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In this paper, by using Poisson distribution probability, some characteristics of analytic multivalent g-symmetric starlike and
g-symmetric convex functions of order # are examined. Then, by utilizing the Poisson distribution and the concept of the g-analogue
Salagean integral operator, the p-valent convergence polynomial was introduced. Furthermore, a number of subclasses of analytic
symmetric p-valent functions linked to novel polynomials are also deduced. After that, specific coefficient constraints are determined
and symmetric (9, g)-neighborhoods for p-valent functions are defined. In relation to symmetric (J,q)-neighborhoods of
g-symmetric p-valent functions formed by Poisson distributions, this paper presents new inclusion results. In addition, a detailed
discussion of certain g-symmetric inequalities of analytic functions with negative coefficients is also provided.

1. Introduction

Recently, the concept of g-calculus has attracted many re-
searchers due to its prominent use in the development of
different classes of univalent functions. Although an ex-
tensive review of the g-calculus theory was given by Jackson
[1, 2], Srivastava [3] establishes a connection between the
geometric nature of the univalent function and the g-de-
rivative operator. In [4], the authors studied a subclass of
biunivalent functions by using g-difference operators. Kanas
et al. [5] described a symmetric operator by employing a g-
derivative on a conic region, while Arif et al. [6] studied
a symmetric operator to popularize the multivalent analytic
functions. Moreover, the authors in [7] investigated a sub-
class of p-valent functions by using probability Borel dis-
tribution operators and established some properties of
several normalized analytic functions. On the other hand,
Khan et al. [8] discussed the g-Ruscheweyh-type derivative
operator and its application to multivalent functions. Alpay
et al. in [9] introduced polyanalytic functions. They studied

integral representations on the quaternionic unit ball. In
addition, the authors in [10] investigated some subclasses of
multivalent functions associated with the g-calculus theory.
However, various difference and g-difference operators are
investigated for some subclasses of univalent functions; see,
e.g., [11-13] and references cited therein. For g,0 < g < 1, the
g-analogue of the derivative of a function f is introduced by

(- f(q0)

qu(() = T_q),

Then, the relation between the g-derivative operator D,
and the ordinary derivative operator is given by

fO-1f40) _
(1-9)¢

The symmetric g-calculus has been successfully applied
in many areas of science associated with the geometric
function theory and the quantum mechanics. Brito and
Martins [14] studied the symmetric g-derivative and derived

(#0,q#1. (1)

lim D,h({) = lim 1. @
q—1 q—1"
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better convergence properties than the classical g-derivative.
For fixed g,0<g<1, the symmetric g-derivative or the
g-symmetric derivative of a function f in & is defined by

f@)-£(q'¢)
(a-qa ")

whereas the symmetric g-number [k], of a natural number
k € N is defined by [15]

DS (0 = [eQ(#0,  (3)

k -k
4 q_l, keN,

R, =411 (4)
k, q— 1.

Let o/, (p € N) be the class of p-valent analytic functions
f defined on the open unite disk Q = {{: |{| < 1} such that
the series form f({) = (? + anozlak+PCm+p holds. Then, for

p =1, the new subclass &/ of univalent functions was

(o8]
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investigated by Graham and Kohr [16]. By simple compu-
tations, we obtain that
() Dy (f + 9 () =D, f () + Dyg (),
(i) Dy f9() = By f (D9a0) + Dyg (O (a7,
(i) D, f/9(0) = Dyf (Dg(q'0) = Dyg (O f (g Ig
(@0)g(q ™).
We denote by %, (p € N) the set of all p-valent functions

f which are holomorphic or analytic on a subset Q =
{¢; ¢l < 1} in the complex plan C with the series form

FQ=0-3% a,,0"" a,,20,{cQ. (5
m=1

Let f be given by (5) and g({) = (¥ —Zf;lbmp(mw,
(byip20). We use the following notation to denote the
convolution of two functions f and g:

