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Let G � (V, E) be a simple graph. A subset D⊆V is a dominating set if every vertex not in D is adjacent to a vertex in D. Te
domination number of G, denoted by c(G), is the smallest cardinality of a dominating set of G. Te domination subdivision
number sdc(G) of G is the minimum number of edges that must be subdivided (each edge can be subdivided at most once) in
order to increase the domination number. In 2000, Haynes et al. showed that sdc(G)≤dG(v) + dG(v) − 1 for any edge uv ∈ E(G)

with dG(u)≥ 2 and dG(v)≥ 2 where G is a connected graph with order no less than 3. In this paper, we improve the above bound to
sdc(G)≤dG(u) + dG(v) − |NG(u)∩NG(v)| − 1, and furthermore, we show the decision problem for determining whether
sdc(G) � 1 is NP-hard. Moreover, we show some bounds or exact values for domination subdivision numbers of some graphs.

1. Introduction

For terminology and notation on the graph theory not given
here, the reader is referred to Xu [1]. Let G � (V, E) be
a fnite, undirected, and simple graph, where V � V(G) is
the vertex set and E � E(G) is the edge set of G. For a vertex
x ∈ V(G), let NG(x) � y: xy ∈ E(G)􏼈 􏼉 be the open set of
neighbors of x and NG[x] � NG(x)∪ x{ } be the closed set of
neighbors of x. Te cardinality of V(G) is called the order of
G.Te degree of vertex x ∈ V(G) is the cardinality ofNG(x).
Te maximum degree and minimum degree of G are
denoted Δ(G) and δ(G), respectively. If Δ(G) � δ(G) � k

for graph G, then G is called a k-regular graph. For any edge
e ∈ E(G), we denote Ge as a new graph by subdividing the
edge e in G. For any edge e � uv ∈ E(G), we may view e as
a two vertex set u, v{ }.

A subset D⊆V is a dominating set of G if every vertex in
V − D has at least one neighbor inD.Te domination number
of G, denoted by c(G), is the minimum cardinality among all
dominating sets ofG. A dominating setD is called aminimum
dominating set of G if |D| � c(G). Domination is an im-
portant and classic notion that has become one of the most
widely researched topics in graph theory and is also used to

study the property of networks frequently. A thorough study
of domination appears in the books [2, 3] by Haynes,
Hedetniemi, and Slater. Among various problems related to
the domination number, some focus on graph alterations and
their efects on the domination number. As for diferent
applications, there are also many variated dominations, such
as Italian domination [4], 2-rainbow domination [5], research
on Zagreb indices by domination [6].

Te domination subdivision number of a graph G,
denoted by sdc(G), equals the minimum number of edges
that must be subdivided in order to obtain a graph G′ for
which c(G′)> c(G). Since the domination number of graph
K2 does not change when its only edge is subdivided, we
must assume here that the graph G is of order no less than 3.
Domination subdivision number of graph has been widely
studied, see [7–9] for examples.

For a graph parameter, knowing whether or not there
exists a polynomial-time algorithm to compute its exact
value is the essential problem. If the decision problem
corresponding to the computation of this parameter is NP-
hard or NP-complete, then polynomial-time algorithms for
this parameter do not exist unless NP � P. Te problem of
determining the domination number has been proven NP-
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complete for chordal bipartite graphs [10]. Tere are many
other results on complexity for variations of domination;
these results can be found in the two books [3, 11] and the
survey [12].

Many famous networks are bipartite graphs, such as
hypercube graphs, partial cube, grid graphs, and median
graphs. If we know the decision problem for the domination
subdivision problem is NP-hard, then the studies on the
domination subdivision number are more meaningful. So
we should be concerned about the algorithmic complexity of
the domination subdivision problem in bipartite graphs. In
this paper, we will show that the decision problem for the
domination subdivision number is NP-hard even for bi-
partite graphs. In other words, there are no polynomial-time
algorithms to compute these parameters unless P � NP.

2. Preliminary Results

In the book [13], Garey and Johnson provide three steps to
prove a decision problem to be NP-hard. We applied these
three steps to prove that our decision problem is NP-hard.
Our proof involved a polynomial transformation from the
well-known NP-complete problem, the 3-satisfability prob-
lem. In this section, we will recall some terms related to the
3-satisfability problem.

(i) U is a set of Boolean variables.
(ii) A truth assignment for U is a mapping t: U⟶

T, F{ }. If t(u) � T, then u is considered “true” under
t; if t(u) � F, then u is considered “false” under t.

(iii) u and u are literals over U when u is a variable in U.
Te literal u (resp. u) is true under t if and only if the
variable u is true (resp. false) under t.

(iv) A clause over U is a set of literals over U. It rep-
resents the disjunction of these literals and it is
satisfed by a truth assignment t if and only if at least
one of its elements is true under t.

(v) A collection C of clauses over U is satisfable if and
only if there exists a truth assignment t for U that
simultaneously satisfes all the clauses in C. Such
a truth assignment t is called a satisfying truth
assignment for C.

Te 3-satisfability problem is defned as fnding a sat-
isfying truth assignment for a collectionC of clauses over U.

3-satisfability problem (3SAT):
Instance: A collectionC � C1, C2, . . . , Cm􏼈 􏼉of clauses
over a fnite setUof variables such
that|Cj| � 3forj � 1, 2, . . . , m.
Question: Is there a truth assignment forUthat satisfes
all the clauses in C?

Theorem 1 (Theorem 3.1 in [13]). Te 3-satisfability
problem is NP-complete.

A dominating set D is called an efcient dominating set of
graph G if |NG[v]∩D| � 1 for every vertex v ∈ V(G). An

efcient dominating set of a graph G is always a minimum
dominating set [14, 15].

