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Let G be a graph with n vertices and CG � X: X{ is an l-clique of G}. A vertex v ∈ V(G) is said to resolve a pair of cliques X, Y{ } in
G if dG(v, X)≠dG(v, Y) where dG is the distance function of G. For a pair of cliques X, Y{ }, the resolving neighbourhood of X and
Y, denoted by RG X, Y{ }, is the collection of all vertices which resolve the pair X, Y{ }. A subset S of V(G) is called an (l, k)-clique
metric generator for G if |RG X, Y{ }∩ S|≥ k for each pair of distinct l-cliques X and Y of G. Te (l, k)-clique metric dimension of G,
denoted by l − cdimk(G), is defned as min |S|: S{ is an (l, k)-clique metric generator of G}. In this paper, the (l, k)-clique metric
dimension of corona and edge corona of two graphs are computed. In addition, an integer linear programmingmodel is presented
for the (l, k)-clique metric basis for a given graph G and its l-cliques.

1. Introduction

Troughout this paper all graphs are assumed to be fnite,
simple, connected, and undirected. For a positive integer
number n, we use the notation [n] instead of 1, . . . , n{ }. A clique
is a collection of vertices of a graph in which every two distinct
vertices are adjacent. An l-clique is a clique with l vertices. For
an l-cliqueX of a graphG, wewill also use the notationN[X] to
denote v ∈ V(G): v  is  adjacent  to a vertex of  X ∪X. For
a vertex v and an l-clique X of a graph G, notation dG(v, X)

denotes min dG(x, v): x ∈ X  where dG(x, v) is as usual the
number of edges on a shortest x, v-path.

Let G be a graph with n vertices and CG � X: X{ is an
l-clique of G}. For a pair of cliques X, Y{ }, the resolving
neighbourhood of X and Y, denoted by RG X, Y{ }, is the
collection of all vertices which resolve the pair X, Y{ }. A
subset S of V(G) is called an (l, k)-clique metric generator
((l, k)-CMG for short) for G if |RG X, Y{ }∩ S|≥ k for each
pair of distinct l-cliques X and Y of G. A (l, k)-clique metric
generator of minimum cardinality is called an (l, k)-clique

metric basis of G. Te cardinality of an (l, k)-clique metric
basis of G, denoted by l − cdimk(G), is said to be (l, k)-clique
metric dimension ((l, k)-CMD for short) of G.

Here, (l, k)-CMD is considered as a generalization of the
concept of a k-metric dimension presented in [1]. Indeed,
(1, k)-CMD is known as k-metric dimension and is denoted
by dimk(G) in [1]. In addition, (1,1)-CMD is known as
metric dimension which is the frst version of this type of
invariants (see [2] for more details). After that, other ver-
sions of metric dimension such as edge metric dimension
and mixed metric dimension were also defned (see [3–6] for
more information about these topics). In what follows, we
will also use notation edimk(G) instead of 2 − cdimk(G).

In the next section, we need an extension of the concept
k-metric dimensional of graph defned in [7] as follows.

A graph is (l, k)-clique metric dimensional if k is the
largest integer such that there exists a (l, k)-clique metric
generator for G.

Consider graph G shown in Figure 1. We want to
compute 2 − cdim2(G). Ten frst, we fnd RG e, e′  for each
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pair of distinct 2-cliques (edges) e and e′ of G.
RG e1, e2  � u1, u3 , RG e1, e3  � u1, u2, u3, u4 , RG e1, e4 

� u2, u4 , RG e2, e3  � u2, u4 , RG e2, e4  � u1, u2, u3, u4 ,
RG e2, e5  � u3, u4 , RG e3, e4  � u1, u3 , RG e3, e5  � u2,

u3}, RG e4, e5  � u1, u2 . According to RG e1, e2  � u1, u3 ,
RG e1, e4  � u2, u4 , RG e2, e5  � u3, u4 , and RG e3,

e4} � u1, u3 , we can conclude that vertices u1, u2, u3, u4
must be the members of each (2,2)-clique metric generator
of G. Terefore, S � u1, u2, u3, u4  is a (2,2)-clique metric
basis of G and so 2 − cdim2(G) � 4.

As another example, we compute 2 − cdim3 of graph G

depicted in Figure 1. Tis graph has two 3-cliques
X � u1u2u4 and Y � u2u3u4. Tus, RG X, Y{ } � u1, u3 .
Ten S � u1, u3  is a (3,2)-clique metric basis of G and so
3 − cdim2(G) � 2.