9@ == Y (Amipbiipl™ s (i 2 0.byiy) >0, (€ Q). (6)

m=1

In recent decades, inequalities and inclusions of various
types of analytic functions are studied in the geometric
function theory. Liu and Xu in [17] considered the concept
of (hy,h,)-convex functions and discovered new Hermi-
te-Hadamard type inequalities on intervals of Riemann
integrable functions. The authors in [18] discussed the
concept of g-derivative and studied several inequalities of
analytic functions by using the generalized Saldgean dif-
ferential operator. On the other hand, Lashin et al. in [19]
discovered some inclusion relations of subclasses of analytic
functions associated with the Pascal distribution proba-
bility.A random variable X with Poisson distribution takes
the exponential probability that is given by

_ — 7
p(X=m)= e (7)

where m =0,1,2,3,... and k is a parameter (see [20]).
The main properties of the Poisson distribution prob-
ability are in fact a limiting case of the binomial distribution.
The Poisson distribution, like the binomial distribution, is
a counted number of times of something happens. The
observed difference is that there is no specified number of

RO =F )= f(=0=)
m=1

_ (m+p- 1)!“’"+P(

Then, benefited from the definition of the g-symmetric
derivative of a function %, we establish that

possible tries. Here is one way that it can arise. If an event
happens independently and randomly over a time and the
mean rate of occurrence is constant over the time, then the
number of occurrences in a fixed amount of time lead to
a Poisson distribution. The Poisson model is used extensively
for modeling a count of data in a range of different scientific
fields (see, e.g., [21]).

Al-Shagsi [22] defined the convergence polynomial as
follows:

[e) m-1 -k

g’(k,c):Z'{' Z (]4/17—61)'
m=2 :

™, leq (8)
We note that this polynomial has radius of convergence

at infinity. Now, we introduce the following p-valent

functions.

0 km+p—le—k

‘G/:p(k>{) = C‘P - Z_l

m+p
. mrp-nr 0 e O

We define a linear operator &, ({): U, — U, as
follows:

km+p—1 —k
¢ mP o {eqQ. (10)
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_ 0 km+p 1 - - 1
D, R (0 =1[pl ,Z’ q(m+—pl)' By G (e (11)
Let § > 0. By using the idea of Salagean in [23], we will
define the g-symmetric derivative of the linear Poisson
distribution operator 5) 9? O: ?l — % as follows:
48,0
‘C‘;)q '%k(() = '%k(())
B, H () = (1- 9D, F (0 +ai® 0
00 [m+P m+p 1 -k
_ P _ m+p
o= E(1-0eo ) s
1
B, A =(1-93, 2,0 +a—s>q( ()
. 12)
0 [m+p km+p 1 (
— (P _ _ ’”*P
~ v _ O,v-1 — _ 0v-1
B, (O =(1-0D, 2,0 +6—=3(D, #.0)
]
=) + m+p-1 -k
— Z 1-86+36 [H’l P] k € amﬂ)(ﬂﬁ-[?’
=1 (pl, ) (m+p-1)
(ke NU{0},0<g<1,0<d<1).
By simple notation, we write B @ (53 ,( C))
Sqk(psm) =7 fed,: Re 5— >n, (eQy.
@ ‘%k(C) = (p Z Akiv m+p(m+p ‘1 ({)

(ke NU{0},0<g<1,0<6<1),

L Vo mep-1 -k
(1opeemERl) KT
(m+p-1)!

We now state the following necessary definitions.

Definition 1. Let0<q<1 peN, 0<r]<[p]q,andf€d

Then, the class S k( p>n) of p-valent symmetric g-starlike
functions of order n with Poisson distribution is defined by

Note that if f € %, then the calls qu ( p, ) is denoted
byTS k(p,n) Ifp=1landy =0, wehaveTS k(l 0) =

Example 1. In this example, we show that the set gj’,: (p,n)is
nonempty.

