈ A and so st ∈ π−1(A) � K. We claim
that there exists i ∈ I for which Imf⊆Ai. Otherwise,
Imf∩Ai and Imf∩Aj are non-empty for some i, j ∈ I,

i≠ j, which clearly gives that Imf is a decomposable subact
of∐i∈IAi. Using [16], Lemma 1.5.36, this implies that A and
hence K are decomposable which contradicts the left re-
versibility of S. Tis gives the existence of i ∈ I such that

Imf⊆Ai. Since Ai is densely injective by the assumption, f

can be extended to a homomorphism f: B⟶ Ai. Hence,
taking f∗: � ιif: B⟶∐i∈IAi we have f∗|A � f, as
required. □

Now, we are ready to prove the converse of Teorem 19.

Proposition 29. For a monoid S, if any strongly divisible as
well as strongly torsion free S-act is (weakly) densely injective,
then S is left reversible.

Proof. Consider the S-act Θ⊔Θ which is clearly strongly
divisible and strongly torsion free. It follows from the hy-
pothesis thatΘ⊔Θ is (weakly) densely injective. Now, using
Teorem 28, the assertion holds. □

Note that each S-act A with trivial action, i.e., as � a for
any a ∈ A, s ∈ S, is densely injective. As for the injectivity of
acts with trivial actions, we have the following.

Proposition 30. Let A be a non-singleton S-act with trivial
action. Ten the following statements are equivalent:

(i) A is injective.
(ii) A is principally weakly injective.
(iii) S is left reversible.

Proof. (i) ⇒ (ii) Trivial.
(ii) ⇒ (iii) Let A be a principally weakly injective S-act.

If S is not left reversible, there exist principal right ideals J

and K of S such that J∩K � ∅. Fix two distinct elements
a, b ∈ A. Consider the homomorphism f: J⊔K⟶ A

defned by f(x) �
a x ∈ J,

b x ∈ K.
􏼨 It is easily checked that f

can not be extended to S which contradicts the assumption.
(iii) ⇒ (i) Let S be a left reversible monoid. Since A is

isomorphic to the coproduct of singleton S-acts, it is in-
jective by [16], Proposition 3.1.13. □

Te following result follows clearly from [8],
Teorem 3.30.

Theorem 31. Let Ai ∣ i ∈ I􏼈 􏼉 be a family of S-acts with
a unique fxed element 0 such that the direct sum ⊕ i∈IAi is
(weakly) densely injective. Ten each Ai is (weakly) densely
injective.

A monoid S is called (densely) Noetherian if every
(dense) right ideal of S is fnitely generated. It is easy to check
that a monoid S is (densely) Noetherian if and only if it
satisfes the ascending chain condition on its (dense) right
ideals, that is, for every ascending chain

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ In+1 ⊆ · · · (9)

of (dense) right ideals of S, there exists n ∈ N such that
In � In+1 � · · ·.

Lemma 32. A monoid S is Noetherian if and only if it is
densely Noetherian.
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Proof. It is clear that any Noetherian monoid is densely
Noetherian. Conversely, suppose that S is not Noetherian, so
there exists a right ideal J of S which is not fnitely generated.
Set Σ � I ∣ I is a non-fnitely generated right ideal of S≠∅.
Consider a partial order relation on Σ as follows:
I1 ≤ I2⇔ I1 ⊆ I2.

Let Ii􏼈 􏼉i∈I be a chain in Σ. Clearly, ∪ i∈IIi is an upper
bound. By Zorn’s lemma there exists a maximal element I0
in Σ. We claim that I0 is a dense right ideal of S; otherwise,
there exists s ∈ S such that sS∩ I0 � ∅. Tus sS∪ I0 ∉ Σ
whence sS∪ I0 and then I0 is fnitely generated, which is
a contradiction. Tus I0 is a non-fnitely generated dense
right ideal of S, which means that S is not densely
Noetherian. □

Theorem 33. For a monoid S with zero, the following
conditions are equivalent:

(i) Each direct sum of densely injective S-acts is densely
injective.

(ii) Each direct sum of weakly densely injective S-acts is
weakly densely injective.

(iii) S is Noetherian.

Proof. (i) ⇔ (iii) Follows from Corollary 10 and [3],
Teorem 1.

(ii) ⇔ (iii) Follows from [8], Teorem 3.34 and
Lemma 32. □

Theorem 34. Let S have a left zero element. Ten each direct
sum of densely injective S-acts is densely injective if and only if
each direct sum of densely injective S-acts is a retract of their
direct product.

Proof. (⇒ ) Since S has a left zero element, ⊕Ai is a dense
subact of 􏽑 Ai. So we are done using Teorem 6.