Lots of work have been done in k-metric generator sets
of graphs. We recommend [1] for more details on this topic.
Estrada-Moreno et al. studied k-metric dimension of corona
product graphs in [8]. In this paper, we give
l − cdimk(G °H) and l − cdimk(G◇H) in terms of the
global forcing numbers of H, the order, and size of G. We
also present an integer linear programming model for the
(l, k)-clique metric basis for a given graphG and its l-cliques.

2. Main Results

To state our main results, we need to introduce the concept
of k-global forcing set for l-cliques as an extension of the idea
of global forcing sets for l-cliques of a graph which was
presented in [9].

Let k and l be two positive integer numbers. A k-global
forcing set for l-cliques of a graph G is a subset S of V(G)

with this property that |(X∩ S)Δ(Y∩ S)|≥ k for any two
distinct l-cliques X and Y of G. A k-global forcing set for
l-cliques of G with minimum cardinality is called a mini-
mum k-global forcing set for l-cliques of G, and its cardi-
nality, denoted by ϕk

glc(G), is called the k-global forcing
number for l-cliques of G.

For fnding a global forcing set for l-cliques of G, an ILP
model was presented in [9]. We extend this model to achieve
the following ILP for fnding a k-global forcing set for
l-cliques of G.

Let G be a graph with v1, . . . , vn  and let
CG � X1, . . . , Xt  be the set of all l-cliques of G. Suppose
that AG � [aij] is a t × n matrix, where aij � 1 if vj ∈ Xi, and
aij � 0 otherwise. Te goal is to minimize F(w1, . . . , wn) �


n
i�1wi subject to the constraints:

(i) |ai1 − aj1|w1 + |ai2 − aj2|w2 + · · · + |ain − ajn|wn ≥ k,

1≤ i< j≤ t.
(ii) wi ∈ 0, 1{ }, i ∈ [n] with wi � 1 if vertex v1 ∈ S and

wi � 0 otherwise.

It is not difcult to see that if w1′, . . . , wn
′  is a set of

values for which F attains its minimum, then S � vi: wi
′ � 1

for i ∈ [n]} is a minimum k-global forcing set for l-cliques of
G. In addition, F(w1′, . . . , wn

′) � ϕk
glc(G).

2.1. (l, k)-CMD of Corona Product. Let G and H be two
graphs with V(G) � g1, . . . , gn . Te corona product G °H

is obtained from one copy of G and n copies of H by joining
with an edge each vertex of the ith copy of H, i ∈ [n], to gi,
see [10]. In this subsection, Hi, i ∈ [n], denotes the ith copy
of H in G °H.

Theorem 1. Let G be a graph with n> 1 vertices and H be
a graph with more than one (l − 1)-clique. Ten

l − cdimk(G °H) � n · ϕk
g(l−1)c(H). (1)

Proof. Let Si be a k-global forcing set for (l − 1)-cliques of
Hi that |Si| � ϕk

g(l−1)c(H). Set S � ∪ n
i�1Si. Obviously,

|S| � n · ϕk
g(l−1)c(H). We claim that S is an (l, k)-CMG of

G °H. To prove our claim, we investigate the following cases
for l-cliques X and Y in G °H.

Case 1. X and Y are two distinct (l − 1)-cliques of Hi

for an i ∈ [n]. Ten |RG°H X, Y{ }∩ Si|≥ k and conse-
quently |RG°H X, Y{ }∩ S|≥ k.
Case 2. X and Y are two distinct l-cliques of Hi for an
i ∈ [n]. Ten there exist (l − 1)-cliques X′ and Y′ in Hi

such that X′ ⊆X and Y′ ⊆Y. Tus,
|RG°H X′, Y′ ∩ Si|≥ k. Tis concludes that
|RG°H X, Y{ }∩ Si|≥ k and so |RG°H X, Y{ }∩ S|≥ k.
Case 3. X and Y do not satisfy in Case 1 and Case 2. In
this case, it is not difcult to check that there exists Hi,
i ∈ [n], such that V(Hi)⊆RG°H X, Y{ }. Hence,
|RG°H X, Y{ }∩ Si|≥ k and so |RG°H X, Y{ }∩ S|≥ k.