We set a = 11/[p] Since Re(1 + (1 —2a)z/(1 - 2)) > a,
we can find a functlon f (2) such that

— JUNRY
(@q<®q %(C)) L 1+(1-2w)z

— 0y —
(71,3, %0 oz

By using the assertion (13), we can write

(16)
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[p+il;—lq

p+Zm lAkév[m+p]q m+p( 1+(1—2(X)Z ? +Zm lAkav[m+p]qam+p( 14 io: 2(1 —(X)Zm
':5 (P+zm lAkév (] . m+P(m+p 1-z +Zm lAkév[P m+P(m =
(17) (18)
or equivalently This, indeed, implies that
] + Z Ak‘sv m+p]qam+P(m = [?)L +<2(1 -a) +A§:f’v[};]qa1+},>z
_ _ kovi kovi 2 (]9)
+(2(1-a)+2(1 oc)Aq’1 [p]qalﬂ,+Aq’2 [p]qa2+P z
+<2(1— @ +2(1 - A [y, +2(1 - A (5] a,., + AES [p) a3+P> T
Therefore, we can obtain the coefficient of function f (2)
as follows:
2(1-a)
Api1 = N —\
(1, - (el )
o 2(1-a) <1+2(1—a)[}7] )
+2 = — —
T (-l e, (20)
_ m-1 2(1 = ) p]
Apim = 2(1-a) — 1+ (706)[131 , m=3,4,5,....
Ak‘”([p+m] - ]q> i=1

-3,
Hence, the set Sq,,: (p,n) is nonempty.

e85 5.0)

Definition 2. Let0<q<l peN, 0<11<[pq, and f € o,

Then, the class C ok o ( p, %) of p-valent symmetric g-convex
functions of order # with Poisson distribution is defined by

(eQ (21)

0
Cq,k(P>’7)= fed, Rel 1+

Note that if f € % ,, then the calls Cq k( p, ) is denoted
byTqu(p, ).If p=1landy =0, wehavquk(l 0)=C

éq(ﬁjvgk (C)) + ®q<(§)q<®2’vgk (C))) _ 1+ (1 — 2“)2.

D
>,
< 9%(()) !

Example 2. In this example, we show that the set C;:Z (p>n)
is nonempty.

We set a = ﬂ/[p]q Since Re(1 + (1 —2a)z/(1 — 2)) > a,
we can find a function f(z) such that

(22)

(7],®

q<§>2’v‘%k (O)

1-z
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By using the assertion (13), we can write

(1, + 171 )cf”+zm1([m+p1 + e pl, JAstra R PP o
p] Cp 1+Zm 1Ak51/[p+m] [ m+p<«m+p71 1—Z
or equivalently
[Pl + (21 ) + T (Im 4 plg +Im+ ply JAG @0 pl" o
( ) 1< ) M 14 Y 2(1- 02 (24)
[Pl + o AL 5l [Pl &
This, indeed, implies that
(Hﬂq+[}7]z)+ z<[n/ﬁ:p]q [m+pl_)A ) kfn"am+PC'"
m=1
=[p] +[’17]2+<2(1—oc)+[7>] [p+1], A" >Z
q q 9" gl Yp+l (25)
(2(1—0c)+2(1—oc)[ [P+ AR e, + (pl, [P+ 2], Z‘;"azﬂ,)zz
(2(1—oc)+2(1—0c)[ ] [p+1],1A§‘f”al+p+2(1-a)@jq[ﬁz]q/\’;ﬁ”aw+[Eq[5+“3]q/\§§va3+p) Sho
Therefore, we can obtain the coeflicient of function f (z)
as follows.
2(1-a)
Tp1 = kav T —~ Y
p+1] <l+[p+l]q—[p]q>
2(1-a) 2(1-wp,
Apya = MV — —— t—— )
pral(1+lp+2l,-[pl, )\ 1+lp+il, -], (26)
- m=1 2(1 -
Aprm = 21 /ix\)_, < (1—“)[1)]]>, m=3,4,5,...
q

8,
Hence, the set C ,Z (p,n) is nonempty.

For p =1, the subclasses S (1), resp., C (1), of sym-
metric g-starlike functions of order n and the class of
symmetric g-convex functions of order # were thoroughly
discussed in [24].