Lemma 2 (Berge [16]). For any graph G,

c(G)≥
|V(G)|

Δ(G) + 1
. (1)

Lemma 3 (Huang and Xu [17]). Let G be a k-regular graph.
Ten,

c(G)≥
|V(G)|

(k + 1)
, (2)

with equality if and only if G has an efcient dominating set.
In addition, if G has an efcient dominating set, then every
efcient dominating set must be a minimum dominating set,
and vice versa.

3. Bounds

Let G be a simple graph. Let X⊆V(G) and x ∈ X. Te
private neighborhood of x with respect to X is defned as the
set

PN(x, X, G) � NG[x]\NG[X − x]

� u ∈ V(G)|NG[u]∩X � x{ }􏼈 􏼉.
(3)

For any edge, e � uv ∈ E(G) and D⊆V(G), if
e∩D � u{ }, then we denote e∩D � v{ }.

Theorem 4. Let e � uv be an edge in G. Subdivide e by a new
vertex w. Ten, c(Ge)> c(G) if c(G − EG(u)△EG(v))

> c(G), |e∩D|≤ 1, and e∩D ∈ PN(e∩D, G) if |e∩D| � 1
for any minimum dominating set D of G.

Proof. Assume c(Ge)> c(G). Suppose to the contrary that
c(G − EG(u)△EG(v)) � c(G). Let D be a minimum
dominating set of G − EG(u)△EG(v). Ten, |D| � c(G) and
D∩ u, v{ } � 1 (if D∩ u, v{ } � 2, then D is also a dominating
set of Ge contradicts c(Ge)> c(G)). Let D′ � (D\ u, v{ })∪
w{ }.Ten, D′ is a dominating set of Ge with cardinality c(G),
which is a contradiction with c(Ge)> c(G). Hence,

c G − EG(u)△EG(v)( 􏼁> c(G). (4)

Let D be a minimum dominating set of G. If |e∩D| � 2
or |e∩D| � 1 and e∩D ∉ PN(e∩D, D, G), then D is also
a minimum dominating set D of Ge. So |e∩D|≤ 1 and
e∩D ∈ PN(e∩D, D, G) if |e∩D| � 1 for any minimum
dominating set D of G.

Assume c(G − EG(u)△EG(v))> c(G), |e∩D|≤ 1, and
e∩D ∈ PN(e∩D, D, G) if |e∩D| � 1 for any minimum
dominating set D of G. Suppose to the contrary that
c(Ge) � c(G). Let De be a minimum dominating set of Ge.
Ten, 1≤ |De ∩ u, v, w{ }|≤ 2. If De ∩ u, v, w{ } � 2, then we
can assume without loss of generality that De ∩ u, v, w{ } �

u, v{ }, and hence, De is also a minimum dominating set of G,
a contradiction with |e∩D|≤ 1 for any minimum domi-
nating set D of G. Tus, |De ∩ u, v, w{ }| � 1. If w{ } � De ∩
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u, v, w{ }, then De − w + u is a minimum dominating set of
G − EG(u)△EG(v), which is a contradiction with c(G − EG

(u)△EG(v))> c(G). If De ∩ u, v, w{ } � u{ } or v{ }, then De is
a minimum dominating set of G and assume without loss of
generality De ∩ u, v{ } � u{ }. Note that NGe

(v)∩De ≠∅ and
De is also a minimum dominating set of G since c(Ge) �

c(G). So NGe
(v)∩ (De − u)≠∅, a contradiction with v ∈ P

N(u, De, G). □

Theorem 5. For any connected graph G of order n≥ 3, and
for any two adjacent vertices u and v, where dG(u)≥ 2 and
dG(v)≥ 2,

sdc(G)≤dG(u) + dG(v) − NG(u)∩NG(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1. (5)

Proof. Let

NG(u) � u1, u2, . . . , ua, v􏼈 􏼉, (6)

and let

NG(v) � v1, v2, . . . , vb, u, ua− c+1, . . . , ua􏼈 􏼉, (7)

where c � |NG(u)∩NG(v)| and b � dG(v) − 1 − |NG(u)∩
NG(v)|. Let

S � EG(u)∪ vw: w ∈ NG(v)\NG[u]􏼈 􏼉, (8)

and letG′ be the graph that results from subdividing all edges
in S. We will show c(G′)> c(G). Let the subdivided vertex of
uv be w′, and the subdivided vertex of uui is ui

′ and the
subdivided vertex of vvj is vj

′ for each i � 1, 2, . . . , a and
j � 1, 2, . . . , b. Let D′ be a minimum dominating set of G′.
Clearly, 1≤ |D′ ∩ u, w′, v􏽮 􏽯|≤ 2 and we can assume D′ ∩
u, w′, v􏽮 􏽯 � u, v{ } if |D′ ∩ u, w′, v􏽮 􏽯| � 2. Let A′ � D′ ∩
u1′, u2′, . . . , ua

′􏼈 􏼉 and A � ui: ui
′ ∈ A′, 1≤ i≤ a􏽮 􏽯, B′ � D′ ∩

v1′, v2′, . . . , vb
′􏼈 􏼉 and B � vj: vj

′ ∈ B′, 1≤ j≤ b􏽮 􏽯.

Assume D′ ∩ u, w′, v􏽮 􏽯 � u, v{ }. Ten, (D′\(A′ ∪B′))∪
A∪B − u is a dominating set of G with cardinality |D′| − 1.
Tus, c(G′) � |D′|≥ c(G) + 1. Next, assume |D′ ∩ u, w′, v􏽮 􏽯|

� 1. We consider the following three cases.

Case 1: D′ ∩ u, w′, v􏽮 􏽯 � w′.

Ten, (D′\(A′ ∪B′))∪A∪B − w′ is a dominating set of
G with cardinality |D′| − 1. Tus, c(G′) � |D′|≥
c(G) + 1.
Case 2: D′ ∩ u, w′, v􏽮 􏽯 � u.

