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Te minimum average variance estimation (MAVE) method has proven to be an efective approach to sufcient dimension
reduction. In this study, we apply the computationally efcient optimization algorithm named alternating direction method of
multipliers (ADMM) to a particular approach (MAVE or minimum average variance estimation) to the problem of sufcient
dimension reduction (SDR). Under some assumptions, we prove that the iterative sequence generated by ADMM converges to
some point of the associated augmented Lagrangian function. Moreover, that point is stationary. It also presents some numerical
simulations on synthetic data to demonstrate the computational efciency of the algorithm.

1. Introduction

It is well known that dimension reduction is a highly efcient
way in visualization and statistical analysis of high-
dimensional data. It is assumed that the predictor vector
X ∈ Rp afects the response variable Y ∈ R only through
a few linear combinations βT

1X, βT
2X, · · · , βT

dX, with d<p.

Tus, it implies that all the information of X about Y is
summarized by BTX, with B � (β1, β2, · · · , βd). Te column
vectors of B span the subspace S(B). We call this subspace
S(B) the sufcient dimension reduction (SDR) subspace (see
Li [1], Cook [2]). To estimate S(B), we do dimension re-
duction with the smallest possible value of d.

In the literature of dimension reduction, two most
popular problems have been widely studied. One question is
how does the conditional distribution of Y |X vary with X.
Specifcally, it aims at seeking a few linear combinationsBTX
such that

P(Y≤y |X) � P Y≤y |BTX􏼐 􏼑, y ∈ R. (1)

Ten, we can fnd the subspace S(B) satisfying (1). If
∩ S(B) is a SDR subspace, we call it the central subspace
(CS) and denote it by SY|X. In many real applications,

E(Y |X) is of most interest to the researchers, so the ob-
jective of the problem is to seek out a matrix Bp×d, satisfying

E(Y |X) � E Y |BTX􏼐 􏼑. (2)

We call the intersection of all SDR subspaces, the central
mean space (CMS), and denote it by SE(Y|X), if it is still a SDR
subspace. Cook [2] gave more discussions about the CS and
the CMS, including Cook and Li [3].

Tere were various methods to recover SY|X or SE(Y|X) in
the references. For example, Li and Duan [4] studied the
ordinary least squares. Later, Li [1] studied sliced inverse
regression. Cook and Weisberg [5] put forward sliced in-
verse variance estimation. Ten, Li [6] studied principal
Hessian directions. Ten, Xia et al. [7] also considered
minimum average variance estimation (MAVE). Li and
Wang [8] considered directional regression, too. Ten,
density MAVE was of interest to Xia [9]. Sliced regression-
basedMAVEwas considered byWang and Xia [10]. Efcient
semiparametric estimation was studied by Ma and Zhu
[11–13]. Most of these approaches used the principle of
inverse regression with the well-known limitation—the need
for a linearity condition on the covariates. MAVE and some
other semiparametric methods do not have strong
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hypotheses on the design of covariates. Moreover, they have
wider applicability. Furthermore, in many situations, they
yield more accurate estimators of the reduced dimensional
space, see references Ma and Zhu [11], Xia et al. [7], and Xia
[9]. We knowMAVE is not robust to outliers in the response
because of the use of least squares and is more computa-
tionally intensive due to the use of kernel smoothing. Te
MAVE-type methods estimate the column space of
B ∈ Rp×d through minimizing the loss criterion described
later in (14) with the orthogonality constraint BTB � Id.
Tus, the implementation of the MAVE-type methods in-
volves nonconvex optimization problems based on the
nonconvexity with the orthogonality constraint. Terefore,
heuristic algorithms are often used to have no convergence
guarantees in the literature.

Recently, many researchers adopted ADMM algorithm to
high-dimensional statistics and machine learning, see Yin
et al. [14], Xue et al. [15], Zhang and Zou [16], Gu et al. [17],
and Kapla et al. [18], and many other topics, such as matrix
completion, tensor completion, and sparse recovery, see Li
et al. [19, 20], Liu et al. [21], and Shi et al. [22]. Te main
advantages of the ADMM algorithm are its fexibility at
simplifying a diversity of optimization problems and its good
convergence property, see Boyd et al. [23]. In this study, we
demonstrate that the ADMM algorithm can be adapted to
solve the optimization problem of the aforementioned
MAVE-type methods. Moreover, we prove that the proposed
algorithm will converge to some point that is stationary,
through Wang et al. [24]’s theory for ADMM on nonconvex
problems. To our knowledge, for MAVE, the proposed
ADMM algorithm is the frst one with the convergence
property. Details refer toTeorem 2 in the study. In addition,
Zhang et al. [25] proposed a robust estimation through
regularization with case-specifc parameters to achieve robust
estimation and outlier detection simultaneously.