Ak‘”[p+m] <1+[p+m] [p] ) i=1

L+[p+i], -

In [25], the authors defined the neighborhood of
function f ({) = {. Then, Altinta et al. in [26] introduced the
n-neighborhood for a starlike function with negative co-
efficient. Moreover, the authors of [27-29] investigated some
neighborhood properties for a subclass of complex analytic
functions. Thus, similar to the previous result, we can define



the symmetric (8, g)-neighborhood of analytic function as
follows.

Definition 3. Let $>0 and

sv G = - ZA"%WW (27)

_&v /8y O o .
T, 00) = {:sq 502 Y, b pl A o

Then, it follows from (28) that if #({) = (¥, p € N, then

m+p

~ v
/Vﬁ,q,k(h)={i‘3 g (0): z [m+pq ’;fnv Sﬁ}

(29)

(® (9 gzkm) + D, (1D, (

D, #:(0))
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The symmetric (f3, g)-neighborhood of a function
~ 0,v
Qq R ((), >0, is defined as

b

m+p ~ Um+p

sﬁ}. (28)

Our object, in this present paper, is to investigate various
properties and characteristics of symmetric analytic p-valent

~ O
functions belonging to the class #_ ; (p,u, 1) of all functions

~ O,V
D q R ({) such that the following inequality holds.

Re —5y
(1- w8, B,(0) + 1B, (B, 7

Certalnly, we, in terms of the simpler classes TS ok o ( 1)

and TCq « (D> 1), respectively, have

SR Oy oy
%q,k (p)O; ’1) = qu’k (p) T’I) and ‘%q)k(p) 1) ’7)

Also, we denote by % ok o ( D> 4, 1) the set of all functions
g P ({) satisfying the inequality

Re{$q<§)q Fi(0)) + y®q<(9q(@2’vgk ©))}>0
(32)

5

Then, we establish several inclusion relationships in-
volving symmetric (g, §)-neighborhoods of analytic p-val-
ent functions belonging to such subclasses in details.

M8

3
Iy

>, (€Q,0<n<[pl, (30)

+0)

O
=TC, (ps ). (31)

2. A Set of Coefficient Inequalities

In this section, we aim to obtain coefficient inequalities for
functions in the subclasses #, (p, u, 1) and R, (p, . ).

Theorem4 Let 0<gq<1,0<8<], pk,veN, O<y<[p]

and 5) %k(() be given by  (13). Then,
~ 0,V
D, A (0) € %p,k (p>w>1) if and only if
— — 2 Aedw
- (1 —p+(1 —/,n1)[m+p]q +y[m+p]q am Amip < Dps
(33)

(097<1,0§y§1,(1 —y¢p)ﬂo’]q+y§7]z>¢p(1—y), (e Q)

where ¢, = =n(1=p) + (1= ) [pl, + ulpl, and ALSY s

given by (14) The result is also sharp
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~ 0,V ~ v
Proof. Suppose that D, K () € K, (p,p>n)- Then, we
have

(191, + 02, )22 = 3o (0 pl, + o pl, )50, 07
>1,

« <1—u+ﬂf17]q)<”p—21‘321<1—#+ﬂ[ﬁp]q) Ay P (34)

where 0<11<10<;,t<1(1—y</>p) +/4[p] >¢,(1-p), CeQ.

By choosing { to be real and { — 17, we obtain

(Ply + 6P, - Soms D ply + ulm T Pl AR @,
— >,
(1 —#+ﬂ[p]q>—2§;°:1<1 —ﬂ+/4[m+p1q)/\'§jf,;”am+p (35)

(0sn<r0<us1,(1-48,) ), +ulpl, > 4,0 -0, Ceq)

Or, equivalently, we get

3 (- n(l—m+<;m—1>[rﬁplq+mnﬁpﬁ) N> (1= = (1= ) [P, - TP
(36)

B —_ 2
(0sn<1.0sus1.(1-ug,)lply +ulpl,>¢,(1-p). Ce)

Hence, we reach to assertion (33) of Theorem 4. Con- (€ 0Q = {( € C,|{| = 1}. Then, from definition (5), we find
versely, suppose that inequality (33) holds true and  that