If B′ ≠∅, then (D′\A′)∪A − u − B′ + v is a dominating
set of G with cardinality no more than |D′| − 1. Tus,
c(G′) � |D′|> c(G).
Suppose B′ � ∅. Ten, v should be dominated by some
vertex in NG(u)∩NG(v). Terefore, (D′\(A′ ∪B′))∪
A∪B − u is a dominating set of G with cardinality
|D′| − 1. Tus, c(G′) � |D′|≥ c(G) + 1.
Case 3: D′ ∩ u, w′, v􏽮 􏽯 � v.

Ten, u should be dominated by some vertex in A′

which implies A′ ≠∅. Ten, (D′\B′)∪B − v − A′ + u is
a dominating set of G with cardinality no more than
|D′| − 1. Tus, c(G′) � |D′|> c(G).

Note that |S| � dG(u) + dG(v) − |NG(u)∩NG(v)| − 1.
So

sdc(G)≤ dG(u) + dG(v) − NG(u)∩NG(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1. (9)
□

Corollary 6 (Haynes et al. [18]). For any connected graph G

and edge uv, where dG(u)≥ 2 and dG(v)≥ 2,

sdc(G)≤dG(v) + dG(v) − 1. (10)

Proposition  . Let e � uv be an edge in G and w be the
inserted vertex in e. If w belongs to every c-set of Ge and
c(G − EG(u)△EG(v)) > c(G), then c(Ge)> c(G).

Proof. Since w belongs to every c-set De of Ge, u, v ∉ De.
Ten, D � De − w + u is a dominating set of G − EG(u)

△EG(v). Since |De| � |D|≥ c(G − EG(u)△EG(v))> c(G),
c(Ge) � |De|> c(G). □

Proposition 8. Let G be a k≥ 2-regular graph and it has an
efcient dominating set. Ten, sdc(G) � 1.

Proof. By Lemma 3, c(G) � |V(G)|/(k + 1). Let Ge be
a graph by subdividing any edge e of G. Since G is k-regular
and Δ(Ge) � k where k≥ 2, Δ(Ge) � k. By Lemma 2,

c Ge( 􏼁≥
V Ge( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

k + 1
�

|V(G)| + 1
k + 1

>
|V(G)|

k + 1
. (11)

Hence, c(Ge)> c(G) which implies that sdc(G) � 1.
An efcient dominating set is also known as perfect

codes in coding theory. Tere are many classical graphs that
have efcient dominating sets, such as cycle Cn where
n ≡ 0 (mod 3), star graph, and pancake graph [19], some
Circulant graphs, and Harary graphs [17], some Möbius
ladders [20]. Te domination subdivision numbers of these
graphs are 1. □

Proposition 9. Let G be a graph and let u be a support vertex
that has at least two leaves. Ten, sdc(G) � 1.

Proof. Let e � uv ∈ E(G) where v is a leaf and let w be
another leaf corresponding to u. Let Ge be the graph from
subdividing the edge e and let De be a minimum dominating
set of Ge. Note that |De ∩NGe

[v]|≥ 1 and |De ∩NGe
[w]|≥ 1.

Since |De ∩NGe
[w]|≥ 1, we can without loss of generality

assume u ∈ De. Ten, De\NGe
[v] is a dominating set of G

with cardinality at most |De| − 1. Terefore,

c Ge( 􏼁 � De

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌> c(G), (12)

which implies that sdc(G) � 1. □
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Proposition 10. Let G be a graph and u, v be two adjacent
support vertices. Ten, sdc(G)≤ 3.

Proof. Let e � uv ∈ E(G) where u and v are both support
vertices. Let p and q be two leaves corresponding to u and v,
respectively. Let G′ be the graph from subdividing three
edges uv, up, vq of G, where the inserted vertices are w, s and
t, respectively. Let D be a minimum dominating set of G′. To
dominate w, p, q in G′, we need u, v, w{ }∩D≠∅, p, s􏼈 􏼉∩D

≠∅, q, t􏼈 􏼉∩D≠∅. Note that

(D\ u, v, w, p, q, s, t􏼈 􏼉)∪ u, v{ }, (13)

is a dominating set of G. We have

c G
′

􏼒 􏼓 � |D|≥ |(D\ u, v, w, p, q, s, t􏼈 􏼉)∪ u, v{ }|> c(G),

(14)

which implies that sdc(G)≤ 3. □

Theorem 11. Let G be a nonempty graph. Ten, sdc

(G°K1) � 3.

Proof. DenoteV(G) � u1, u2, . . . , un􏼈 􏼉 and the corre-
sponding vertex of ui is vi for 1≤ i≤ n. Clearly, c(G°K1)

� |V(G)|. Let G′ be a graph by subdividing any two edges of
G°K1. If the two edges both belong to E(G), then V(G) is
also a dominating set of G′. If the two edges are both pendent
edges uivi and ujvj for some i, j, then V(G) − ui − uj + ui

′ +

uj
′ is also a dominating set of G′ where ui

′ and uj
′ are the

inserted vertices. If one of the two edges is in E(G) and the
other is a pendent edge uivi for some i, then V(G) − ui + ui

′ is
also a dominating set of G′ where ui

′ is the inserted vertices of
uivi. Tus sdc(G°K1)≥ 3.

Let uiuj be an edge in E(G). We subdivide the three
edges uiuj, uivi, and ujvj. Let the inserted vertices are w′, ui

′

and uj
′ and G′ be the resulting graph. To dominate all the

pendent vertices, we need at least n vertices except ui, uj, w′

in G′. To dominate w′, we need at least one vertex in
ui, uj, w′􏽮 􏽯. Terefore, c(G′)≥ n + 1 and hence, sdc(G°K1)

� 3. □

4. NP-Hardness of Domination
Subdivision Number

In this section, we show the algorithmic complexity of the
problem for determining the domination subdivision
number of a graph. We frst state the problem as the fol-
lowing decision problem.

Domination subdivision problem:
Instance: A nonempty graph G.
Question: Is sdc(G) � 1?