In the rest of this article, we present the proposed
ADMM algorithm and prove its convergence properties in
Section 2. Ten, numerical simulations are conducted to

illustrate the proposed algorithm in Section 3. Finally, a brief
discussion is concluded in Section 4. Some technical details
are relegated to Appendix.

2. The Proposed Algorithm Based on ADMM

Te following ADMM algorithm is applicable to all the
MAVE-type approaches. For simplicity, we only present
ADMM algorithm to estimate the CMS problem. Xia et al.
[7] considered the following model:

y � g BT
x􏼐 􏼑 + ε, (3)

for dimension reduction. Here, the matrix B ∈ Rp×d satisfes
BTB � Id with some d<p. Te function g is smooth, but it is
not known, with E(ε | x)� 0. Here, we focus on the esti-
mation of B by assuming that d is known.

Consider the simple case g(t) � t. Let B0 be the solution
of

min E
B

y − E y |BTX􏼐 􏼑􏽮 􏽯
2
. (4)

It is known that the conditional variance, for given BTX,
should be

σ2 BTX􏼐 􏼑 � E y − E y |BTX􏼐 􏼑􏽮 􏽯
2
BTX

􏼌􏼌􏼌􏼌􏼌 􏽩,􏼔 (5)

for B � (β1, β2, · · · , βd). Tus, from the conditional expec-
tation, we get

E y − E y |BTX􏼐 􏼑􏽮 􏽯
2

� E σ2 BTX􏼐 􏼑􏼐 􏼑. (6)

So, we know the expression (6) is equivalent to

min
B

E σ2 BTX􏼐 􏼑􏼐 􏼑, BTB � Id. (7)

Tis is called MAVE.
For a sample {(Xi, yi)}, i � 1, · · · , n, let

gB v1, v2, · · · , vd( 􏼁 � E y − E y | βT
1X � v1, β

T
2X � v2, · · · , βT

dX � vd􏼐 􏼑􏽮 􏽯
2

|BTX􏼔 􏼕. (8)

For any given X0, we know E(yi |BTXi)′ local linear
expansion, at X0, can be expressed as follows:

E yi |BTXi􏼐 􏼑 ≈ a + b
TBT Xi − X0( 􏼁. (9)

Here, a � gB(BTX0) and bT � (b(1), b(2), · · · , b(d)). In
addition,

b(k) �
zgB v1, v2, · · · , vd( 􏼁

zvk

| v1�βT
1X0 ,v2�βT

2X0 ,···,vd�βT
dX0

,

k � 1, 2, · · · , d.

(10)

Obviously, the residuals we want to fnd are the following
expressions:

yi − gB BTXi􏼐 􏼑 ≈ yi − a + b
TBT Xi − X0( 􏼁􏽮 􏽯. (11)

Trough the spirit of the local estimation that is linear
smoothing, it is natural to estimate σ2(BTX), using the
following approximation:

􏽘

n

i�1
yi − E yi |BTXi􏼐 􏼑􏽮 􏽯

2
ωi0

≈ 􏽘
n

i�1
yi − a + b

TBT Xi − X0( 􏼁􏼐 􏼑􏽮 􏽯
2
ωi0.

(12)

Here, ωi0 are the weights satisfying 􏽐
n
i�1ωi0 � 1. Two choices

of the weights ωi0 were given in Xia et al. [7]. Te estimation
of a is the minimum point of expression (6). Of course, the
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same is true for b. Ten, we know the estimation of
σ2(BTX0) is the minimum value of the expression (6). Tat
is,

􏽢σ
2
B BTX0􏼐 􏼑 � min

a,b
􏽘

n

i�1
yi − a + b

TBT Xi − X0( 􏼁􏼐 􏼑􏽮 􏽯
2
ωi0

⎛⎝ ⎞⎠.