(⇐ ) By Proposition 26, each direct product of densely
injective S-acts is densely injective and clearly every retract
of a densely injective S-act is densely injective. □

 . Classifying Monoids by (Principal, fg-) Weak
Dense and Self-Dense Injectivities

In this section, we study some usual types of weak dense
injectivity and self-dense injectivity of acts. By means of
these notions, some homological classifcation results for
monoids are also obtained.

Defnition 35. An S-act A is called principally (fg-) weakly
densely injective if it is injective relative to all principal
(fnitely generated) dense right ideals into S.

Remark 36

(i) Let A be an S-act. Similarly to the case of weak
injectivity of acts, one has A is (fg-) weakly densely
injective if and only if for any (fnitely generated)

dense right ideal I of S and any homomorphism
f: I⟶ A there exists a ∈ A such that f(x) � ax

for any x ∈ I.
(ii) As we mentioned in Lemma 14, if S is left reversible,

then every right ideal of S is dense. Ten, in this case,
(principal, fg-) weak dense injectivity and (principal,
fg-) weak injectivity coincide. Terefore, in view of
[16], Examples 3.4.6, 3.5.6, the notions of principal
weak dense injectivity, fg-weak dense injectivity and
weak dense injectivity are actually diferent.

Let A be an S-act. Ten any a ∈ A is called a dense el-
ement if for every a′ ∈ A, there exist s, s′ ∈ S such that as �

a′s′ (i.e., aS∩ a′S≠∅). Clearly, a ∈ A is dense if and only if
aS is a dense subact of A. So every element of A is dense
element if and only if every subact of A is dense. An element
s ∈ S is called regular if there exists x ∈ S such that s � sxs.
If all dense elements of S are regular, then S is called
a densely regular monoid. Te monoids (N∪ ∞{ }, min) and
(N, max) are examples of densely regular monoid.

Using [9], Proposition 2.1, the next result is immediate.

Proposition 37. Let S be a left reversible monoid. Ten an
S-act A is indecomposable if and only if all elements of A

are dense.

Proposition 38. Let A be an S-act. Ten the following
statements are equivalent:

(i) A is principally weakly densely injective.
(ii) For any dense principal right ideal sS of S and any

homomorphism f: sS⟶ A there exists a ∈ A such
that f(x) � ax for any x ∈ sS.

(iii) For a dense element s ∈ S and any a ∈ A with
ker λs ⊆ ker λa, a � bs for some b ∈ A.

Proof. Te proof is similar to that of [16],
Proposition 3.3.2. □

Corollary 39. Te following assertions hold for any monoid S:

(i) Let ρ be a right congruence on S. Te factor act S/ρ is
principally weakly densely injective if and only if for
any dense element s ∈ S and any t ∈ S for which
sx � sy, x, y ∈ S, implies (tx)ρ(ty), there exists u ∈ S

such that tρ(us).
(ii) A right ideal zS, z ∈ S, of S is principally weakly

densely injective if and only if for any dense element
s ∈ S and any t ∈ S for which sx � sy, x, y ∈ S, im-
plies ztx � zty, there exists u ∈ S such that zt � zus.
In particular, if zS is a principally weakly densely
injective dense right ideal of S, then z is a regular
element.

An S-act A is said to be densely divisible if As � A for any
left cancellable dense element s ∈ S, that is, for any a ∈ A

there exists b ∈ A such that a � bs.
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Corollary 40. Every principally weakly densely injective act
is densely divisible.

Te converse of Corollary 40 is not generally true (see
[16], Example 3.3.11).

Te next three theorems are proved similarly to the well-
known homological classifcation results for monoids by
diferent kinds of weak injectivity of acts which can be found,
for example, in [16].

Theorem 41. Te following conditions are equivalent:

(i) All S-acts are principally weakly densely injective.
(ii) All dense right ideals of S are principally weakly

densely injective.
(iii) All fnitely generated dense right ideals of S are

principally weakly densely injective.
(iv) All principal dense right ideals of S are principally

weakly densely injective.
(v) S is densely regular.

Theorem 42. Te following conditions are equivalent:

(i) All S-acts are fg-weakly densely injective.
(ii) All dense right ideals of S are fg-weakly densely

injective.
(iii) All fnitely generated dense right ideals of S are fg-

weakly densely injective.
(iv) S is a densely regular monoid whose dense fnitely

generated right ideals are principal.

Theorem 43. Te following conditions are equivalent:

(i) All S-acts are weakly densely injective.
(ii) All dense right ideals of S are weakly densely injective.
(iii) All dense right ideals of S have an idempotent

generator.
(iv) S is a densely regular principal dense right ideal

monoid.