For proving the algorithmic complexity of domination
subdivision problem is NP-hard, we follow the method
introduced in [21] which is to prove the algorithmic

complexity of bondage problem is NP-hard. Te steps are
similar but the constructed graph and details are diferent.

Theorem 12. Te domination subdivision problem is NP-
hard for bipartite graphs.

Proof. We start the proof by using 3SAT problem which is
a well-known NP-complete problem by Teorem 1. Let
Boolean variables set U � u1, u2, . . . , un􏼈 􏼉 and clauses set
C � C1, C2, . . . , Cm􏼈 􏼉 be an arbitrary 3SAT instance where
|Cj| � 3 for each j ∈ [m]. To reduce the above instance of
3SAT to an instance of domination subdivision problem, we
will construct a graph G from the above instance, and then
prove C is satisfable if and only if sdc(G) � 1.

For each variable ui ∈ U, we create a graph Hi with
vertex set V(Hi) � ui, vi, ui, pi, qi􏼈 􏼉 and edge set E(Hi) �

uivi, viui, uipi, uipi, piqi􏼈 􏼉. We then create a single vertex cj

for each Cj � xj, yj, zj􏽮 􏽯 ∈ C and add three edges cjxj, cj

yj, cjzj. Finally, we add a path P � s1s2s3 with length 2, and
join s1 and s3 to vertex cj for every j ∈ [m]. Figure 1 shows
an example of constructed G where U � u1, u2, u3, u4􏼈 􏼉 and
C � C1, C2, C3􏼈 􏼉, where C1 � u1, u2, u3􏼈 􏼉, C2 � u1, u2, u4􏼈 􏼉,

C3 � u2, u3, u4􏼈 􏼉.
Note that G contains 5n + m + 3 vertices and 5n + 5m +

2 edges; this construction can be done in polynomial time.
To demonstrate that this is truly a transformation, it is
necessary to establish that sdc(G) � 1 if and only if when
there exists a truth assignment for U which satisfes all the
clauses in C.

Assume D be a minimum dominating set of G. Note that
|D∩V(P)|≥ 1, |D∩NG[vi]|≥ 1 and |D∩NG[qi]|≥ 1 for
every i ∈ [n]. Hence,

c(G) �
􏼌􏼌􏼌􏼌D

􏼌􏼌􏼌􏼌≥ 􏽘
n

i�1
D∩V Hi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

􏼌􏼌􏼌􏼌D∩V(P)
􏼌􏼌􏼌􏼌≥ 2n + 1. (15)

Suppose that c(G) � 2n + 1. Ten, |D∩V(P)| � 1,
|D∩V(Hi)| � 2 for every i ∈ [n], and cj ∉ D for all j ∈ [m].
Because qi should be dominated by D, |D∩ ui, ui􏼈 􏼉|≤ 1 for
every i ∈ [n]. Since all vertices in V(P) can only be domi-
nated by D∩V(P) and |D∩V(P)| � 1, D∩V(P) � s2􏼈 􏼉.

For any edge e ∈ E(G), we claim that c(Ge)≤ 2n + 2. If
e � pkqk for some k ∈ [n] and the inserted vertex is w, then

w, vk􏼈 􏼉∪ ∪ i∈[n]\ k{ } pi, vi􏼈 􏼉􏼐 􏼑∪ s1, s2􏼈 􏼉, (16)

is a dominating set of Ge with cardinality 2n + 2. If e ∈
(∪ i∈[n]E(Hi))∪EG(s1)∪EG(s3)􏽮 􏽯\(∪ i∈[n] piqi􏼈 􏼉), then

∪ i∈[n] pi, vi􏼈 􏼉􏼐 􏼑∪ s1, s3􏼈 􏼉, (17)

is a dominating set ofGe with cardinality 2n + 2. If e � clu for
some l ∈ [m] and u ∈ U or u ∈ U (assume without loss of
generality u ∈ V(Hk)), then

u, pk􏼈 􏼉∪ ∪ i∈[n]\ k{ } pi, vi􏼈 􏼉􏼐 􏼑∪ s1, s2􏼈 􏼉, (18)

is a dominating set of Ge with cardinality 2n + 2.
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We then claim that c(G) � 2n + 1 if and only if C is
satisfable. Assume c(G) � 2n + 1. Let D be a minimum
dominating set of G. Defne a function t: U⟶ T, F{ } by

t ui( 􏼁 �
T, if ui ∈ D,

F, otherwise,
􏼨 i � 1, 2, . . . , n. (19)

By the above discussions, |D∩ ui, ui􏼈 􏼉|≤ 1 for every
i ∈ [n]. Hence, the defnition of t is well-defned. Recall that
D∩V(P) � s2􏼈 􏼉. For any clause Cj ∈ Cwhere j ∈ [m], there
exists some integer i with i ∈ [n] such that cj should be
dominated by ui ∈ D or ui ∈ D, without loss of generality we
say ui ∈ D. Tis implies t(ui) � T by (19), which deduces
that the clause Cj is satisfed. Terefore, C is satisfable.
Conversely, assume that C is satisfable by t, where
t: U⟶ T, F{ } be a satisfying truth assignment for C. We
create a subset D′ ⊆V(G) as follows. Put ui (resp. ui) to D′

when ui is true (resp. fase) under t. Because t is a satisfying
truth assignment for C, at least one literal u in Cj is true
under t for each j ∈ [m] which implies cj ∈ NG[D′]. Hence
D′ ∪ s2􏼈 􏼉 is a dominating set of G with cardinality 2n + 1. By
(15), c(G)≥ 2n + 1, and then c(G) � 2n + 1.