(13)

Due to the expressions (4), (7), and (13), the MAVE
method estimates B by solving the following minimization
problem:

􏽘

n

j�1
􏽘

n

i�1
yi − aj − bj

TBT Xi − Xj􏼐 􏼑􏼑􏽮 􏽯
2
ωij subject toBTB � Id,

(14)

where bj
T � (bj1, bj2, · · · , bjd). Xia et al. [7] solved the

minimizer of (14) by an iterative algorithm for B and
(aj, bj),j�1,···,n. Although the iterative algorithm seems fea-
sible, it is difcult to establish its convergence property due
to the nonconvexity of the orthogonality constraint
BTB � Id. Zhu [26] studied optimization problems on Stiefel
manifold and mentioned that problem (14) can be solved.

Machine learning, computer vision, and statistics are all
research hotspots. In the felds of them, there are many
optimization problems that are structured convex, such as
Zanni et al. [27]. For solving various convex or nonconvex
problems that arise in the felds of machine learning,
computer vision, and statistics, the alternating direction
method with multipliers (ADMM) has been a powerful and
successful method, since Gabay andMercier [28] introduced
the ADMM, and then, its convergence properties for convex
objective functions have been extensively studied. Many
researchers successfully applied ADMM to solve these
problems. For example, Boyd et al. [23] gave the recent
survey paper. Liu et al. [29] and Cascarano et al. [30] also
studied them.

Recently, many researchers successfully used some
variants of ADMM to solve some previous nonconvex
problems. For example, Hong et al. [31] discussed the
convergence properties of variants of ADMM and then
applied them to nonconvex problems. Moreover, they
established the iteration complexity of ADMM. For the
multiblock separable optimization problems, Guo et al. [32]
studied the case of linear constraints and no convexity of the
related component functions. For the iteration sequence
generated by ADMM, they drew a conclusion that each
clustering point of it is a critical point. For the multiblock
proximal ADMM’s two linearized variants, Jiang et al. [33]
studied their iteration complexity. Especially, for mini-
mizing an objective function, lack of convexity, and possible
smoothness and constrained by coupled linear identities,
Wang et al. [24] studied the convergence of ADMM. To solve

the optimization problems with separability and non-
convexity, Jia et al. [34] considered the convergence rate of
the ADMM.

In this study, we are interested in the following ADMM
algorithm to optimize problem (14) under the framework of
Wang et al. [24]. General ADMM fow is referred to the
original paper, such as Gabay and Mercier [28], for better
understanding.

Let S � B ∈ Rp×d: BTB � Id􏽮 􏽯.Ten, we can reformulate
the problem of minimizing (8) as that of minimizing

f(B, a, b,A) � IS(A) + h(B, a, b), subject to A − B � 0,

(15)

where the function IS is simply the indicator function of the
set S, i.e., IS(A) � 0 if A ∈ S or ∞ if A ∉ S and

h(B, a, b) � 􏽘
n

j�1
􏽘

n

i�1
yi − aj − bj

TBT Xi − Xj􏼐 􏼑􏽮 􏽯
2
ωij, (16)

with a � aj, j � 1, · · · , n􏽮 􏽯, b � bj, j � 1, · · · , n􏽮 􏽯. Te func-
tion h is proper, diferentiable, and nonconvex.

Te inner product of A and B is, as usual, written to be
〈A,B〉 � Tr(ATB). Here, Tr(·) is the trace operator. Ten,
the following function,

Lρ(B, a, b,A,Θ) � f(B, a, b,A) +〈Θ,A − B〉 +
ρ
2
A − B‖ ‖

2
F,

(17)

is the Lagrangian function of (15), where ρ is the penalty
parameter, Θ ∈ Rp×d is the Lagrange multiplier, and ·‖ ‖F is
the Frobenius norm.