68,(8, 20 + B, (13,(8, %.0)))
| 0-0(3, 70) ¢ D, (D, 2,0)

- ¢,

(=6, (1= +(1 - 19,) B, + P, ) 17

<(1—#+# )ICPI— m1< —u+u[m+p]q)A’;jﬁ;”am+p|(””"| (37)

Sor (=6, (=) + (1= g, ) (5w, + 5w, JAsSra,, 0]
(1—ﬂ+ﬂf17]q)ICPI—Z$:1(1—ﬂw[ﬁp]q) Ay ||

+

S(Pp_rl’

—_— —2 s
where 0<7<1,0<u<1, (1-pg,)pl, + ﬂ[P]q >¢, (1- maximum modulus theorem, we conclude

~ 0, ~ v
(), z € Q. Thus, inequality (33) satisfies. Hence, by the D, B () € K, (p: i 1)



Finally, we note that inequality (33) of Theorem 4 is
sharp. Therefore, the extremal function is given by

P =~

Journal of Mathematics

—n (1 =)+ (1 =) pl, + fﬂ: o

k6v

(-1 =+ (L= 5l + b p, S5 8)

(03n<1,0$y§ @q,(l —y¢p)ﬁq+yﬁ;>¢p(l—y), (e Q)

By using the abovementioned theorem, we can easily

obtain the following result. O

gk

1

3
I

where Afl:f,;" is given by (14). The result is sharp for the function

N+ply ey
( 11+[m+P]> kav"

() =¢"~ » (e (40)

Corollary 6. Let0<q<1 0<8<1,k veN and@ %k(()

(=n-+ b ol A%,

CorollaryS Let0<g<1,0<0<1, pkveN, 0<;1<[p]

and 9 %k(() be given by (13). Then, @ %k
() € qu,k (p,n) if and only if
"< —n+(pl, (e, (39)
The result is sharp for the function.
1 M
()=~ Holeq (42)

. k,6,v
[m+ 1]qu)m

Corollary7 Let0<gq<1,0<6<1, p,k,veN, 0<11<[p]

; and @ %k(() be given by  (13) Then,
be given by 1.3. Then, @ "R () € TS 1fand only if _ S S ) )
o, k D, Ri(0) € TCq’k(p, 1) if and only if
D < [m + 1]q>A§;j;Vam+l <1, (eQ. (41)
m=1
X — — 2
> (= muaT ply +0m T Pl JAS G, < (1= P, + T, (e (43)
m=1
The result is sharp for the function.
(1-n{pl, +[p] .
p() =0 - — 4 kaf P leq. (44)
((1 — )l pl, + M ¥ pl ) kS
Corollary 8. Let0<g<1, 0<8<1 k, VGN and‘i‘) gﬁk(f) Z(Mﬁl]ﬂ[ﬁl];)/\’;ﬁf sy <2 teq  (45)
-1

be given by (13). Then, Q) %k(() € Tqu if and only if
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The result is sharp for the function. Theorem 9. Let 0<g<1,0<0<1, p,k,veN, 0 <n< [p]
0 ()= - 2 i o req. and Q) %k(f) be given by (13). Then, @ %k(() €
([n’fr:l]q + [nﬁl]q)AZfV’f q’k (p,y, 1) if and only if
(46)

N (o AR —?
> (1 ply + b+ pl, )k 0, < (Pl + ulpl, — 1 (47)
m=1
The result is sharp for a function ¢ given by Proof. Suppose that @ %k () el qk( p>p>1). Then, we
. — have
(ply +ulpl, -
p(0)=¢F - Plg YHPy 7T ks’ P leq.
<[m+p] +y[m+p]) Y
(48)
— 2 & — — 2
(TP, +lpl, )o = Y. (Im v ply + ulm v pl, )Nk a0 2 1. (49)
m=1
By choosing ( to be real and { — 1~, we obtain
— —2 X/
Ply +ulply - . (D7% Pl + wlm+ pl, JASE a2 0 (50)
m=1