Finally, we claim c(G) � 2n + 1 if and only if sdc(G) � 1.
Suppose c(G) � 2n + 1. We subdivide e � s1s2 and let the
inserted vertex be s. By contradiction, assume c(G) � c(Ge)

and D be a minimum dominating set of Ge. By the similar
discussions as above, |D∩V(Hi)|≥ 2 for every i ∈ [n]. Since
s1ss2s3 is a path in Ge, at least 2 vertices of c1, c2, . . . ,􏼈

cm, s1, s2, s3} should be in D. So c(Ge)≥ 2n + 2> c(G), and
then sdc(G) � 1. Suppose sdc(G) � 1. Let e′ be an edge with
c(G)< c(Ge′). By the above discussions, c(Ge′)≤ 2n + 2.
Hence, 2n + 1≤ c(G)< c(Ge′)≤ 2n + 2. Terefore, c(G) �

2n + 1.
By the above discussions, we see that sdc(G) � 1 if and

only if there exists a truth assignment t for U which satisfes
all the clauses of C. We complete the proof. □

5. Domination Subdivision Number for Some
Cartesian Product Graphs

Let G1 � (V1, E1) and G2 � (V2, E2) be two undirected
graphs. Te Cartesian product of G1 and G2 is an undirected
graph, denoted by G1□G2, where V(G1□G2) � V1 × V2, two
distinct vertices x1x2 and y1y2, where x1, y1 ∈ V(G1) and
x2, y2 ∈ V(G2), are linked by an edge in G1□G2 if and only if
either x1 � y1 and x2y2 ∈ E(G2), or x2 � y2 and x1y1 ∈ E

(G1). Troughout this paper, the notation Pn and Cn denote
a path with vertex set [n] � 1, 2, . . . , n{ }. For integers m≥ 2
and n≥ 3, the Cartesian product of G1 with order m and G2
with order n is G1□G2 that has vertex set

vij: i ∈ [m], j ∈ [n]􏽮 􏽯. (20)

Let (G1)v � V(G1) × v{ } and (G2)u � u{ } × V(G2) where
v ∈ V(G2) and u ∈ V(G1) are called the layers of G1 and G2,
respectively. Figure 2 is the Cartesian product of P2 and C10.

If we want to compute the domination subdivision
number of a graph, we need to know the exact value of its
domination number. We start with the following classical
results.

Theorem 13 (Jacobson and Kinch [22]). For n≥ 2,

c P2□Pn( 􏼁 �
n + 1
2

􏼘 􏼙. (21)

Theorem 14 (Nandi et al. [23]). For n≥ 3,

c P2□Cn( 􏼁 �

n + 1
2

􏼘 􏼙, when n is not amultiple of 4,

n

2
, when n is amultiple of 4.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

u1 u2 u3 u4u1
– u2

– u3
– u4

–

υ1 υ2

υ3

υ4

c2
c1 c3

s1 s3

s2

q1 q2 q3 q4
p1 p2 p3 p4

Figure 1: Te constructed graph G with c(G) � 9. Te set of bold vertices is a minimum dominating set of G.
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Lemma 15. For n≥ 3 and n ≡ 0(mod 4),

sdc P2□Cn( 􏼁 � 1. (23)

Proof. Let n≥ 3 and n ≡ 0(mod 4). By Teorem 14,
c(P2□Cn) � n/2. Note that c(P2□Cn) is a 3-regular graph.
Since

c P2□Cn( 􏼁 �
n

2

�
|V(G)|

4
,

(24)

P2□Cn has an efcient dominating set by Lemma 3. By
Proposition 8, sdc(P2□Cn) � 1. □

Lemma 16. For n≥ 3 and n ≡ 1(mod 4),

sdc P2□Cn( 􏼁 � 1. (25)

Proof. Let n≥ 3 and n ≡ 1(mod 4). Let e � v12v22 and let D

be a minimum dominating set of (P2□Cn)e where the
inserted vertex in e is u. Suppose |(P2)2∩D|≥ 2. Ten
D\(P2)2 can dominate the vertices in P2□Cn − (P2)1∪
(P2)2∪ (P2)3. Note that P2□Cn − (P2)1∪ (P2)2∪ (P2)3 �

P2□Pn− 3. By Teorem 13,

D\ P2( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ c P2□Pn− 3( 􏼁 �
n − 3 + 1

2
􏼘 􏼙

�
n − 1
2

.

(26)

Hence,

|D| � D\ P2( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + P2( 􏼁2∩D
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥
n − 1
2

+ 2

�
n + 3
2
>

n + 1
2

.

(27)

In the following, assume |(P2)2∩D| � 1.
Suppose (P2)2∩D � u{ }. Ten, D\(P2)2 can dominate

the vertices in P2□Cn − (P2)2. Note that P2□Cn − (P2)2 �

P2□Pn− 1. By Teorem 14,

D\ P2( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ c P2□Pn− 1( 􏼁 �
n − 1 + 1

2
􏼘 􏼙

�
n + 1
2

.

(28)

Hence,
􏼌􏼌􏼌􏼌D

􏼌􏼌􏼌􏼌 � D\ P2( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + P2( 􏼁2∩D
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥
n + 1
2

+ 1

�
n + 3
2
>

n + 1
2

.

(29)

Suppose fnally |(P2)2∩D| � 1, u ∉ D and suppose
without loss of generality (P2)2∩D � v12􏼈 􏼉. Ten, v21 or v23
(say v21) must be in D to dominate v22. Note that any vertex
of D from (Cn)i dominates three vertices of (Cn)i including
itself and any vertex of D from (Cn)2− i dominates one vertex
of (Cn)i in (P2□Cn)e. Since v21 and v12 dominate a common
vertex v11 in (P2□Cn)e,

3 D∩ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + D∩ Cn( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1≥ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � n. (30)

Since v12 cannot dominate v22 in (P2□Cn)e,

3 D∩ Cn( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + D∩ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1≥ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � n. (31)

By summing (30) and (31), we have

|D| � D∩ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + D∩ Cn( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥
n + 1
2

. (32)

If the equality holds in (32), then the equalities hold in
(30) and (31) which implies |D∩ (Cn)1| � n + 1/4 contra-
dicts |D∩ (Cn)1| is an integer. Hence

|D|>
n + 1
2

. (33)