We can compute the estimations of (B, a, b,A,Θ)

through the following ADMM algorithm.
For a given value of A(m), B(m), and Θ(m) at step m, the

iterative process is as follows:

a(m+1)
, b(m+1)

􏼐 􏼑 � argmin
a,b

Lρ B(m)
, a, b,A(m)

,Θ(m)
􏼐 􏼑, (18)

B(m+1)
� argmin

B
Lρ B, a(m+1)

, b(m+1)
,A(m)

,Θ(m)
􏼐 􏼑, (19)

A(m+1)
� argmin

A
Lρ B(m+1)

, a(m+1)
, b(m+1)

,A,Θ(m)
􏼐 􏼑, (20)

Θ(m+1)
� Θ(m)

+ ρ B(m+1)
− A(m+1)

􏼐 􏼑. (21)

Obviously, the function,

a(m+1)
, b(m+1)

􏼐 􏼑 � argmin
a,b

h B(m)
, a, b􏼐 􏼑, (22)

is equivalent to (10). Ten, by the defnition of h(B(m), a, b)

and simple algebraic manipulation, we obtain the explicit form
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a
(m+1)
j

b
(m+1)
j

⎛⎜⎝ ⎞⎟⎠ � 􏽘
n

i�1
ωij

1

BT Xi − Xj􏼐 􏼑
⎛⎝ ⎞⎠

1

BT Xi − Xj􏼐 􏼑
⎛⎝ ⎞⎠

T⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

−1

􏽘

n

j�1
ωij

1

BT Xi − Xj􏼐 􏼑
⎛⎝ ⎞⎠yj,

(23)

for j � 1, · · · , n.
In (19), after throwing away the terms independent of B,

one has

B(m+1)
� argmin

B
h B, a(m+1)

, b(m+1)
􏼐 􏼑

+
ρ
2
B − A(m)

−
1
ρ
Θ(m)

��������

��������

2

F
.

(24)

Since the right term of above expression is the quadratic
function of B, B(m+1) has an explicit form. Specifcally, we
can obtain B(m+1) by the gradient of the right term of above
expression. By some algebraic manipulation, we have

0 � ∇ h B, a(m+1)
, b(m+1)

􏼐 􏼑 +
ρ
2
B − A(m)

−
1
ρ
Θ(m)

��������

��������

2

F
􏼨 􏼩

� − 􏽘
n

j�1
􏽘

n

i�1
yi − aj􏽮 􏽯ωij Xi − Xj􏼐 􏼑 b

(m+1)
j􏼐 􏼑

T

+ 􏽘
n

j�1
􏽘

n

i�1
b

(m+1)
j􏼐 􏼑

T
BT Xi − Xj􏼐 􏼑􏼚 􏼛ωij Xi − Xj􏼐 􏼑 b

(m+1)
j􏼐 􏼑

T
− ρA(m)

− Θ(m)
+ ρB.

(25)

Ten, we obtain B(m+1) by

vec B(m+1)
􏼐 􏼑 � H

−1
(m+1)vec G(m+1)􏼐 􏼑H

−1
(m+1)G(m + 1), (26)

where vec(A) denotes vectorization for any matrix A and

G(m+1) � 􏽘
n

j�1
􏽘

n

i�1
yi − aj􏽮 􏽯ωij Xi − Xj􏼐 􏼑 b

(m+1)
j􏼐 􏼑

T
+ ρA(m)

+ Θ(m)
,

H(m+1) � 􏽘

n

j�1
􏽘

n

i�1
b

(m+1)
j b

(m+1)
j􏼐 􏼑

T
􏼚 􏼛⊗ Xi − Xj􏼐 􏼑 Xi − Xj􏼐 􏼑

T
􏼚 􏼛ωij + ρIpd.

(27)

Te function,

A(m+1)
� argmin

A
IS(A) +

ρ
2
B(m+1)

−
1
ρ
Θ(m)

− A
��������

��������

2

F
, (28)

is equivalent to (12). Te solution of the function above is
given in the following lemma.

Lemma 1. For any matrix C ∈ Rp×d with rank d, its pro-
jection, PS(C), onto S is defned as the solution of

argmin
B∈S

C − B | |
2
F.

���� (29)

Ten, we have PS(C) � C(CTC)−1/2.

In Appendix, we give the Proof of Lemma 1. We apply
Lemma 1 to the update step of A and obtain

A(m+1)
� PS B(m+1)

−
1
ρ
Θ(m)

􏼠 􏼡

� ρB(m+1)
− Θ(m)

􏼐 􏼑 ρB(m+1)
− Θ(m)

􏼐 􏼑
T
ρB(m+1)

− Θ(m)
􏼐 􏼑􏼔 􏼕

−1/2
.