According to cases 1–3, S is an (l, k)-CMG forG °H which
implies that l − cdimk(G °H)≤ n · ϕk

g(l−1)c(H). Ten it is
sufcient to prove that l − cdimk(G °H)≥ n · ϕk

g(l−1)c(H).
Let S′ be an (l, k)-clique metric basis of G °H. Tus, it is

enough to prove that S′ ∩V(Hi) is a k-global forcing set for
(l − 1)-cliques ofHi. LetX andY be twodistinct (l − 1)-cliques
of Hi. Since S′ is an (l, k)-clique metric basis of G °H, then
there exist at least k vertices w1, . . . , wk ∈ S′ such that
dG°H(X′, wi)≠dG°H(Y′, wi) for every i ∈ [n] where
X′ � X∪ gi  and Y′ � Y∪ gi . On the other hand, clearly

u1

u4 u3

u2e1

e5

e3

e2e4

Figure 1: Graph G.
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dG°H(X, v) � dG°H(Y, v) for each v ∈ V(G °H)V(Hi). Tus,
we deduce that w1, . . . , wk ⊆XΔY.Tus, w1, . . . , wk ⊆ S′ is
a k-global forcing set for (l − 1)-cliques X and Y. Terefore,
l − cdimk (G °H)≥ |∪ n

i�1(V(Hi))∩ S′|≥
n
i�1ϕ

k
g(l−1)c(Hi) �

n · ϕk
g(l−1)c(H). □

Consider graph Γ � P2 °P3 shown in Figure 2. In this
fgure, 3-cliques are as X1 � g1, h11, h21 , X2 � g1, h21, h31 ,
X3 � g2, h12, h22 , X4 � g2, h22, h32 . Hence, RP2°P3

X1,

X2} � RP2°P3
X1 − g1 , X2 − g1   � (X1 − g1 )Δ(X2 −

g1 ) � h11, h31 . By a similar argument, we have
RP2°P3

X3, X4  � h12, h32 , RP2°P3
X1, X3 ⊇ h11, h21, h31 ,

RP2°P3
X1, X4 ⊇ h11, h21, h31 , RP2°P3

X2, X3 ⊇ h11, h21,

h31}, and RP2°P3
X2, X4 ⊇ h11, h21, h31 . Since mini,j∈[4]

| R Xi, Xj | � 2 , then k≤ 2. Now, we are ready to compute
3 − cdim2(P2 °P3) by the previous theorem. Clearly,
ϕ2g2c(P3) � 2. Terefore, 3 − cdim2(Γ) � 3 − cdim2(P2 °P3)

� 2 · ϕ2g2c(P3) � 2 · 2 � 4.

Theorem  . Let G be a graph and H with |E(H)|> 1. Ten
G °H is (2,2)-clique metric dimensional and

edim2(G °H) � |V(G)‖V(H)|. (2)

Proof. First, we show that G °H is (2,2)-clique metric di-
mensional. In other words, we prove that G °H has no
(2, k)-clique metric generator if k> 2. For this aim, we show
that k � mine,e′∈E(G) |RG°H e, e{ }|  � 2 for any e, e′ ∈ E

(G °H). Suppose e � gihji
and e′ � gihti

.Tus, RG°H e, e′  �

hji
, hti

  and so k � mine,e′∈E(G) |RG°H e, e′ |  � 2.
Now, according to Teorem 1, we have

edim2(G °H) � n · ϕ2g1c(H). On the other hand, it is not
difcult to check that ϕ2g1c(H) � |V(H)|. Terefore,
edim2(G °H) � |V(G) ‖ V(H)|. □

2.2. (l, k)-CMD of Edge Corona Product. Let G be a graph of
size m and H be a graph. Te edge corona product G◇H of
graphs G andH is obtained from one copy of G and m copies
of H by joining with an edge each vertex of the ith copy of H,
i ∈ [m], to vertices of the ith edge of G, cf. [11]. If e ∈ E(G),
then the copy of H in G °H corresponding to the ith edge of
G will be denoted with Hi.

Theorem 3. Let l≥ 3 be a positive integer number and H be
a graph with more than one (l − 2)-clique. If G is a graph of
size m without any pendant vertices such that
N(X′)ΔN(Y′)≠∅ for every two 2-cliques X′ and Y′ in G

and |X″ΔY″| � 2 for every two l-cliques X″ and Y″ in G, then

l − cdimk(G◇H) � m · ϕk
g(l−2)c(H). (3)

Proof. Suppose that Si is a k-global forcing set for
(l − 2)-cliques of Hi that |Si| � ϕk

g(l−2)c(H) and set
S � ∪ m

i�1Si. To achieve l − cdimk(G◇H)≤m · ϕk
g(l−2)c(H),

we prove that S is a (l, k)-CMG of G◇H. To do this, we
investigate below cases for two distinct l-cliques X and Y of
G◇H.