Hence, we reach to assertion (47). Conversely, suppose
that (47) holds true and { € 0(Q) = {{ € C,|{| = 1}. Then,
from definition (5), we find that

‘éq(@‘;’”%k(o) + yéq(c@q(éj’v%m)) ~[ply-ulpl, + n\

[P, + TP, K17 + Y. (0 )y + ulm = pl, )AL a1 = (71, ~ T, + (51)

m=

—

< (7l + TPl

where 0<g<1,0<8<1, pk,veN, 0<y< fﬂq. Thus, in- Theorem 10. Let0<g<1,0<d<1, p,k,veN, 0<.”< [P]

equality (47) satisfies. Hence, by the maximum modulus  and 3) %k ({) expressed in (13) be in the class % ok o 1 W)
~ 0,V —v

theorem, we conclude D, K, ({) € M 4 (p, 7). O  Then,
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0 (/5 oo
Ak,(')‘,vam+ < TP 52 —  kéw cpp [m+ | rlg
mz=l qm 14 ¢m+p ( ) mzzl [k + p]qum am+p _Tﬂ) (53)
and where ¢, , is defined by
— 2
Ponrp =<—f1(1 -w+ —ny)[m+p]q+y[m+p]q>, m=0,1,2,.... (54)

Proof. From inequality (33) of Theorem 4, we can easily see

that
(—17(1 — @)+ (=) [m+ pl, +ulm+p] ) Z Ago Gy
< i(—n(l —w)+ (1 —nu)lm+pl, + #[ﬁplq)AZjﬁ;vawp (59)
=
< (1 - )+ (1 - ) Pl + ulpl,,
which immediately yields the first inequality (52) of By using inequality (33), we also have
Theorem 10.

_’7(1_[4) ZASiV A p ((1—1’][4)+[/l m+P] )z [m+Pq anv Apnip S Z ¢m+pam+pg¢p° (56)

Next, we obtain

(= +ulm+ply) . m+ plyAygnanep <9 + 1 (1= ) ZlAk,‘l” mep
¢ m= m (57)
1—
=g T
This yields
(¢m+p+’7(1_.“)) i k8v <¢ (¢m+p+;7(1_tu)) (58)
[m+P]q =1 qm m+P_ ¢m+p '

Hence, we obtain the desired inequality (53).
By using the abovementioned theorem, we can easily
obtain the following result. O
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Corollary 11. Let 0<g<1, 0<d6<1, p,k,veN, 0<u<

—_— ~ O,V . . —0,v
[plg and D, R (0) given by (13) be in the class TS ;. (p, n).
Then, we have

(e8] —-n+ (A1
Z AZﬁlvamw— 1 ,[_1\)]? ,and
m=1 -1 +[m+ pl,
(59)
(—q+fﬂq>[m+p]q
Z [m+p]q Ziv Apip S — :
m=1 -n+[m+ pl,
Corollary 12. Let 0<q<l1, 0<6<1l, pkveN,

O<u< [?;]q, and @z’vﬁk(() given by (13) be in the class
TCZ:,:(p, n). Then, we have

(1-nipl, +f17]2

k,0,v
A am Fmip S

1 (1—17)[m+p] +[mTp]

M8

5»and

3
I

— kv ((l—n)fﬂq+fﬂz>[ﬁp]q
+p]qum mﬂoS —_ —_— 2
(1 -n)[m+pl,+[m+pl,

(60)

D18
B

3
o

Similarly, we can obtain a new theorem as follows.

1 k0, 1
1P - 1¢1P* ZAqm”m i

Consequently, we have

1P —1¢P! Z A,

Hence, from the assertion (63), we derive the desired
inequality (62).