(30)
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Finally, the update ofΘ is given in (21).Te stopping rule
is PB(m+1) − PB(m)

����
����F≤ ε, for some small value ε, where PC �

C(CTC)−1CT for any matrix C. We summarize the above
procedure in Algorithm 1.

We next derive the convergence property of the pro-
posed ADMM algorithm.

Theorem 2. For any sufciently large ρ, there is one limit
point at least, for the sequence {a(m), b(m),A(m), B(m), Θ(m)}
that is obtained by Algorithm 1. Moreover, each limit point is
a stationary point of the associated augmented Lagrangian
function Lρ(B, a, b,A,Θ).

Te above result is based on the ADMM theory on
nonconvex problems established by Wang et al. [24]. Te
proof of our theorem is relegated to Appendix.

3. Numerical Simulations

Numerical simulation studies are done to examine the
numerical performances of the algorithm. Matlab is used for
the numerical tests. Te estimation accuracy is assessed by
two diferent measures: the norm distance and the trace
correlation Tr(PBP􏽢B

)/d. In addition, the norm distance
refers to the canonical distance between the projection
matrix PB and P􏽢B

� 􏽢B(􏽢BT 􏽢B)−1􏽢BT. Tat is, the norm distance

is defned by PB − P􏽢B
| | F.

����� Te performance of the ADMM
algorithm is studied in the frst two examples, for single
models d � 1 and multiple index models d> 1. Te third
example aims to explore how diferent penalty parameters ρ
afect estimation accuracy.

Example 1. In this example, two single index models are
considered.

(i) Te vector X ∈ R2 is independent uniformly dis-
tributed [0, 1], and we generate the data also by the
model [35]

Y � 4
x1 + x2 − 1( 􏼁

�
2

√􏼨 􏼩

2

+ 4 + 0.5ε; (31)

(ii) Te vector X ∈ R3 is independent uniformly dis-
tributed [0, 1] and we generate the data by the model

Y � sin
π x1 + x2 + x3( 􏼁/

�
3

√
− A

(B − A)
􏼨 􏼩 + 0.2ε; (32)

where A �
�
3

√
/2 − 1.645/

��
12

√
and B �

�
3

√
/2 + 1.645/

��
12

√
.

Tis model was investigated by Carroll et al. [36].
Te error ε has the standard normal distribution. Te

true parameters of models (18) and (19) are β� (1, 1)T/
�
2

√

and β� (1, 1, 1)T/
�
3

√
.

Example 2. In this example, two multiple index models are
studied.

(i) X ∼ N(0, I7) and we generate the data, by using the
model [1]

Y �
x1

0.5 + 1.5 + x2􏼈 􏼉
2 + 0.5ε, (33)

where the resulting parameters are β1 �

(1, 0, · · · , 0)T, β2 � (0, 1, · · · , 0)T, and ε ∼ N(0, 1).
(ii) X ∼ N(0, I6) and we generate the data, by using the

model [7]

Y � βT
1X􏼐 􏼑

2
+ βT

2X + 0.1ε, (34)

where β1 � (1, 1, 1, 0, 0, 0)T/
�
3

√
, β2 � (0, 0, 0, 1, 1, 1)T/�

3
√

, and ε ∼ N(0, 1).

We consider the sample size n � 100, 200, and 400. In
each case, the simulation is repeated 1000 times. Te penalty
parameter is ρ� 1. Te initial values A(0) �B(0) �Θ(0) are
obtained by Xia et al.’s (2002) OPG method.

Te simulation results are shown in the following
Tables 1 and 2.

Tables 1 and 2 report the two diferent measures of
estimation accuracy, their corresponding standard errors (in
parentheses), and the running times. We run the desired
numerical simulation on an Intel(R) Core(TM) i7-5600U
CPU at 2.60GHz with 8GBmemory.Te results suggest that
the ADMM algorithm can provide slightly more accurate
estimates than the MAVE method, according to the two
diferent measures: the norm distance and the trace corre-
lation. We also see that the ADMM algorithm is slightly
faster than the MAVE method of Xia et al. [7] in most cases,
according to the running times.