By Teorem 14, c(P2□Cn) � n + 1/2. So c((P2□Cn)e)>
c(P2□Cn) which implies that sdc(P2□Cn) � 1. □

Lemma 1 . For n≥ 3 and n ≡ 3(mod 4),

sdc P2□Cn( 􏼁 � 2. (34)

Proof. Let n≥ 3 and n ≡ 3(mod 4). By Teorem 14,
c(P2□Cn) � n + 1/2. Let e � v11v21 or e � v11v12. Ten

D � v11􏼈 􏼉∪ v2j, v1k: j ≡ 2(mod 4), k ≡ 0(mod 4)􏽮 􏽯, (35)

with cardinality n + 1/2 is a dominating set of (P2□Cn)e.
Since there are only two types of edge in P2□Cn,

c P2□Cn( 􏼁e( 􏼁 � |D|

� c P2□Cn( 􏼁,
(36)

for any edge e in P2□Cn. Hence, sdc(P2□Cn)> 1.

υ21

υ11 υ12 υ1,10

υ2,10

Figure 2: Graph P2□C10.
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Let G be the graph that results from subdividing two
edges v11v21 and v13v23, by adding subdivision vertices u and
w. Let D be a minimum dominating set of G. Suppose
|(P2)1∩D|≥ 2. Ten, D\(P2)1 can dominate the vertices in
P2□Cn − (P2)1∪ (P2)2∪ (P2)n. Note that P2□Cn − (P2)1∪
(P2)2∪ (P2)n � P2□Pn− 3. By Teorem 13,

D\ P2( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ c P2□Pn− 3( 􏼁 �
n − 3 + 1

2
􏼘 􏼙

�
n − 1
2

.

(37)

Hence,

|D| � D\ P2( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + P2( 􏼁1∩D
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥
n − 1
2

+ 2

�
n + 3
2
>

n + 1
2

.

(38)

Suppose |(P2)3∩D|≥ 2. Ten, D\(P2)1 can dominate
the vertices in P2□Cn − (P2)2∪ (P2)3∪ (P2)4. Note that
P2□Cn − (P2)2∪ (P2)3∪ (P2)4 � P2□Pn− 3. By Teorem 13,

D\ P2( 􏼁3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ c P2□Pn− 3( 􏼁 �
n − 3 + 1

2
􏼘 􏼙

�
n − 1
2

.

(39)

Hence,

|D| � D\ P2( 􏼁3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + P2( 􏼁3∩D
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥
n − 1
2

+ 2

�
n + 3
2
>

n + 1
2

.

(40)

In the following, assume |(P2)1∩D| � |(P2)3∩D| � 1.
Suppose (P2)1∩D � u{ }. Ten D\(P2)1 can dominate

the vertices in P2□Cn − (P2)1. Note that P2□Cn − (P2)1 �

P2□Pn− 1. By Teorem 13,

D\ P2( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ c P2□Pn− 1( 􏼁 �
n − 1 + 1

2
􏼘 􏼙

�
n + 1
2

.

(41)

Hence,

|D| � D\ P2( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + P2( 􏼁1∩D
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥
n + 1
2

+ 1

�
n + 3
2
>

n + 1
2

.

(42)

Suppose (P2)3∩D � w{ }. Ten, D\(P2)3 can dominate
the vertices in P2□Cn − (P2)3. Note that P2□Cn − (P2)3 �

P2□Pn− 1. By Teorem 13,

D\ P2( 􏼁3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ c P2□Pn− 1( 􏼁 �
n − 1 + 1

2
􏼘 􏼙

�
n + 1
2

.

(43)

Hence,

|D| � D\ P2( 􏼁3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + P2( 􏼁3∩D
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥
n + 1
2

+ 1

�
n + 3
2
>

n + 1
2

.

(44)

Suppose fnally |(P2)1∩D| � |(P2)3∩D| � 1, u, w ∉ D

and suppose without loss of generality (P2)1∩D � v11􏼈 􏼉.
Ten v22 or v2n must be in D to dominate v21. Assume v13 in
D to dominate the vertex w and v23 not in D. Since v22
should be dominated by D, v22 ∈ D or v12 ∈ D (say v22 ∈ D

since it is more efcient). Note that any vertex of D from
(Cn)i dominates three vertices of (Cn)i including itself and
any vertex ofD from (Cn)2− i dominates at most one vertex of
(Cn)i in G. Since v11, v22, and v13 dominate a common vertex
v12 in G,

3 D∩ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + D∩ Cn( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 2≥ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � n. (45)

Since v11 and v13 cannot dominate vertices in (Cn)2
corresponding to G,

3 D∩ Cn( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + D∩ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 2≥ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � n. (46)

By summing (45) and (46), we have

|D| � D∩ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + D∩ Cn( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥
n + 2
2
>

n + 1
2

. (47)

Assume v23 in D dominates the vertex w and v13 not in
D. If v22 ∈ D, then (D\ v22􏼈 􏼉)∪ v21􏼈 􏼉 is also a minimum
dominating set of G, and this case has been solved in the
second paragraph. If v12 ∈ D, then (D\ v12􏼈 􏼉)∪ v13􏼈 􏼉 is also
a minimum dominating set of G, and this case also has been
solved in the second paragraph. Te remaining case is
v12 ∉ D and v22 ∉ D. Since v21 and v13 should be dominated
byD inG, v2n and v14 must be inD. Note that any vertex ofD

from (Cn)i dominates three vertices of (Cn)i including itself
and any vertex of D from (Cn)2− i dominates at most one
vertex of (Cn)i in G. Since v11 and v2n dominate a common
vertex v1n in G, and v23 cannot dominate v13, we have

3 D∩ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + D∩ Cn( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 2≥ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � n. (48)

Since v11 cannot dominate vertices in (Cn)2 corre-
sponding to G and v14 dominates v24 which is also domi-
nated by v23 in G,

3 D∩ Cn( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + D∩ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 2≥ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � n. (49)