By using the abovementioned theorem, we can easily
obtain the following result. O

Corollary 15. Let0<q<l 0<6<1, p,kvENO<i1<[p]
0<u<1 and i‘) "R (0) be a function given by (13). If

gq %k(() € TSq)k, then we have

11

Theoreml3 Let0<q<1,0<6<1, p,k,veN, 0<;4<[p]

and 9 %k (¢) given by 1.3 be in the class ,/% k(p,‘u, 7).
Then, we have

. __2
ZAZ;;”V m+P— [P] +.”[P]; - and
m=1 [m+p] +y[m+p]
(61)
AR ? +.”[P] -

Mg

3
o

[WT::P] qm Fip S~ —— v ( m+p]>

Theorem 14. Let 0<g<1,0<6<1, p,k,v e NO<#y< [Fi;]q’
0<u<l, and 5?9?,((5) be a function given by (13). If
~ o ~ v

D, Ri(0) € H i (p,p, ), then we have

Srp+rp+1—¢p , (62)

m+p

p_ P+l ¢ <|&

0

r
m+p

where ¢, , is given by (54).

Proof. Since 5)2’ngk ({) € 52/21; (p>u>n), we have the fol-

lowing inequality:

(63)

Moreover, since the function % ‘% « (Q) is given by (13),
we obtain

¢m+p

<[P +CP Y AR a, I (64)
m=2
=117 +1¢1P*! ZA"‘” : (65)
rP — P ! 0 Srp+rp+17i, .
[m+1], [m +pl,
(66)

Corollary 16. Let0<g<1,0<8<1, p,k,v e NO<#< fﬂq,
~ O

0<u<l, and D, R (() be a function given by (13). If

~ 0, 0,

qu v933,((() € TCq’,Vc, then we have
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rP — pp*! 2 o< (5)5’”%{(()
[m+ 1], +m+1], |1

2

Sr‘v+r‘°Jr1 7
[m+1]q+[m+l]q

(67)

Alike to the proof applied to Theorem 14, we can es- Theorem 17. Let 0<g<1,0<6<1, p,k,v e NO<#< [p]q,
. . ~ 0,
tablish the following result. 0<p<l, and D, V9?k(() be a function given by (13). If

~ & ~ O
D, Ri(0) € H i (p,p, ), then we have

~ 0y
P rp+lws ’(Dq(g)q @k> <rP 4 rwlw’ (68)
¢m+p ¢m+p
where ¢y, , is given by (54). Corollary 18. Let0<g<1,0<0<1, p,k,v e NO<z< [7;]%’

~ O,V
0<u<l, and R b ti j by (13). I
By using the abovementioned theorem, we can easily ~;tt_ o qu k(Q) be a function given by (13). If
obtain the following result. ®q> R0 € TSq:k (p, 1), then we have

L N P AL
- q 7tk .

p— < (Dq D <rP 4 ¢P* Z— (69)
—n+lm ¥ pl, —n+lm ¥ pl,
Corollary 19. Let0<g<1,0<8<1, p,k,ve NO<#< rﬂq,
~ 0,V
0<u<l, and D, R;({) be a function given by (13). If
@jvgk(() € TE;Z then we have
_ /=6 2
P — P! L < ’(Dq<®qvﬁk> <rf 4¢P — (70)
1+[m+1]q 1+[m+l]q
3. Inclusion Results Involving the
Symmetric (7, §)-Neighborhoods
In this section, we determine the neighborhood properties
for each of the following function classes:
_ oy 0O v oy
H gie (0> 15 1)y M o (P> 11, 1), TSy (p, 1), and TCy (p, 7). (71)
Theorem 20. Let 0<g<1, 0<d6<1, p,k,veN, and B = M, (73)
0<u< [Pl;jq- Iff)jVQEk () is given by (13) belongs to the class Py
~ O : ;
T (pa ), then we have where ¢,,,., is given by (54).
= v ~ 8y Proof. Assertion (72 1d foll ily from the definiti
F o (porott) € H g (), (72) roof. Assertion (72) would follow easily from the definition

of .Z/&q (h, f), which is given by (29) when g is replaced by f
where h(0) = (¥, € Q and and the second assertion (52) of Theorem 10. O
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Theorem 21. Let 0<g<1, 0<6<], and

If‘b %k (¢) given by (13) belongs to the class

pkveN,
O<y<
%q’k (p, 1, y), then we have

v o
Ty (po 1) € T g (), (74)
where h({) = (F,{ € Q and
Iy + #[p] - s

)

Putting y =0 in Theorem 20 leads to the following
corollaries.