Example 3. Tis example examines the performance of the
ADMM algorithm for diferent penalty parameters.

Te data are generated from model (19) and model (20),
and ρ is, respectively, taken as 0.01, 0.5, 5, 10, 20, and 50.

For Example 3, 1000 replications are simulated with
n � 200. We display the results in Table 3. For simplicity, one
only presents the mean and standard deviations of the
Frobenius norm distance and the running times. Obviously,
the mean and standard deviations of the Frobenius norm
distance and the running times have very little diference
when ρ is taken as 0.01, 0.5, 5, 10, 20, and 50, respectively.
Tese results reveal that the ADMM algorithm is almost
insensitive to the choice of penalty parameter. Furthermore,
we can fnd that the results based on the penalty parameters
ρ� 10 and 20 are slightly faster than the other results.

Require: Initial values m � 0, B(0), A(0), and Θ(0);
While stopping criterion is not satisfed do
Compute a(m+1), b(m+1) by (23);
Compute B(m+1) by (26);
Compute A(m+1) by (30);
Compute Θ(m+1) by (21);
m⟵m + 1;

end while
return a(m+1), b(m+1), A(m+1), B(m+1), Θ(m+1).

ALGORITHM 1: ADMM for the problem of minimizing (9).
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4. Concluding Remarks

Xia and his students have proposed an efcient direct al-
gorithm to achieve MAVE and contributed it into an R
package “MAVE.” Te detailed description can be seen in
the website https://CRAN.R-project.org/package=MAVE.

In this study, we develop an ADMM algorithm to solve
the MAVE-type methods and establish its convergence
properties. Te computational efciency of the algorithm
has been demonstrated by numerical experiments. It is
noteworthy that the proposedADMMalgorithm is applicable
to all the MAVE-type approaches. For example, for survival
data, Xia et al. [37] proposed the hMAVEmethod for survival
data, which can be regarded as a censored vision of Xia et al.
[7]’s MAVE method. In this setting, our ADMM algorithm
can also be used. It has been proved that the ADMM

algorithm is quite fexible in handling many large-scale sta-
tistical problems, see Boyd et al. [23]. Terefore, it is desirable
to deal with sufcient dimension reduction for high or
ultrahigh-dimensional data by our ADMM algorithm.

Appendix

We frst give the Proof of Lemma 1.

Proof of Lemma 1. We use the method of Lagrange mul-
tipliers to show this result. Consider the Lagrangian function

L(B,V) � C − B‖ ‖
2
F + Tr V BTB � Id􏽮 􏽯􏼐 􏼑, (A.1)

where V ∈ Rd×d are the Lagrange multipliers with V � VT.
Ten, we have

Table 1: Simulation results for Example 1: the mean and standard deviations (in parentheses) of two diferent measures and the
running times.

Model Method Sample size Frobenius norm Trace correlation Runtime (second)

Model (18)

ADMM
100 0.1338 (0.0996) 0.9861 (0.0196) 62.3846
200 0.0941 (0.0710) 0.9931 (0.0095) 152.3062
400 0.0678 (0.0509) 0.9964 (0.0050) 213.2868

Xia et al. [7]
100 0.1321 (0.0973) 0.9865 (0.0187) 64.2370
200 0.0950 (0.0698) 0.9931 (0.0094) 161.7568
400 0.0697 (0.0514) 0.9963 (0.0050) 216.0695

Model (19)

ADMM
100 0.0676 (0.0338) 0.9971 (0.0028) 76.1789
200 0.0444 (0.0241) 0.9987 (0.0014) 184.7710
400 0.0318 (0.0174) 0.9993 (0.0007) 242.7430

Xia et al. [7]
100 0.0698 (0.0348) 0.9970 (0.0030) 76.3474
200 0.0483 (0.0252) 0.9985 (0.0015) 185.15548
400 0.0322 (0.0170) 0.9993 (0.0007) 245.4477

Table 2: Simulation results for Example 2: the mean and standard deviations of two diferent measures and the running times.