By summing (48) and (49), we have

|D| � D∩ Cn( 􏼁1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + D∩ Cn( 􏼁2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥
n + 2
2
>

n + 1
2

. (50)

By Teorem 14, c(P2□Cn) � n + 1/2. By the above
discussions, c(G) � |D|> n + 1/2 � c(P2□Cn) which im-
plies that sdc(P2□Cn) � 1. □

Lemma 18. For n≥ 3 and n ≡ 2(mod 4),

sdc P2□Cn( 􏼁 � 3. (51)
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Proof. By Teorem 14, c(P2□Cn) � n + 2/2. We frst show
sdc(P2□Cn)≥ 3. Assume e1 � v11v21 and e2 � v1jv2j where
2≤ j≤ n/2. Let G be the graph that results from subdividing
the two edges e1 and e2. If j ≡ 2, 3(mod 4), then

D � v11􏼈 􏼉∪ v2r, v1(r+2): r ≡ 3(mod 4), 3≤ r< j􏽮 􏽯

∪ v2j􏽮 􏽯∪ v1s, v2(s+2): s ≡ 0(mod 4), j< s< n􏽮 􏽯,

(52)

with cardinality n + 2/2 is a dominating set of G. If
j ≡ 0, 1(mod 4), then

D � v1r, v2(r+2): r ≡ 1(mod 4), 1≤ r< j􏽮 􏽯

∪ v1j􏽮 􏽯∪ v2s, v1(s+2): s ≡ 2(mod 4), j< s< n􏽮 􏽯∪ v2n􏼈 􏼉,

(53)

with cardinality n + 2/2 is a dominating set of G. By the
above discussion, we can easily check that the above con-
structed set D of G is also a dominating set of G when e2 �

v1jv1(j+1) and j ≡ 1, 3(mod 4). If e2 � v1jv1(j+1) and w be
the subdivision vertex where j ≡ 2(mod 4), then

D � v21􏼈 􏼉∪ v1r, v2(r+2): r ≡ 3(mod 4), 3≤ r< j􏽮 􏽯

∪ w{ }∪ v2s, v1(s+2): s ≡ 0(mod 4), j< s< n􏽮 􏽯,
(54)

with cardinality n + 2/2 is a dominating set of G. If e2 �

v1jv1(j+1) and w be the subdivision vertex where j ≡ 0
(mod 4), then

D � v1r, v2(r+2): r ≡ 1(mod 4), 1≤ r< j􏽮 􏽯

∪ w{ }∪ v1s, v2(s+2): s ≡ 0(mod 4), j + 2< s< n􏽮 􏽯∪ v2(j+2)􏽮 􏽯,
(55)

with cardinality n + 2/2 is a dominating set of G.
Assume e1 � v11v12 and e2 � vkjvk(j+1) where 2≤ j≤ n/2

and k ∈ [2]. Let G be the graph that results from subdividing
the two edges e1 and e2. If j ≡ 0(mod 4), then

D � v11􏼈 􏼉∪ v2r, v1(r+2): r ≡ 2(mod 4), 2≤ r< j􏽮 􏽯

∪ v2(j+1)􏽮 􏽯∪ v1s, v2(s+2): s ≡ 3(mod 4), j< s< n􏽮 􏽯,

(56)

with cardinality n + 2/2 is a dominating set of G. If
j ≡ 2(mod 4), then

D � v11􏼈 􏼉∪ v2r, v1(r+2): r ≡ 2(mod 4), 2≤ r< j􏽮 􏽯

∪ v2j􏽮 􏽯∪ v1s, v2(s+2): s ≡ 3(mod 4), j< s< n􏽮 􏽯,

(57)

with cardinality n + 2/2 is a dominating set of G. If
j ≡ 1(mod 4) and w be the subdivision vertex for e1, then

D � w{ }∪ v2r, v1(r+2): r ≡ 3(mod 4), 3≤ r< j􏽮 􏽯

∪ v2(j+1)􏽮 􏽯∪ v1s, v2(s+2): s ≡ 0(mod 4), j< s< n􏽮 􏽯,

(58)

with cardinality n + 2/2 is a dominating set of G. If
j ≡ 3(mod 4) and w be the subdivision vertex for e1, then

D � w{ }∪ v2r, v1(r+2): r ≡ 3(mod 4), 3≤ r< j􏽮 􏽯

∪ v2j􏽮 􏽯∪ v1s, v2(s+2): s ≡ 0(mod 4), j< s< n􏽮 􏽯,

(59)

with cardinality n + 2/2 is a dominating set of G. By sym-
metry and the above discussions, we see that c(G) � c

(P2□Cn) where G is the graph that results from subdividing
any two edges of P2□Cn. Hence, sdc(P2□Cn)> 2.

Let G′ be the graph that results from subdividing three
edges v11v12, v22v23, and v13v14, by adding subdivision ver-
tices u, v, and w. Let D be a minimum dominating set of G′.
In the following we prove |D|> n + 2/2 � c(P2□Cn) by
Teorem 14. We can easily check |D|> n + 2/2 for n � 6.
Assume n≥ 10 below. Suppose |((P2)1∪ (P2)2∪ (P2)3∪
(P2)4)∩D|≥ 4. Ten, D\((P2)1∪ (P2)2∪ (P2)3∪ (P2)4) can
dominate G′ − (P2)1∪ (P2)2∪ (P2)3∪ (P2)4∪ (P2)5∪ (P2)n

which is isomorphic to P2□Pn− 6. Hence

|D| � D\ P2( 􏼁1∪ P2( 􏼁2∪ P2( 􏼁3∪ P2( 􏼁4( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + P2( 􏼁1∪ P2( 􏼁2∪ P2( 􏼁3∪ P2( 􏼁4( 􏼁∩D
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≥ c P2□Pn− 6( 􏼁 + 4

≥
n − 6 + 1

2
􏼘 􏼙 + 4

>
n + 2
2

,

(60)
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the last but one inequality comes from Teorem 13. In the
following, assume |((P2)1∪ (P2)2∪ (P2)3∪ (P2)4)∩D| � 3
(cannot be smaller than 3 since u, v, w should be dominated
by 3 distinct vertices in D).