Case 1. X and Y are l-cliques of Hi for an i ∈ [n]. Ten
there exist (l − 2)-cliques X′ and Y′ in Hi such that
X′ ⊆X and Y′ ⊆Y. Tus, |RG◇H X′, Y′ ∩ Si|≥ k.
Hence, |RG◇H X, Y{ }∩ Si|≥ k and so
|RG◇H X, Y{ }∩ S|≥ k. Let ei � gg′ ∈ E(G). A similar
argument shows that |RG◇H X, Y{ }∩ S|≥ k where X −

g  and Y − g  are (l − 1)-cliques of Hi, or X − g, g′ 

and Y − g, g′  are (l − 2)-cliques of Hi, for an i ∈ [n].
Case 2. X − g  and Y − g  are (l − 1)-cliques in Hi

and Hj where i≠ j and ei � gg′, ej � gg″ ∈ E(G).
Clearly there exist two (l − 2)-cliques X′ and X″ in Hi

such that X′, X″ ⊆X − g . Ten |RG◇H X′,

X″}∩ Si|≥ k. Hence, |RG◇H X, Y{ }∩ Si|≥ k and so
|RG◇H X, Y{ }∩ S|≥ k.
Case 3. X and Y do not satisfy in Case 1 and Case 2. In
this case, one can check that there exists Hi such that
V(Hi)⊆RG◇H X, Y{ }. Ten |RG◇H X, Y{ }∩ Si|≥ k which
concludes |RG◇H X, Y{ }∩ S|≥ k.

Terefore, S is a (l, k)-CMG for G◇H.
Now we prove l − cdimk(G◇H)≥m · ϕk

g(l−2)c(H). Let
S′ be (l, k)-clique metric basis of G◇H. It is enough to
prove S′ ∩V(Hi) is a k-global forcing set for (l − 2)-cliques
of Hi, for i ∈ [m]. Suppose that X and Y are two distinct
(l − 2)-cliques of Hi, for i ∈ [m]. Let ei � gg′ ∈ E(G). Since
S′ is a (l, k)-clique metric basis of G °H, then there exist at
least k vertices w1, . . . , wk ∈ S′ such that
dG◇H(X′, wi)≠ dG◇H(Y′, wi) for every i ∈ [k] where X′ �
X∪ g, g′  and Y′ � Y∪ g, g′ . On the other hand, clearly
dG°H(X, v) � dG°H(Y, v) for each v ∈ V(G °H)V(Hi). Tus,
we conclude that w1, . . . , wk ⊆XΔY. Hence,
w1, . . . , wk ⊆ S′ is a k-global forcing set for (l − 2)-cliques

X and Y in H. Terefore, l − cdimk(G◇H)≥ |∪m
i�1

(V(Hi))∩ S′|≥ 
m
i�1ϕ

k
g(l−2)c(Hi) � m · ϕk

g(l−2)c(H). □

Consider Γ � C4◇P2 shown in Figure 3. X1 � g1,

g2, h11}, X2 � g1, g2, h21 , X3 � g2, g3, h12 , X4 � g2, g3,

h22}, X5 � g3, g4, h13 , X6 � g3, g4, h23 , X7 � g1, g4, h14 ,
X8 � g1, g4, h24 , X9 � g1, h11, h21 , X10 � g2, h11, h21 ,
X11 � g2, h12, h22 , X12 � g3, h12, h22 , X13 � g3, h13, h23 ,
X14 � g4, h13, h23 , X15 � g4, h14, h24 , X16 � g1, h14, h24 

are 3-cliques of Γ. Ten RC4 ◇P2
X1, X2  � RC4◇P2

X1−

g1, g2 , X2 − g1, g2 } � h11, h21 , RC4◇P2
X3, X4  �

RC4 ◇P2
X3− g2, g3 , X4 − g2, g3 } � h12, h22 . In addition,
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by similar argument, we have RC4◇P2
X5, X6  � h13, h23 ,

RC4◇P2
X7, X8  � h14, h24 , RC4◇P2

X1, X3 ⊇ h14, h24 , RC4◇P2

X1, X4 ⊇ h14, h24 , RC4◇P2
X1, X5 ⊇ h11, h21 , RC4◇P2

X1, X6 

⊇ h11, h21 , RC4◇P2
X1, X7 ⊇ h12, h22 , RC4◇P2

X1, X8 ⊇ h12,

h22}, RC4◇P2
X1, X9 ⊇ h12, h22 , RC4◇P2

X1, X10 ⊇ h14, h24 ,
RC4◇P2

X1, X11 ⊇ h14, h24 , RC4◇P2
X1, X12 ⊇ h14, h24 , RC4◇P2

X1, X13 ⊇ h11, h21 , RC4◇P2
X1, X14 ⊇ h11, h21 , RC4◇P2

X1,

X15}⊇ h12, h22 , RC4◇P2
X1, X16 ⊇ h12, h22 . By a similar

method, one can obtain other RC4◇P2
Xi, Xj . Since

min1≤i<j≤16 | R Xi, Xj  | � 2, then k≤ 2. Now, we are ready
to compute 3 − cdim2(Γ) by the previous theorem. Clearly,
ϕ2g1c(P3) � 2. Terefore, 3 − cdim2(Γ) � 3 − cdim2

(P2◇P3) � m · ϕ2g1c(P3) � 4 · 2 � 8.