Corollary 22. Let 0<g<1, 0<6<1, and p,k,veN. If

5)2”3?,{ () given by (13) belongs to the class ﬁg; (p,n), then
we have

ﬁik (pom) Z:;k(h), (76)
where h(0) = (%,{ € Q and
p= <_’7+[P]q)([m+p]q>. (77)

-+ [mTp]q

Putting y =1 in Theorem 20 leads to the following
corollary.

Corollary 23. Let 0<g<1, 0<6<1, and p,k,veN. If
@2’”@k () given by (13) belongs to the class TCZ:,: (p> 1), then

__06yv o
TC,p(pr1) € Ty (h), (78)

> [+ plagsla

m+p m+p

This implies that

[1+P] ZAk5v

Apnsp — bm+p|

By applying inequality (83), we get

Z Akév

Apip — bm+p| <

13

where h(0) = (¥, € Q and

_ -+ 7,

— (79)
1-n+[m+pl,

We now state the following necessary definitions.

Deﬁnztzon 24. A function @ gik (¢) is said to be in the class

Tqu(p,y,y) if there exists i) ?k(() € /%qk(p, #, 4) such
that

0
D, R ({)
f&v—k( ~1|<y, (80)
gq ?k (()
where ég’v?k(() is given by (27).
Theorem 25. ]f@j’vgk () € %:ZZ (p,n, ) and
5 by
=1- , (81)
v [1+p]q ¢m+p_¢p
then we have
~ 0 0 0y
T D) B ©) TSy oy ()

where ¢,,,,, is given by (54) and @Z’V%k (¢) is given by (27).

~ O,V ~ O ~ O,V
Proof. Since ‘E)q R (() € /Vﬁ)q’k(iqu & (0)), then by using
assertion (27), we derive

(83)

m+p -

f [+ plyAso |Gy = Bnsp| <B.

m=1

Since [n], is a nondecreasing sequence, we infer that

Z: ~ By (84)
< Y m+ plyAee @y = borip: (85)
m=1
i , (0<g<1,5>0). (86)
(1+pl,
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Hence, under the assumption that the function

~ 0,V ~ O,
®q Z1 (0) belongs to the class %q’k (p,n, 1), given by (27),
we, by using the above inequality, have

Journal of Mathematics

k,6,v
Z Ao b < ¢m+p (87)

In view of the (5) and (27), we write

< Y m+ 1/

@q %k(o |Zm 1Ak5 Anep ~ m+p P 1| | k& v p _bm+p)|

_ 0w 1+z k6vb (erp 1 | | z Akévb |

ﬁ)q ?k(() PRSYAN gm Ym+p m=11 gm Ym+p
__B (88)
S plg \1- 3 AR D,
< ﬁ ¢m+p -

[1 + p]q ¢m+p - ¢p
Now, by setting Authors’ Contributions
ﬁ ¢m+p

y<1- (89)

(1+ P]q ¢m+p - ¢p’
we, in view of Definition 24 and using the inequality (88),

obtain that B, %, (0) € TS, (p. B o).
This completes the proof of Theorem 25. O

4. Concluding Remarks

In this paper, a new generalization of the linear operator
which is a continuous bridge between the Poisson distri-
bution probability and the geometric function theory has
been considered. The new discussed linear operator is de-
fined by the generalized power series, g-Siligean integral
operator, and properties of the symmetric g-derivative. The
suggestion of this operator was applied in extending the
geometric function theory. Then, several subclasses of
p-valent functions with negative coefficients were in-
troduced by using symmetric g-derivatives. Furthermore,
symmetric (6, q)-neighborhoods of p-valent functions are
defined. Moreover, coefficient bounds for such given
functions are derived. In addition, several inclusion relations
for each function in the new subclasses are also obtained.
Therefore, the results obtained in this research could be
further employed for discussing fractional symmetric
g-derivatives to generalize certain results involving univalent
functions.
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