Te following example shows that the Baer criterion fails
for dense injectivity of acts as injectivity (see [7],
Example 12).

Example 3. Let S be a monoid with the multiplication table:

It is easily checked that S is a densely regular principal
dense right ideal monoid. Ten all S-acts are weakly densely

injective by Teorem 43. Consider the monocyclic right
congruence ρ � ρ(t, v) on S. Clearly, (s, u) ∉ ρ and [s]ρS is
a dense subact of the S-act S/ρ. We show that the S-act
[s]ρS � [s]ρ, [u]ρ􏽮 􏽯 is not densely injective. Consider the
following diagram:

Suppose that there exists a homomorphism f: S/ρ⟶
[s]ρS extending id[s]ρS. If f([1]ρ) � [s]ρ, then f([t]ρ) �

f([1]ρt) � [s]ρt � [s]ρ and f([v]ρ) � f([1]ρv) � [s]ρv �

[u]ρ which is a contradiction. Similarly, the case f([1]ρ) �

[u]ρ yields also a contradiction.

A monoid S is said to be self-densely injective if S is
densely injective as an S-act.

In the following, we study self-dense injectivity property
for monoids.

Let K be a dense right ideal of S and q ∈ S. For s ∈ S, put
Ks � u ∈ S ∣ su ∈ K{ }. Ten Ks is a (non-empty) dense right
ideal of S. Defne a relation ρ(K, q) on S by

sρ(K, q)t ⇔ Ks � Kt and qsu � qtu for all u ∈ Ks. (10)

Ten ρ(K, q) is a right congruence on S.
Using Teorem 11, a same argument to [16], Teorem

4.5.3, gives the following result.

Theorem 44. A monoid S is self-densely injective if and only
if for any dense right ideal K of S and any homomorphism
f: K⟶ S there exists q ∈ S such that f(a) � qa for all
a ∈ K and sρ(K, q)t, s, t ∈ S, implies qs � qt.

Analogous to [16], Teorems 4.5.10, 4.5.11, 4.5.12, we
have the next three results.

Theorem 45. Te following conditions are equivalent:

(i) All principal dense right ideals of S are densely
injective.

(ii) S is a densely regular self-densely injective monoid.

Theorem 46. Te following conditions are equivalent:

(i) All fnitely generated dense right ideals of S are densely
injective.

(ii) S is a densely regular self-densely injectivemonoid whose
dense fnitely generated right ideals are principal.

Theorem 47. Te following conditions are equivalent:

(i) All dense right ideals of S are densely injective.
(ii) S is a densely regular self-densely injective principal

dense right ideal monoid.
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Recall from [16] that an idempotent e ∈ S is called right
special if for any right congruence ρ on S there exists k ∈ eS

such that (ke)ρe and uρv, u, v ∈ S, implies (ku)ρ(kv).
Using Teorem 11, the next result for dense injectivity is

similar to the injectivity case. Te proof is just an adaptation
of the proof of [16], Teorem 4.5.13.

Theorem 48. All S-acts are densely injective if and only if S is
a densely regular principal dense right ideal monoid all
idempotents of which are special.

Finally, the following example shows that self-dense
injectivity does not imply self-injectivity.

Example 4

(i) Consider the monoid S � (N, max). Ten it follows
from Teorem 48 that S is a self-densely injective
monoid. Since S has no zero, it is not self-injective.

(ii) Each non-trivial group S is a self-densely injective
but not self-injective act over itself (see Example
1 (i)).

5. Conclusion

Te examination of injectivity concerning various classes of
monomorphisms in a category holds signifcant importance
across multiple mathematical domains. Numerous authors
have explored this concept within diverse categories, each
pertaining to distinct classes of monomorphisms. Tis paper
delves into the exploration of topological dense injectivity
within monoid acts. We establish that the category of acts
over a left reversible monoid or a monoid that includes a left
zero element possesses enough topologically dense in-
jectives. It is revealed that topologically dense injective acts
form a class strictly larger than the class of ordinary injective
acts and we identify a condition under which they coincide.
We pinpoint several acts that meet the criteria for topo-
logical dense injectivity. Specifcally, a strongly divisible as
well as strongly torsion free S-act over a monoid S is to-
pologically dense injective if and only if S is a left reversible
monoid. Moreover, we give a counterpart of the Skornjakov
criterion and identify a class of acts that adhere to the Baer
criterion for topological dense injectivity. Finally, we present
various homological classifcations for monoids based on
this form of injectivity in monoid acts.
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