Model Method Sample size Frobenius norm Trace correlation Runtime (second)

Model (20)

ADMM
100 0.5964 (0.2257) 0.8984 (0.0865) 292.5071
200 0.3297 (0.0977) 0.9704 (0.0189) 584.7095
400 0.2045 (0.0567) 0.9887 (0.0067) 743.9010

Xia et al. [7]
100 0.6020 (0.2320) 0.8960 (0.0900) 253.4045
200 0.3307 (0.1035) 0.9700 (0.0201) 660.8530
400 0.2086 (0.0533) 0.9884 (0.0061) 760.7147

Model (21)

ADMM
100 0.0684 (0.0209) 0.9987 (0.0008) 161.0862
200 0.0356 (0.0100) 0.9997 (0.0002) 361.0665
400 0.0203 (0.0055) 0.9999 (0.0001) 510.9169

Xia et al. [7]
100 0.0693 (0.0214) 0.9987 (0.0009) 165.3294
200 0.0353 (0.0103) 0.9997 (0.0002) 481.7147
400 0.0204 (0.0055) 0.9999 (0.0001) 557.5861

Table 3: Simulation results for Example 3: the ADMM algorithm for the diferent penalty parameters.

Model ρ
0.01 0.5 5 10 20 50

Model (19)
Frobenius norm’s mean 0.0451 0.0462 0.0467 0.0466 0.0472 0.0459
Frobenius norm’s std 0.0240 0.0245 0.0236 0.0242 0.0238 0.0237

Time (s) 183.5471 184.7868 184.2315 182.5929 182.2877 184.0295

Model (20)
Frobenius norm’s mean 0.3303 0.3350 0.3348 0.3408 0.3548 0.3714
Frobenius norm’s std 0.1037 0.1028 0.1077 0.1199 0.1419 0.1835

Time (s) 566.8275 626.9739 573.4154 541.7302 529.0828 551.4599
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0 �
zL(B,V)

zB
�

zTr C − B{ }
T C − B{ }􏼐 􏼑

zB
+

zTr VT BTB � Id􏽮 􏽯􏼐 􏼑

zB

� −2(C − B) + 2BV.

(A.2)

0 �
zL(B,V)

zV
� BTB − Id. (A.3)

It follows from (A.3) that

C � B V + Id( 􏼁. (A.4)

Combining (A.4) with (A.3), we obtain

CTC � V + Id( 􏼁BTB V + Id( 􏼁 � V + Id( 􏼁
2
Id. (A.5)

Combining (A.4) with (A.5), the solution of (16) is

B � PS(C) � C CTC􏼐 􏼑
−1/2

. (A.6)

Furthermore, it is easy to show that C(CTC)−1/2 ∈ S.
For readers’ convenience, we add the Assumptions

A1–A5 of Wang et al. [24].
Te model in the frst scenario is

minimizex� x0,x1, ···xp( ),yφ(x, y) � f(x) + h(y), subject toAx + By � b. (A.7)

(A1) Denote F: � (x, y) ∈ Rn+q: Ax + By � 0􏼈 􏼉. Ob-
viously, φ is coercive on F. In addition, for any con-
tinuous φ, A1 holds trivially since F is bounded.
(A2) Im(A)⊆ Im(B). Here, Im(·) denotes the image of
a matrix.
(A3) For any fxed x, argminy φ(x, y): By � u􏼈 􏼉 is
Lipschitz continuous on u. Moreover, it has a unique
minimizer.
(A4) Set

f(X) � g(X) + 􏽘
p

i�0fi xi( 􏼁. (A.8)

Here, the function g(X) is diferentiable and Lipschitz.
Te function f0 is lower semicontinuous. Moreover,
fi(xi) has restricted prox-regularity, which can be read
in Defnition 2 of Wang et al. [24].
(A5) Te function h(y) is also Lipschitz and
diferentiable. □

Proof of Teorem 2. Based onTeorem 2 of Wang et al. [24],
Assumptions A1–A5 are verifed to prove this theorem.

Since the feasible set S is bounded and h(B, a, b) in (9) is
a continuous function on S, Assumption A1 holds.

Note that, in our settings, the coefcient matrices of the
linear equality constraints in (9) are identity matrices. Tus,
Assumptions A2 and A3 hold.

Te assumption A4 holds because IS(·) (see, f0(·) in A4
of Wang et al. [24]) is lower semicontinuous.

Te assumption A5 holds because h(B, a, b) (see, h(·) in
(7) of Wang et al. [24]) is continuous. □
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