Assume | u, v, w{ }∩D|≥ 2 and we say u, v ∈ D for ex-
ample. For dominating the vertex w, either v13 or w in D.

Note that any vertex of D from (Cn)i or the corresponding
subdivision vertices dominates three vertices of (Cn)i in-
cluding itself and any vertex of D from (Cn)2− i dominate at
most one vertex of (Cn)i in G′. Since v cannot dominate
vertices in (Cn)2,

3 D∩ Cn( 􏼁1∪ u, w{ }( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + D∩ Cn( 􏼁2∪ v{ }( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1≥ Cn( 􏼁1∪ u, w{ }
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � n + 2. (61)

Since v13 and v have a common neighbor v23, u, w have
no neighbors in (Cn)2.

3 D∩ Cn( 􏼁2∪ v{ }( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +|D∩ ∪ u, w{ })| − 2≥ Cn( 􏼁2∪ v{ }
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � n + 1. (62)

By summing (61) and (62), we have

|D| � D∩ Cn( 􏼁1∪ u, w{ }( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + D∩ Cn( 􏼁2∪ v{ }( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥
n + 3
2
>

n + 2
2

. (63)

Assume | u, v, w{ }∩D| � 1. Suppose u ∈ D and v, w ∉ D.
Note that v22 and v should be dominated by D, and also v13
and w should be dominated by D. Since |((P2)1∪ (P2)2∪
(P2)3∪ (P2)4)∩D| � 3, v22 and v13 must be in D. Ten

D\((P2)1∪ (P2)2∪ (P2)3) can dominate G′ − (P2)1∪ (P2)2
∪ (P2)3∪ (P2)n which is isomorphic to P2□Pn− 4. Hence

|D| � D\ P2( 􏼁1∪ P2( 􏼁2∪ P2( 􏼁3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + P2( 􏼁1∪ P2( 􏼁2∪ P2( 􏼁3( 􏼁∩D
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≥ c P2□Pn− 4( 􏼁 + 3

≥
n − 4 + 1

2
􏼘 􏼙 + 3

>
n + 2
2

,

(64)

the last but one inequality comes from Teorem 13. Similar
discussions for v ∈ D and u, w ∉ D.

By the above discussions, c(G′) � |D|> n + 2/2 � c

(P2□Cn) by Teorem 14, which implies that sdc(P2□Cn)

≤ 3. We complete the proof of this Lemma.
Combing Lemmas 15, 16, 17, and 18, we show the exact

value for domination subdivision number of P2□Cn. □

Theorem 19. For n≥ 3,

sdc P2□Cn( 􏼁 �

1, n ≡ 0, 1(mod 4),

2, n ≡ 3(mod 4),

3, n ≡ 2(mod 4).

⎧⎪⎪⎨

⎪⎪⎩
(65)

6. Conclusions

In this paper, we prove the decision problem for determining
whether sdc(G) � 1 is NP-hard. Tis result is fundamental
for a mathematical parameter. Tis result shows it is
meaningful to study the bounds and other properties of the
domination subdivision number of graphs. Since it is dif-
fcult to determine whether c(Ge)> c(G) for any edge e in
graph G, it is obvious that the domination subdivision
problem is not a NP problem. So we only prove the decision
problem for determining whether sdc(G) � 1 is NP-hard but
not NP-complete. Moreover, we show a better tight bound
sdc(G)≤dG(u) + dG(v) − |NG(u)∩NG(v)| − 1 for domi-
nation subdivision number of connected graphs.

Journal of Mathematics 9



Data Availability

Te data used to support the fndings of this study are in-
cluded within the article.

Conflicts of Interest

Te authors declare that there are no conficts of interest
regarding the publication of this paper.

Acknowledgments

Tis research was supported by Anhui Provincial Natural
Science Foundation (Grant no. 2108085MA02) and Uni-
versity Natural Science Research Project of Anhui Province
(Grant nos. KJ2020A0001 and 2023AH050060).

References

[1] J.-M. Xu,Teory and Application of Graphs, Kluwer Academic
Publishers, London, UK, 2003.

[2] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Funda-
mentals of Domination in Graphs, Marcel Dekker, New York,
NY, USA, 1998.

[3] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Domination
in Graphs: Advanced Topics, Marcel Dekker, New York, NY,
USA, 1998.

[4] D. Pradhan, S. Banerjee, and J.-B. Liu, “Perfect Italian
domination in graphs: complexity and algorithms,” Discrete
Applied Mathematics, vol. 319, no. 2022, pp. 271–295, 2022.

[5] Z. Shao, H. Jiang, P. Wu et al., “On 2-rainbow domination of
generalized Petersen graphs,” Discrete Applied Mathematics,
vol. 257, pp. 370–384, 2019.

[6] S. Wang, C. Wang, and J.-B. Liu, “On extremal multiplicative
Zagreb indices of trees with given domination number,”
AppliedMathematics and Computation, vol. 332, pp. 338–350,
2018.

[7] H. Aram, S. M. Sheikholeslami, and O. Favaron, “Domination
subdivision numbers of trees,”Discrete Mathematics, vol. 309,
no. 4, pp. 622–628, 2009.

[8] O. Favaron, H. Karami, and S. M. Sheikholeslami, “Disproof
of a conjecture on the subdivision domination number of
a graph,” Graphs and Combinatorics, vol. 24, no. 4,
pp. 309–312, 2008.

[9] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi,
D. P. Jacobs, J. Knisely, and L. C. van derMerwe, “Domination
subdivision numbers,” Discussiones Mathematicae Graph
Teory, vol. 21, no. 2, pp. 239–253, 2001.

[10] H. Müller and A. Brandstädt, “Te NP-completeness of
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