Theorem 4. If H is a nontrivial graph G is a graph of order n

with this property that N(X′)ΔN(Y′)≠∅ for every two 2-
cliques X′ and Y′ in G. Ten G◇H is a (2,2)-clique metric
dimensional and

edim2(G◇H) � |E(G)‖V(H)|. (4)

Proof. In order to show that G◇H is a (2,2)-clique metric
dimensional, we need to prove k � mine,e′∈E(G)

|RG◇H e, e{ }|  � 2 for any e, e′ ∈ E(G◇H). Suppose

e � gihji
and e′ � gihti

. Tus, RG◇H e, e′  � hji
, hti

  and so
k � mine,e′∈E(G) |RG◇H e, e′ |  � 2.

Now, let S be a (2,2)-clique metric basis of G◇H.
Assume, to the contrary, that there exists x ∈ S∩V(Hi) for
an i ∈ [n]. Ten R gx, gy < 2 where g is an end point of ei,
which is a contradiction. Tis concludes that
edim2(G◇H)≥ |E(G) ‖ V(H)|. On the other hand, obvi-
ously ∪ n

i�1V(Hi) is a (2,2)-clique metric generator of G◇H

and so edim2(G◇H)≤ |E(G) ‖ V(H)|. Terefore,
edim2(G◇H) � |E(G) ‖ V(H)|. □

2.3. Integer Linear Programming Model. In [9], Afkhami
et al. gave an integer linear programming model (ILPM) to
deal with the l-clique metric dimension. Motivated by this
work, we here present an ILPM for the (l, k)-clique metric
basis for a given graph G and its l-cliques. Let G be a graph
with V(G) � v1, . . . , vn . Suppose that CG � X1, . . . , Xt  is
the set of all l-cliques of G. In addition, suppose that DG �

[dij] is a t × n matrix such that i ∈ [t] and j ∈ [n]. For
xi ∈ 0, 1{ }, i ∈ [n], defne F(x1, . . . , xn) � 

n
i�1xi. Te goal is

to minimize F subject to the constraints

di1 − dj1



x1 + di2 − dj2



x2 + · · · + din − djn



xn ≥ k, 1≤ i< j≤ t.

(5)

Clearly, if x1′, . . . , xn
′ is a set of values for which F is

attained, then S � vi: xi
′ � 1  is a (l, k)-clique metric basis

for G.

g1 g2 g1 g2

h1

h2

h1

h31

h21

h11

h31

h21

h11

=

Figure 2: Te corona product of P2 and P3.

g1 g2

g4 g3

g4 g3

g1 g2

e3
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e1

e4

h2

h1

=

h14

h13
h23

h24

h11
h21

h12

h22e3

e2

e1

e4

Figure 3: Te edge corona product of C4 and P2.

4 Journal of Mathematics



3. Application of (2, k)-Clique Metric
Generator in Self-Driving Car Navigation

A self-driving car needs to determine its position on the
city’s streets uniquely. In other words, each street of the city
needs code which uniquely determines its location. Tere-
fore, if we consider the city as a graph G that edges of G are
corresponding to the city’s streets, then an edge metric
generator of G would be the codes of streets. We note that
a self-driving car calculates its location by measuring the
distance to a set of landmarks placed in certain vertices. In
this case, if there are two positions which are only distin-
guished by a single landmark and communication with this
landmark is lost, then the self-diving car cannot fnd its
position. To fx this problem, we have to improve the ac-
curacy of the detection or the robustness of the system. To do
this, we should have a family of detectors, say k detectors,
such that every pair of edges is distinguished by them.

4. Concluding Remarks

(l, k)-Clique metric dimension of a graph is a parameter that
is difcult to compute and that frequently arises in appli-
cations. In the present work, we have studied its behavior
under corona and edge corona products. It would be of
interest to investigate this invariant under other products of
graphs such as Cartesian product, lexicographic product,
and strong product. We have also presented an integer linear
programming model for fnding (l, k)-clique metric di-
mension of a graph. Ten, another interesting thing would
be to apply heuristic methods like greedy algorithms, local
search algorithms, or metaheuristic algorithms (e.g., simu-
lated annealing and genetic algorithms) for fnding near-
optimal solutions efciently.
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